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ABSTRACT. The present research grew out of the authors’ joint work [2]. It continues
the study of the structure of projective varieties of almost minimal degree, focussing to
the case of small codimension. In particular, we give a complete list of all occuring Betti
diagrams in the cases wherecodim X ≤ 4.

1. INTRODUCTION

Let X ⊂ Pr
K denote an irreducible and reduced projective variety over an algebraically

closed fieldK. We always assume thatX is non-degenerate, that is not contained in a
hyperplane. Then, the degree and the codimension ofX satisfy the inequalitydeg X ≥
codim X + 1 (cf. for instance [9]). Varieties for which equality holds are called called
varieties of minimal degree. These varieties are completely classified (cf. for instance [7]
and [9]). In particular they are arithmetically Cohen-Macaulay and have a linear minimal
free resolution. In particular, their Betti numbers are explicitly known.

In casedeg X = codim X + 2, the varietyX is called avariety of almost minimal
degree. Here one has a much greater variety of possible Betti numbers. The investigation
of homological properties of varieties of almost minimal degree was initiated by Hoa,
Stückrad, and Vogel (cf. [10]). We refer also to [2] and [12] for certain improvements of
their results. In particular the Castelnuovo-Mumford regularity of a varietyX of almost
minimal degree satisfiesreg X ≤ 2 (cf. [6] for the definition of the Castelnuovo-Mumford
regularity).

In the framework of polarized varieties of∆-genus 1, Fujita (cf. [3] and [4]) provides
a satisfactory description of varieties of almost minimal degree. The study of varieties
of almost minimal degree is pursued by the authors (cf. [2]) from the arithmetic point of
view. It turns out thatX ⊂ Pr

K is either an arithmetically normal Del Pezzo variety or
a proper projection of a variety of minimal degree. By a proper projection of a variety
Z ⊂ Pr+1

K we always mean a projection from a pointp ∈ Pr+1
K \ Z. See also 3.1 for the

precise statement.
The aim of the present paper is to investigate varieties of almost minimal degree and of

low codimension, in particular their Betti diagrams. More precisely, we describe the
structure of the minimal free resolution of a varietyX of almost minimal degree of
codim X ≤ 4 by listing all possible Betti diagrams. Let us recall that the structure of
arithmetically Cohen-Macaulay resp. Gorenstein varieties in codimension 2 resp. 3 is
known by the Theorems of Hilbert-Burch resp. Buchsbaum-Eisenbud (cf. [6]). So, we
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need not to discuss these cases in detail any more. As the Betti diagram, the degree and
the codimension are not affected ifX is replaced by a cone overX, we shall assume that
X is not a cone. The most surprising fact is, that the dimension ofX is always≤ 6 (cf.
Section 2 for the precise statements). Our main technical tool is a result shown by the au-
thors in [2], which says that apart from an exceptional case, (that is the generic projection
of the Veronese surface inP5

K) any non-arithmetically normal (and in particular non-
arithmetically Cohen-Macaulay) variety of almost minimal degreeX ⊂ Pr

K (which is not
a cone) is contained in a variety of minimal degreeY ⊂ Pr

K such thatcodim(X, Y ) = 1.

Acknowledgement .The authors thank Uwe Nagel for making his preprint [12] available.
They also thank for the referee’s very valuable suggestions.

2. MAIN RESULTS

Let X ⊂ Pr
K denote a non-degenerate variety of almost minimal degree, hence an inte-

gral closed subscheme withdeg X = codim X + 2 not contained in a hyperplanePr−1
K ⊂

Pr
K . We use the abbreviationsdim X = d andcodim X = c. Let S = K[x0, . . . , xr]

denote the polynomial ring inr + 1 variables, so thatPr
K = Proj(S). Let AX = S/IX

denote the homogeneous coordinate ring ofX, whereIX ⊂ S is the defining ideal ofX.
The codepth of AX is defined as the differencecodepth AX := dim AX − depth AX ,
wheredepth AX denotes the depth ofAX .

For the notion of Betti diagrams we follow the suggestion of Eisenbud (cf. [6]). That
is, in a diagram the number in thei-th column and thej-th row is

dimK TorS
i (K, IX)i+j.

Outside the range of the diagram all the entries are understood to be zero. Our main
results are.

Theorem 2.1. (codim X = 2) LetX ⊂ Pr
K be a non-degenerate variety of degree 4 and

codimension 2 which is not a cone. ThenX is of one of the following types:

(a) X is a complete intersection cut out by two quadrics.
(b) dim X ≤ 4 and the Betti diagram ofIX has the form

1 2 3
1 1 0 0
2 3 4 1

.

(c) (The exceptional case)X is a generic projection of the Veronese surfaceF ⊂ P5
K

and the Betti diagram ofIX has the shape

1 2 3 4
1 0 0 0 0
2 7 10 5 1

.

Moreover for any1 ≤ d ≤ 4 there are examples as mentioned in (b) such thatdim X = d.

In the case whereX is a Cohen-Macaulay variety, Theorem 2.1 (b) has been shown by
Nagel (cf. [12]). Under this additional assumption one hasdim X ≤ 2. Theorem 2.1 grew
out of our aim to understand Nagel’s arguments. Our approach enables us to investigate
the cases of codimension three and four as well.
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Theorem 2.2. (codim X = 3) LetX ⊂ Pr
K denote a non-degenerate variety of degree 5

and codimension 3 which is not a cone. Then the following cases may occur:

(a) dim X ≤ 6 andX is the Pfaffian variety defined by the five Pfaffians of a skew
symmetric5× 5 matrix of linear forms. Its minimal free resolution is given by the
Buchsbaum-Eisenbud complex.

(b) dim X ≤ 4 andcodepth AX = 1. The Betti diagram of the defining idealIX has
the following form

1 2 3 4
1 4 2 0 0
2 1 6 5 1

.

(c) dim X ≤ 5 and codepth AX = 2. The Betti diagram ofIX has the following
shape

1 2 3 4 5
1 3 2 0 0 0
2 6 16 15 6 1

.

For any of the dimensions and codepths admitted in (a), (b) and (c) resp. there are exam-
ples of varieties of almost minimal degree.

The next result concerns the case whereX is of codimension 4. A new phenomenon
occurs in this situation. Namely, for the same codepth two different Betti diagrams may
occur.

Theorem 2.3. (codim X = 4) LetX ⊂ Pr
K denote a non-degenerate variety of degree 6

and codimension 4 which is not a cone. Then the following four cases may occur:

(a) dim X ≤ 4 andX is arithmetically Gorenstein. Its minimal free resolution has
the following form

0 → S(−6) → S9(−4) → S16(−3) → S9(−2) → IX → 0.

(b) dim X ≤ 4 andcodepth AX = 1. The Betti diagram of the defining idealIX has
one of the following two forms:

1 2 3 4 5
1 8 12 3 0 0
2 1 4 10 6 1

resp.
1 2 3 4 5

1 8 11 3 0 0
2 0 4 10 6 1

.

(c) dim X ≤ 5 andcodepth AX = 2. The Betti diagram ofIX is of the form:
1 2 3 4 5 6

1 7 8 3 0 0 0
2 3 19 30 21 7 1

.

(d) dim X ≤ 6 and codepth AX = 3. The Betti diagram ofIX has the following
shape:

1 2 3 4 5 6 7
1 6 8 3 0 0 0 0
2 10 40 65 56 28 8 1

.

For any of the dimensions, codepths and Betti diagrams admitted in (a), (b), (c) and (d)
resp. there are examples of varieties of almost minimal degree.
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The final result of this note concerns varieties of almost minimal degree and of codi-
mension less than half the embedding dimension. First of all note (cf. Example 4.8) that
in codimension 6 there are varieties of almost minimal degree having the samecodepth
but with rather different Betti diagrams. That is, the corresponding statements to Theorem
2.1, 2.2 and 2.3 are not true in hihgher codimension.

Corollary 2.4. LetX ⊂ Pr
K be a non-degenerate variety of almost minimal degree which

is not a cone. Suppose thatdim X > codim X +2 andcodim X ≥ 3. Thencodim X = 3
andX is arithmetically Gorenstein. Thereforedim X ≤ 6 andX is defined by the five
Pfaffians of a skew symmetric5× 5 matrix of linear forms.

Moreover, in the case whereX is a variety of almost minimal degree anddim X ≤
codim X + 2, that is whenX is not necessary a Del Pezzo variety there are estimates for
the Betti numbers and their vanishing (cf. 3.3 for the details).

3. OUTLINE OF THE PROOFS

Let X ⊂ Pr
K denote a non-degenerate reduced irreducible variety of almost minimal

degree. By the work of the authors (cf. [2]) it follows thatX is either a normal Del
Pezzo variety – in this caseX is arithmetically Gorenstein – or a projection of a variety
of minimal degree.

First, we consider the case of non-arithmetically normal varieties of almost minimal
degree. In this situation we have the following characterization in whichSecP (Z) denotes
the secant cone of a projective varietyZ with respect to a pointP in the ambient space.

Lemma 3.1. Let X ⊂ Pr
K denote a non-degenerate reduced irreducible variety which is

not a cone. Let1 ≤ t ≤ dim X+1 =: d+1. Then the following conditions are equivalent:

(i) X is not arithmetically normal,deg X = codim X + 2 anddepth AX = t.
(ii) X is the projection of a varietyZ ⊂ Pr+1

K of minimal degree from a pointP ∈
Pr+1

K \ Z such thatdim SecP (Z) = t− 1.

Moreover,1 ≤ depth AX ≤ 4.

Proof. Cf. [2, Theorem 1.1 and Corollary 7.6]. �

In view of Lemma 3.1 there is some need for information about varieties of minimal
degree in order to understand varieties of almost minimal degree. A variety of minimal
degreeZ ⊂ Ps

K is either

• a quadric hypersurface,
• a (cone over a) Veronese surface inP5

K , or
• a (cone over a) smooth rational normal scroll

(cf. [7] and [9] for the details and the history of this classification).
Next we recall a few basic facts about rational normal scrolls (cf. also [9]). Let

T = K[x10, . . . , x1a1 , x20, . . . , x2a2 , . . . , xk0, . . . , xkak
]
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be the polynomial ring. A (cone over a) rational normal scrollS(a1, . . . , ak) is defined as
the ”rank two subscheme inPs

K = Proj(T )” defined by the matrix

M =

(
x10 . . . x1a1−1

... x20 . . . x2a2−1
... . . .

... xk0 . . . xkak−1

x11 . . . x1a1

... x21 . . . x2a2

... . . .
... xk1 . . . xkak

)
with s = k − 1 +

∑k
i=1 ai. It is well known thatdim S(a1, . . . , ak) = k and therefore

deg S(a1, . . . , ak) = codim S(a1, . . . , ak) + 1 =
k∑

i=1

ai,

so thatS(a1, . . . , ak) is a variety of minimal degree. Keep in mind thatS(a1, . . . , ak) is a
proper cone if and only ifai = 0 for somei ∈ {1, . . . , k}, that is, if and only if there are
indeterminates which do not occur inM.

Moreover we need some information about the Hilbert seriesF (λ, AX) of the graded
K-algebraAX . Let us recall that the Hilbert series of a gradedK-algebraA is the formal
power series defined by

F (λ, A) =
∑
i≥0

(dimK Ai)λ
i.

The Hilbert series of a variety of almost minimal degree may be described as follows.

Lemma 3.2. Let X ⊂ Pr
K denote a variety of almost minimal degree. Putq =

codepth AX . Then

F (λ, AX) =
1

(1− λ)d+1
(1 + (c + 1)λ− λ(1− λ)q+1),

wherec = codim X andd = dim X. FurthermoredimK(IX)2 =
(

c+1
2

)
− q − 1.

Proof. Cf. [2, Corollary 4.4]. �

As a consequence of Lemma 3.1 the authors (cf. [2]) derived some information about
the Betti numbers ofIX for certain varietiesX ⊂ Pr

K of almost minimal degree.

Lemma 3.3. Let X ⊂ Pr
K be a variety of almost minimal degree which is not arithmeti-

cally Cohen-Macaulay. Suppose thatX is not a generic projection of (a cone over) the
Veronese surfaceF ⊂ P5

K . Then there exists a variety of minimal degreeY ⊂ Pr
K such

thatX ⊂ Y andcodim(X, Y ) = 1. Moreover

TorS
i (k, AX) ' kui(−i− 1)⊕ kvi(−i− 2) for 1 ≤ i ≤ c + q,

wherec = codim X, q = codepth AX and

(a) u1 =
(

c+1
2

)
− q − 1,

i
(

c
i+1

)
≤ ui ≤ (c + 1)

(
c
i

)
−
(

c
i+1

)
, if 1 < i < c− q,

ui = i
(

c
i+1

)
, if c− q ≤ i < c,

ui = 0, if c ≤ i ≤ c + q.
(b) max{0,

(
c+q−1

i+1

)
− (i + 2)

(
c

i+1

)
} ≤ vi ≤

(
c+q+1

i+1

)
, if 1 ≤ i < c− q − 1,

vi =
(

c+q+1
i+1

)
− (i + 2)

(
c

i+1

)
, if max{1, c− q − 1} ≤ i < c,

vi =
(

c+q+1
i+1

)
, if c ≤ i ≤ c + q.
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In additionvi − ui+1 =
(

c+q+1
i+1

)
− (c + 1)

(
c

i+1

)
+
(

c
i+2

)
for all 1 ≤ i < c.

Proof. Cf. [2, Theorem 1.1 and Theorem 8.3]. �

In the particular case wheredim X = 1 the statement about the Betti numbers has been
shown independently by Nagel (cf. [12]).

In the following remark, we add a comment concerning the ”exceptional cases” of a
generic projection of (a cone over) the Veronese surfaceF ⊂ P5

K and of an arithmetically
Cohen-Macaulay variety.

Remark 3.4. A) (The exceptional case) LetF ⊂ P5
K be the Veronese surface defined by

the2× 2-minors of the symmetric matrix

M =

 x0 x1 x2

x1 x3 x4

x2 x4 x5

 .

Let P ∈ P5
K \ F denote a point. Suppose thatrank M|P = 3, that is the case of a generic

point. Remember thatdet M = 0 defines the secant variety ofF. Then the projection of
F from P defines a surfaceX ⊂ P4

K of almost minimal degree anddepth AX = 1. The
surfaceX is cut out by seven cubics (cf. 3.2), so that it is not contained in a variety of
minimal degree.
B) (The arithmetically normal case) LetX ⊂ Pr

K denote an arithmetically normal variety
of almost minimal degree. ThenX is not a birational projection of a scroll and hence
a maximal Del Pezzo variety (cf. [2, Theorem 1.2]). In particularX is arithmetically
Gorenstein. If in additioncodim X ≥ 3, Fujita’s classification of normal maximal Del
Pezzo varieties yieldsdim X ≤ 4 (cf. [5, (8.11), (9.17)]). Ifcodim X ≥ 4, the same
classification shows thatdim X ≤ 4.
C) If X is an arithmetical normal Del Pezzo variety it is in general not a one codimen-
sional subvariety of a variety of minimal degree. Namely, letX ⊂ P9

K be the smooth
codimension three variety cut out by the4 × 4-Pfaffians of a generic skew-symmetric
5 × 5-matrix of linear forms. ThenX is not contained in a varietyY of minimal degree
such thatcodim(X, Y ) = 1 (cf. [2] for the details).

Proofs. After these preparations, we now come to the proofs of our Theorems. The proof
of statement 2.1 (a) is easy. Now let us consider the statements 2.2 (a) and 2.3 (a). In both
casesX is arithmetically Gorenstein. IfX is a birational projection of a scroll, we have
dim AX = depth AX ≤ 4 (cf. Lemma 3.1). OtherwiseX is arithmetically normal (cf.
[2, Theorem 1.2]). So, by 3.4 B) we havedim X ≤ 6 if codim X ≥ 3 anddim X ≤ 4 if
codim X ≥ 4. This gives us the dimension estimates. The statements on the minimal free
resolutions now follow from well known results. In fact the structure of the minimal free
resolution ofIX given in Theorem 2.3 (a) is a consequence of [13, Theorem B].

Next we prove statement (c) of Theorem 2.1. To this end letX ⊂ P4
K be a generic

projection of the Veronese surfaceF ⊂ P5
K . Then dim X = 2, codim X = 2 and

depth AX = 1. As seen above,IX does not contain any quadric. ThereforeIX has a
linear resolution. Remember thatreg IX = 3 (cf. [2]). A computation with the aid of the
Hilbert series (cf. 3.2) gives the structure of the Betti diagram of 2.1 (c).



VARIETIES OF ALMOST MINIMAL DEGREE 7

For all other statements of Theorems 2.1, 2.2 and 2.3 we may assume that the variety of
almost minimal degreeX ⊂ Pr

K is not arithmetically Cohen-Macaulay and not a projec-
tion of the Veronese surfaceF ⊂ P5

K . So,X is contained in a variety of minimal degree
Y of codimensionc − 1 (cf. 3.3). That is,Y is defined as the zero locus of

(
c
2

)
quadrics.

On the other hand the defining idealIX is generated by
(

c+1
2

)
− q − 1 quadrics (cf. 3.2).

This implies that

dimK(IX/IY )2 = c− q − 1 ≥ 0,

wherec = codim X, q = codepth AX ≥ 1. Considering all possibilities that arise for
c = 2, 3, 4 it follows that, with the exception of the case in whichc = 4, q = 1, Lemma
3.3 furnishes the corresponding Betti diagrams.

The particular case wherec = 4, q = 1, yields the following shape of the Betti diagram

1 2 3 4 5
1 8 u2 3 0 0
2 v1 4 10 6 1

with v1 − u2 = −11. In order to finish the proof we observe thatv1 ≤ 1 (cf. Lemma 3.5).
To complete the proof of Theorems 2.1, 2.2 and 2.3 we have to prove the stated con-

straints on the occuring dimensions and codepths. To do so, we may assume thatX is not
arithmetically Cohen-Macaulay. Therefore by Lemma 3.1X is the projection of a variety
of minimal degreeZ ⊂ Pr+1

K from a pointP ∈ Pr+1
K \ Z such thatdim SecP (Z) = t− 1,

wheret = depth AX .
Next let us analyze this situation in more detail. To this end letZ = S(a1, . . . , ak) for

certain integersai, i = 1, . . . , k. Then it follows that

r = k − 2 +
k∑

i=1

ai andc + 2 =
k∑

i=1

ai,

wherec = codim X.
AsX is not a cone,Z cannot be a cone over a rational normal scroll. Thereforemin{ai :

i = 1, . . . , k} ≥ 1. So, for a given codimensionc we have to investigate all the possible
partitions

c + 2 =
k∑

i=1

ai, with k ≥ 1 anda1 ≥ a2 ≥ . . . ≥ ak ≥ 1.

For c = 2 we thus get the following possible types for the rational normal scrollZ :

k a1 a2 a3 a4 r + 1 dim X
1 4 4 1
2 3 1 5 2
2 2 2 5 2
3 2 1 1 6 3
4 1 1 1 1 7 4

This proves already thatdim X ≤ 4.
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Next, we discuss the case in which the codimension equals3. Here, there are the fol-
lowing possibilities for the type of the scrollZ:

k a1 a2 a3 a4 a5 r + 1 dim X
1 5 5 1
2 4 1 6 2
2 3 2 6 2
3 3 1 1 7 3
3 2 2 1 7 3
4 2 1 1 1 8 4
5 1 1 1 1 1 9 5

Thereforedim X ≤ 5. We already know thatu1 ≥ 3. Now, on use of Lemma 3.3 we
easily get the requested constraints in Theorem 2.2.

Finally, let codim X = 4. Then, as above there is the following list of possible types
for the scrollZ :

k a1 a2 a3 a4 a5 a6 r + 1 dim X
1 6 6 1
2 5 1 7 2
2 4 2 7 2
2 3 3 7 2
3 4 1 1 8 3
3 3 2 1 8 3
3 2 2 2 8 3
4 3 1 1 1 9 4
4 2 2 1 1 9 4
5 2 1 1 1 1 10 5
6 1 1 1 1 1 1 11 6

As above it follows thatdim X ≤ 6. We know thatu1 ≥ 6. So, by Lemma 3.3 we get the
requested constraints in Theorem 2.3.

Finally we prove Corollary 2.4. Assume thatX is not arithmetically normal. Then, by
Theorem 1.2 of [2] we know thatX is a birational projection of a rational normal scroll
Z ⊂ Pr+1

K from a pointp ∈ Pr+1
K \ Z. As X is not a cone,Z is not a cone either and

thereforecodim X + 2 =
∑k

i=1 ai ≥ k = dim X. This contradicts the assumption of
Corollary 2.4. ThereforeX is arithmetically normal and sodim X ≤ 6 by Remark 3.4.
That is,codim X = 3. So our claim follows by Theorem 2.2.

For the existence of the samples described in Theorems 2.1 and 2.2 we refer to the next
section.

We close this section with a result on the number of cubics in a minimal generating set
of the defining ideal of a certain varieties of almost minimal degree.

Lemma 3.5. Let X ⊂ Pr
K be a variety of almost minimal degree withcodepth AX = 1

and c := codim X ≥ 4. Then the defining idealIX of X is generated by
(

c+1
2

)
− 2

quadrics and at most one cubic.
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Proof. First we reduce the problem to the case in whichdim X = 1. Let d = dim X > 1.
By an argument of Bertini type (cf. [11]) we may find generic linear formsl1, . . . , ld−1 ∈
S1 such thatW = X ∩ Pc+1

K ⊂ Pc+1
K := Proj(S/(l0, . . . , ld−1)S) is a non-degenerate

integral variety of almost minimal degree. Asl0, . . . , ld−1 are chosen generically and
depth AX = d they form anAX-regular sequence. Therefore the Betti diagrams ofIX

andIW are the same. In particularcodepth AW = 1.
So we assumeX ⊂ Ps

K with dim X = 1 ands = c + 1. The statement about the
number of quadrics is a consequence of Lemma 3.2. SinceX is of almost minimal degree
we know thatI = IX is 3-regular (cf. 3.3). WriteI = (J, LS) with J = I2S and with a
K-vector spaceL ⊂ S3 such thatI3 = J3 ⊕ L. Our aim is to show thatdimK L ≤ 1.

After an appropriate linear coordinate change we may assume thatxs ∈ S1 is generic.
Let T := S/xsS = K[x0, . . . , xs−1]. ThenR := T/(J, L)T ' S/(I, xsS) defines a
schemeZ of s + 1 points in semi uniform position inPs−1

K . The short exact sequence
0 → AX(−1)

xs→ AX → R → 0 induces an isomorphismH0
R+

(R) ' K(−2). But
this means that the vanishing ideal ofZ in T has the form(J, L, q)T with an appropriate
quadricq ∈ S2. Sinces ≥ 3 the minimal free resolution of this ideal has the form

T a2(−3)
φ→ T a1(−2)

π→ (J, L, q)T → 0.

This allows us to write(J, L, q)T = (J, q)T and to assume that the firsta1 − 1 generators
of T a1(−2) are mapped byπ onto aK-basis of(JT )2 and the last generator is mapped
by π to q · 1T . Clearly,φ is given by a matrix with linear entries. This shows thatM :=
JT :T q ⊂ T is a proper ideal generated by linear forms.

As JT ⊆ M and as(J, qT ) = IT is of heights−1 we must haves−2 ≤ height M ≤
s. As M is generated by linear forms,(T/M)1 is a K-vector space of dimensiont ∈
{0, 1, 2}. So the graded short exact sequence

0 → T/M(−2) → T/JT → T/(J, q)T → 0

shows that
dimK(IT )3 = dimK((J, q)T )3 = dimK(JT )3 + t.

Therefore, we may write(I, xs) = (J, L′, xs) whereL′ ⊆ L ⊂ S3 is aK-vector space
of dimension≤ t. As I is a prime ideal and asxs ∈ S1 \ I it follows I = (J, L′), hence
L′ = L. So, if dimK L′ ≤ 1, we are done.

Otherwise,dimK L′ = dimK L = 2 = t and we may writeI = (J, k1, k2) with
k1, k2 ∈ S3. As height I = s − 1 it follows height J ≥ s − 3. As JT ⊆ M and as
height M = s− 2 we haveheight JT ≤ s− 2. As xs is a generic linear form, this means
thatheight J ≤ s− 3 and henceheight J = s− 3. As I = (J, k1, k2) is a prime ideal of
heights− 1 = height J + 2, the idealJ must be prime too.

As xs is generic andheight J ≤ s − 3, we may conclude by Bertini’s theorem that
JT ⊂ T defines an integral subscheme ofPs−1

K = Proj(T ). So, the saturation

JT :T 〈T+〉 ⊂ T of JT in T

is a prime ideal of heights − 2. As JT ⊆ M ⊂ T+ and asM is a prime ideal we get
JT :T 〈T+〉 = M. Therefore

Proj(T/IT ) = Proj(T/(J, q)T ) = Proj(T/(M, qT ))
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consists of two points, so thats + 1 = 2, a contradiction. So, the casedimK L′ ≥ 2 does
not occur at all. �

The previous Lemma 3.5 is inspired by a corresponding statement for curves of degree
r + 2 in Pr

K shown by the authors (cf. [1, Lemma (6.4)]).
Moreover, ifcodepth AX ≥ 2 the number of cubics needed to defineX is not bounded

by 1 (cf. the examples in [2, Section 9]).

4. EXAMPLES

In this section we want to confirm the existence of all types of varieties of almost
minimal degreeX ⊂ P r

K which are described in the Theorems 2.1, 2.2 and 2.3.
First of all we want to show the existence of a Del Pezzo variety as required by Theorem

2.3 (a).

Example 4.1.Let X = P2
K ×P2

K ⊂ P8
K be the Segre product of two projective planes. Its

defining idealIX is generated by the2×2-minors of the the following generic3×3-matrix x0 x1 x2

x3 x4 x5

x6 x7 x8

 .

It is easy to see thatdim X = 4, codim X = 4 anddeg X = 6. Therefore,X is a variety of
almost minimal degree. Moreover,AX is a Cohen-Macaulay and therefore a Gorenstein
ring. An example of dimension 3 is the Segre productP1

K×P1
K×P1

K ⊂ P7
K (cf. [5, (8.11),

6)]). Examples of smaller dimensions are obtained by taking generic linear sections.

In the next examples let us show that the two different Betti diagrams of statement (b)
in 2.3 indeed occur. Note that they requirecodepth AX = 1 andcodim X = 4.

Example 4.2. Consider the rational normal surface scrollZ = S(3, 3) ⊂ P7
K . Let P1 =

(0 : 0 : 0 : 0 : 1 : 0 : 0 : 1) andP2 = (1 : 0 : 0 : 0 : 0 : 0 : 1) in P7
K . Then

Pi ∈ P7
K \ Z, i = 1, 2, as it is easily seen. DefineXi to be the projection ofZ from

Pi, i = 1, 2. Thendim Xi = 2 andcodepth AXi
= 1 for i = 1, 2. The Betti diagrams of

IXi
, i = 1, 2, are those of Theorem 2.3 (b).

Now we construct non-arithmetically Cohen-Macaulay varieties of almost minimal de-
gree of the type mentioned in Theorem 2.2. To this end we use the possible rational
normal scrollsZ = S(a1, . . . , ak) of the proof of Theorem 2.2 which after appropriate
projection furnish the varieties we are looking for. The construction of the examples cor-
responding to Theorems 2.1 and 2.3 follows similarly, and so we skip the details in these
cases.

Example 4.3.Let Z = S(5) ⊂ P5
K denote the rational normal curve of degree 5. Choose

P ∈ P5
K \ Z a generic point. Then, the projectionX ⊂ P4

K of Z from P is an example of
a variety of almost minimal degree withdim X = 1 andcodepth AX = 1.

Next we want to investigate the case of surfaces.

Example 4.4. Let Z = S(4, 1) ⊂ P6
K . Consider the two pointsP1 = (0 : 1 : 0 : 0 : 0 :

0 : 0) andP2 = (0 : 0 : 1 : 0 : 0 : 0 : 0). ThenPi ∈ P6
K \ Z, for i = 1, 2. Let Xi, i = 1, 2,
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denote the projection ofZ from Pi. Thencodepth AX1 = 1 andcodepth AX2 = 2. The
same type of examples may be produced by projections of the scrollS(3, 2).

Our next examples are of dimension 3.

Example 4.5. Let Z = S(3, 1, 1) ⊂ P7
K . Consider the pointsP1 = (0 : 1 : 0 : 0 :

0 : 0 : 0 : 0) andP2 = (0 : 0 : 0 : 1 : 1 : 0 : 0 : 0). Then it is easy to see that
Pi ∈ P7

K \Z, i = 1, 2. Let Xi denote the projection ofZ from Pi. Thencodepth AX1 = 2
andcodepth AX1 = 1. The same type of examples may be produced by projections from
the scrollS(2, 2, 1).

Now, let us consider the situation of fourfolds.

Example 4.6. Consider the scrollZ = S(2, 1, 1, 1) ⊂ P8
K . Let P1 = (0 : 1 : 0 : 0 : 0 :

0 : 0 : 0 : 0) andP2 = (0 : 0 : 0 : 0 : 0 : 0 : 1 : 1 : 0). ThenPi ∈ P8
K \ Z, i = 1, 2.

Let Xi ⊂ P7 denote the projection ofZ from Pi, i = 1, 2. Thencodepth AX1 = 2, while
codepth AX2 = 1.

Finally let us consider the case wheredim X = 5.

Example 4.7. Let Z = S(1, 1, 1, 1, 1) ⊂ P9
K be the Segre variety. ThenP ∈ P9

K \ Z for
the pointP = (0 : 1 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0). Let X ⊂ P8

K denote the projection
of Z from P. Thendepth AX = 4, and thereforecodepth AX = 2. Finally observe that
codepth AX = 1 is impossible ifdim X = 5, asdepth AX ≤ 4 (cf. Lemma 3.1).

The Examples 4.3 – 4.7 provide the existence of the samples claimed by Theorem 2.2.
Similar constructions provide varieties as mentioned in Theorem 2.1 and 2.3.

In the final examples, we will show that in higher codimension, the shape of the Betti
diagram ofIX for a varietyX of minimal degree may vary in a much stronger way: In
fact the ”beginning of the Betti diagrams” may be rather different from each other.

Example 4.8. Let Z = S(8) ⊂ P8
K denote the rational normal curve of degree 8. Let

P1 = (0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0), P2 = (0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0)
andP3 = (0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0). ThenPi ∈ P8

K \ Z for i = 1, 2, 3. Let
Xi ⊂ P7

K , i = 1, 2, 3, denote the projection ofZ from Pi. Then the Betti diagrams of
IXi

, i = 1, 2, 3, resp. have the form:

i 1 2 3 4 5 6 7
1 1 19 58 75 44 5 0 0

2 1 6 15 20 21 8 1
2 1 19 57 70 34 5 0 0

2 0 1 5 20 21 8 1
3 1 19 57 69 34 5 0 0

2 0 0 5 20 21 8 1

In all three casescodim Xi = 4 and codepth AXi
= 1. Remember that the number

of cubics in the defining ideals is bounded by 1 (cf. Lemma 3.5). It follows thatX1

is contained in the scrollS(5, 1), while X2 is contained in the scrollS(4, 2) andX3 is
contained in the scrollS(3, 3).
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In view of the Example 4.8 and corresponding examples in higher dimensions one
might expect that the type of the rational normal scrollY, that contains the varietyX of
almost minimal degree as a one codimensional subvariety, determines the Betti diagram
”near the beginning of the resolution”. In small codimensions, the different types of these
scrollsY are much more limited than imposed by Theorems 2.1, 2.2 and 2.3. It seems
rather challenging to understand the rôle of the scrollsY for the beginning of the minimal
free resolution ofIX .

Moreover the examples in 4.8 show that the estimates for the Betti numbers given in
Lemma 3.3 near the beginning of the Betti diagram are fairly weak.

Remark 4.9. To compute the Betti diagrams and hence the arithmetic depths of the above
examples, we have made use of the computer algebra system SINGULAR (cf. [8]). More-
over, there is in preparation a conceptual approach for the computation of thedepth AX

in terms of the center of the projection and the secant variety ofS(a1, . . . , ak) ⊂ Pr+1
K .
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