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ABSTRACT. The present research grew out of the authors’ joint work [2]. It continues

the study of the structure of projective varieties of almost minimal degree, focussing to
the case of small codimension. In particular, we give a complete list of all occuring Betti
diagrams in the cases wheredim X < 4.

1. INTRODUCTION

Let X C PP denote an irreducible and reduced projective variety over an algebraically
closed fieldK. We always assume thaf is non-degenerate, that is not contained in a
hyperplane. Then, the degree and the codimensioXi etisfy the inequalityleg X >
codim X + 1 (cf. for instance [9]). Varieties for which equality holds are called called
varieties of minimal degree. These varieties are completely classified (cf. for instance [7]
and [9]). In particular they are arithmetically Cohen-Macaulay and have a linear minimal
free resolution. In particular, their Betti numbers are explicitly known.

In casedeg X = codim X + 2, the variety X is called avariety of almost minimal
degree. Here one has a much greater variety of possible Betti numbers. The investigation
of homological properties of varieties of almost minimal degree was initiated by Hoa,
Stiickrad, and Vogel (cf. [10]). We refer also to [2] and [12] for certain improvements of
their results. In particular the Castelnuovo-Mumford regularity of a vadketyf almost
minimal degree satisfiesg X < 2 (cf. [6] for the definition of the Castelnuovo-Mumford
regularity).

In the framework of polarized varieties &f-genus 1, Fujita (cf. [3] and [4]) provides
a satisfactory description of varieties of almost minimal degree. The study of varieties
of almost minimal degree is pursued by the authors (cf. [2]) from the arithmetic point of
view. It turns out thatX C P’ is either an arithmetically normal Del Pezzo variety or
a proper projection of a variety of minimal degree. By a proper projection of a variety
Z c PR we always mean a projection from a pojnt P!\ Z. See also 3.1 for the
precise statement.

The aim of the present paper is to investigate varieties of almost minimal degree and of
low codimension, in particular their Betti diagrams. More precisely, we describe the
structure of the minimal free resolution of a varieky of almost minimal degree of
codim X < 4 by listing all possible Betti diagrams. Let us recall that the structure of
arithmetically Cohen-Macaulay resp. Gorenstein varieties in codimension 2 resp. 3 is
known by the Theorems of Hilbert-Burch resp. Buchsbaum-Eisenbud (cf. [6]). So, we
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need not to discuss these cases in detail any more. As the Betti diagram, the degree and
the codimension are not affectedif is replaced by a cone ovef, we shall assume that

X is not a cone. The most surprising fact is, that the dimensiok &f always< 6 (cf.

Section 2 for the precise statements). Our main technical tool is a result shown by the au-
thors in [2], which says that apart from an exceptional case, (that is the generic projection
of the Veronese surface i) any non-arithmetically normal (and in particular non-
arithmetically Cohen-Macaulay) variety of almost minimal degkee P (which is not

a cone) is contained in a variety of minimal degkée- P}, such thatodim(X,Y’) = 1.

Acknowledgement . The authors thank Uwe Nagel for making his preprint [12] available.
They also thank for the referee’s very valuable suggestions.

2. MAIN RESULTS

Let X C P} denote a non-degenerate variety of almost minimal degree, hence an inte-
gral closed subscheme witlhkg X = codim X + 2 not contained in a hyperplaié.* ¢
P7.. We use the abbreviationim X = d andcodim X = c. Let S = Klxy,...,x,]
denote the polynomial ring in + 1 variables, so thaP) = Proj(S). Let Ax = S/Ix
denote the homogeneous coordinate ringloivherely C S is the defining ideal o
The codepth of Ay is defined as the differene@depth Ax := dim Ay — depth Ay,
wheredepth A x denotes the depth ofy.

For the notion of Betti diagrams we follow the suggestion of Eisenbud (cf. [6]). That
is, in a diagram the number in thig¢h column and thg-th row is

dim e Tory (K, Ix)iyj-

Outside the range of the diagram all the entries are understood to be zero. Our main
results are.

Theorem 2.1. (codim X = 2) Let X C P’ be a non-degenerate variety of degree 4 and
codimension 2 which is not a cone. Th&ns of one of the following types:

(a) X is a complete intersection cut out by two quadrics.

(b) dim X < 4 and the Betti diagram ofx has the form
123

1/1 0 O
2|3 41

(c) (The exceptional casey is a generic projection of the Veronese surfd¢e” 5.
and the Betti diagram ofx has the shape

1 2 3 4
1/0 0 0 Of.
2|7 10 5 1

Moreover for anyl < d < 4 there are examples as mentioned in (b) suchdhatX = d.

In the case wher& is a Cohen-Macaulay variety, Theorem 2.1 (b) has been shown by
Nagel (cf. [12]). Under this additional assumption one fias X < 2. Theorem 2.1 grew
out of our aim to understand Nagel’'s arguments. Our approach enables us to investigate
the cases of codimension three and four as well.
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Theorem 2.2. (codim X = 3) Let X C P}, denote a non-degenerate variety of degree 5
and codimension 3 which is not a cone. Then the following cases may occur:

() dim X < 6 and X is the Pfaffian variety defined by the five Pfaffians of a skew

symmetrics x 5 matrix of linear forms. Its minimal free resolution is given by the
Buchsbaum-Eisenbud complex.

(b) dim X < 4 andcodepth Ax = 1. The Betti diagram of the defining ide&t has
the following form

12 3 4
1{4 2 0O
2/1 6 51
(c) dim X < 5 andcodepth Ax = 2. The Betti diagram of x has the following
shape
1 2 3 45

113 2 0 0 Of.
2/6 16 15 6 1

For any of the dimensions and codepths admitted in (a), (b) and (c) resp. there are exam-
ples of varieties of almost minimal degree.

The next result concerns the case wh&rés of codimension 4. A new phenomenon

occurs in this situation. Namely, for the same codepth two different Betti diagrams may
occur.

Theorem 2.3. (codim X = 4) Let X C P}, denote a non-degenerate variety of degree 6

and codimension 4 which is not a cone. Then the following four cases may occur:

(a) dim X < 4 and X is arithmetically Gorenstein. Its minimal free resolution has
the following form

0 — S(—6) — S?(—4) — S'%(=3) — S(=2) — Ix — 0.

(b) dim X < 4 andcodepth Ax = 1. The Betti diagram of the defining ide&} has
one of the following two forms:

1 2 3 45 1 2 3 45
1/8 12 3 0 Ojresp.|1|{8 11 3 0 O
2/1 4 10 6 1 2/0 4 10 6 1

(c) dim X < 5 andcodepth Ax = 2. The Betti diagram of x is of the form:
1 2 3 456
117 8 3 0 0 0.
2|3 19 30 21 7 1

(d) dim X < 6 and codepth Ay = 3. The Betti diagram of x has the following
shape:

1 2 3 4 5 67
116 8 3 0 0 0 0.
2|10 40 65 56 28 8 1
For any of the dimensions, codepths and Betti diagrams admitted in (a), (b), (c) and (d)
resp. there are examples of varieties of almost minimal degree.
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The final result of this note concerns varieties of almost minimal degree and of codi-
mension less than half the embedding dimension. First of all note (cf. Example 4.8) that
in codimension 6 there are varieties of almost minimal degree having thesal®gh
but with rather different Betti diagrams. That s, the corresponding statements to Theorem
2.1, 2.2 and 2.3 are not true in hihgher codimension.

Corollary 2.4. Let X C P be a non-degenerate variety of almost minimal degree which
is not a cone. Suppose thdiin X > codim X +2 andcodim X > 3. Thencodim X = 3
and X is arithmetically Gorenstein. Therefordm X < 6 and X is defined by the five
Pfaffians of a skew symmetficx 5 matrix of linear forms.

Moreover, in the case whetE is a variety of almost minimal degree adin X <
codim X + 2, that is whenX is not necessary a Del Pezzo variety there are estimates for
the Betti numbers and their vanishing (cf. 3.3 for the details).

3. OUTLINE OF THE PROOFS

Let X C P} denote a non-degenerate reduced irreducible variety of almost minimal
degree. By the work of the authors (cf. [2]) it follows tha&tis either a normal Del
Pezzo variety — in this cask is arithmetically Gorenstein — or a projection of a variety
of minimal degree.

First, we consider the case of non-arithmetically normal varieties of almost minimal
degree. In this situation we have the following characterization in which(~Z) denotes
the secant cone of a projective varieéfywith respect to a poinP in the ambient space.

Lemma 3.1. Let X C P} denote a non-degenerate reduced irreducible variety which is
notacone. Let <t < dim X+1 =: d+1. Then the following conditions are equivalent:

(i) X is not arithmetically normaldeg X = codim X + 2 anddepth Ax = t.
(i) X is the projection of a varietyy C P}" of minimal degree from a poin? ¢
P74\ Z such thatdim Secp(Z) =t — 1.

Moreover,1 < depth Ay < 4.

Proof. Cf. [2, Theorem 1.1 and Corollary 7.6]. O

In view of Lemma 3.1 there is some need for information about varieties of minimal
degree in order to understand varieties of almost minimal degree. A variety of minimal
degreeZ C P} is either

e a quadric hypersurface,
e a (cone over a) Veronese surfacePip, or
e a (cone over a) smooth rational normal scroll

(cf. [7] and [9] for the details and the history of this classification).
Next we recall a few basic facts about rational normal scrolls (cf. also [9]). Let

T:K[:Ul()a-"axlal?mQO?"'7x2a27"'7$k07"'7xkak]
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be the polynomial ring. A (cone over a) rational normal scfgl,, . . ., ax) is defined as
the "rank two subscheme i, = Proj(7")” defined by the matrix
M _ ( 19 --- xloufl Tog .- - $2a2,1 Ce Tro - - xkakfl >
11 ... T1aq . X211 ... Loy voeee 0 Tk e xk’ak

withs=%k—-1+ Zle a;. Itis well known thatdim S(ay, . .., a;) = k and therefore

k
deg S(ay,...,a;) = codim S(aq,...,ax) +1= Zai,
=1
so thatS(aq, . .., a;) is a variety of minimal degree. Keep in mind th#(ta,, . .., a;) is a
proper cone if and only ifi; = 0 for somei € {1,...,k}, thatis, if and only if there are
indeterminates which do not occur id.

Moreover we need some information about the Hilbert sefies Ay ) of the graded
K-algebraAx. Let us recall that the Hilbert series of a grad€ehlgebraA is the formal
power series defined by

F(AA) =) (dimg AN
i>0
The Hilbert series of a variety of almost minimal degree may be described as follows.

Lemma 3.2. Let X C P} denote a variety of almost minimal degree. Rut=
codepth Ax. Then

1 +1
F(/\,Ax):m(l+(c+1)/\—)\(l—/\)q ),
wherec = codim X andd = dim X. Furthermoredim (Ix), = (“}') — ¢ — 1.
Proof. Cf. [2, Corollary 4.4]. O

As a consequence of Lemma 3.1 the authors (cf. [2]) derived some information about
the Betti numbers of y for certain varieties\' C [P} of almost minimal degree.

Lemma 3.3. Let X C P} be a variety of almost minimal degree which is not arithmeti-
cally Cohen-Macaulay. Suppose thtis not a generic projection of (a cone over) the
Veronese surfacé C P3%.. Then there exists a variety of minimal degiéecC P, such
that X C Y andcodim(X,Y) = 1. Moreover

Tor (k, Ax) ~ k%(—i — 1) @ k¥ (—i — 2)for1 <i <c+gq,

wherec = codim X, ¢ = codepth Ax and

@ w=(7) g1
i(iil)Suié(c—i_l)(g)_(iil)?if I<i<e—g,
ui:i(iil),if c—q<i<ec,

u; =0,if c<i<c+yq.

0 max{0, (“I5Y) — (i +2)(5)} v < ((THN)if 1<i<e—gq-1,
v; = (cff{l) —(i+ 2)(Z.j1), if max{l,c—q¢—1}<i<cg,
v; = (CJ{_‘GLI),if c<i<c+Hq.
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In additionv; — uiy = (7)) — (c+1)(;5)) + (i5,) forall 1 <i < c.

Proof. Cf. [2, Theorem 1.1 and Theorem 8.3]. O

In the particular case whetrém X = 1 the statement about the Betti numbers has been
shown independently by Nagel (cf. [12]).

In the following remark, we add a comment concerning the "exceptional cases” of a
generic projection of (a cone over) the Veronese surface P and of an arithmetically
Cohen-Macaulay variety.

Remark 3.4. A) (The exceptional case) Lét C P3- be the Veronese surface defined by
the2 x 2-minors of the symmetric matrix

To T1 T2
M = T1 T3 X4
Ty T4 Ts

Let P € P53 \ F denote a point. Suppose thahk M|p= 3, that is the case of a generic
point. Remember thatet M/ = 0 defines the secant variety 6f Then the projection of

F from P defines a surfac& C P}, of almost minimal degree antbpth Ay = 1. The
surfaceX is cut out by seven cubics (cf. 3.2), so that it is not contained in a variety of
minimal degree.

B) (The arithmetically normal case) L&t C P}, denote an arithmetically normal variety
of almost minimal degree. Thel is not a birational projection of a scroll and hence
a maximal Del Pezzo variety (cf. [2, Theorem 1.2]). In particutais arithmetically
Gorenstein. If in additiomodim X > 3, Fujita’s classification of normal maximal Del
Pezzo varieties yielddim X < 4 (cf. [5, (8.11), (9.17)]). Ifcodim X > 4, the same
classification shows thalim X < 4.

C) If X is an arithmetical normal Del Pezzo variety it is in general not a one codimen-
sional subvariety of a variety of minimal degree. Namely,Xetc P). be the smooth
codimension three variety cut out by tHex 4-Pfaffians of a generic skew-symmetric

5 x 5-matrix of linear forms. TherX is not contained in a variety of minimal degree
such thatodim(X,Y") = 1 (cf. [2] for the details).

Proofs After these preparations, we now come to the proofs of our Theorems. The proof
of statement 2.1 (a) is easy. Now let us consider the statements 2.2 (a) and 2.3 (a). In both
casesX is arithmetically Gorenstein. IX is a birational projection of a scroll, we have

dim Ax = depth Ax < 4 (cf. Lemma 3.1). Otherwis& is arithmetically normal (cf.

[2, Theorem 1.2]). So, by 3.4 B) we hadén X < 6 if codim X > 3 anddim X < 4 if
codim X > 4. This gives us the dimension estimates. The statements on the minimal free
resolutions now follow from well known results. In fact the structure of the minimal free
resolution of7x given in Theorem 2.3 (a) is a consequence of [13, Theorem B].

Next we prove statement (c) of Theorem 2.1. To this endXleC Pj. be a generic
projection of the Veronese surfadé C P%. Thendim X = 2 codimX = 2 and
depth Ax = 1. As seen abovelx does not contain any quadric. Therefdre has a
linear resolution. Remember thai Ix = 3 (cf. [2]). A computation with the aid of the
Hilbert series (cf. 3.2) gives the structure of the Betti diagram of 2.1 (c).
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For all other statements of Theorems 2.1, 2.2 and 2.3 we may assume that the variety of
almost minimal degre& C P is not arithmetically Cohen-Macaulay and not a projec-
tion of the Veronese surfadé C P5.. So, X is contained in a variety of minimal degree
Y of codimension: — 1 (cf. 3.3). ThatisY is defined as the zero locus @‘) quadrics.

On the other hand the defining ideal is generated by“!') — ¢ — 1 quadrics (cf. 3.2).
This implies that

dim[((lx/]y)g =C—q— 1 Z O,

wherec = codim X, ¢ = codepth Ay > 1. Considering all possibilities that arise for
c = 2,3,4 it follows that, with the exception of the case in which= 4,¢ = 1, Lemma
3.3 furnishes the corresponding Betti diagrams.

The particular case where= 4, ¢ = 1, yields the following shape of the Betti diagram

1 2 3 45
1/8 uw, 3 00
2/vy 4 10 6 1

with v; — uy = —11. In order to finish the proof we observe that< 1 (cf. Lemma 3.5).

To complete the proof of Theorems 2.1, 2.2 and 2.3 we have to prove the stated con-
straints on the occuring dimensions and codepths. To do so, we may assurkias mit
arithmetically Cohen-Macaulay. Therefore by Lemma.8.is the projection of a variety
of minimal degreeZ C P! from a pointP € P!\ Z such thatlim Secp(Z) =t — 1,
wheret = depth Ax.

Next let us analyze this situation in more detail. To this endllet S(ay, ..., a) for
certain integers;,7 = 1,..., k. Then it follows that

k

k
r:k—2+2aiandc+2:2ai,
=1

=1

wherec = codim X.

As X is nota coneZ cannot be a cone over a rational normal scroll. Therefdrda; :
i=1,...,k} > 1. So, for a given codimensionwe have to investigate all the possible
partitions

k
c+2= a; withk > landa; > ay > ... > a; > 1.
=1

For c = 2 we thus get the following possible types for the rational normal sefoll

k a ay a3 a4 v+1 dimX
1 4 4 1
2 3 1 5 2
2 2 2 5 2
3 2 1 1 6 3
4 1 1 1 1 7 4

This proves already thatim X < 4.
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Next, we discuss the case in which the codimension equaiere, there are the fol-
lowing possibilities for the type of the scrall:

k ar ay a3 as as r+1 dimX
1 5 5 1
2 4 1 6 2
2 3 2 6 2
3 3 1 1 7 3
3 2 2 1 7 3
4 2 1 1 1 8 4
5 1 1 1 1 1 9 5

Thereforedim X < 5. We already know that;, > 3. Now, on use of Lemma 3.3 we
easily get the requested constraints in Theorem 2.2.

Finally, letcodim X = 4. Then, as above there is the following list of possible types
for the scrollZ :

k a1 ay a3 a4 as ag r+1 dimX
1 6 6 1
2 5 1 7 2
2 4 2 7 2
2 3 3 7 2
3 4 1 1 8 3
3 3 2 1 8 3
3 2 2 2 8 3
4 3 1 1 1 9 4
4 2 2 1 1 9 4
5 2 1 1 1 1 10 5
6 1 1 1 1 1 1 11 6

As above it follows thatlim X < 6. We know thatu; > 6. So, by Lemma 3.3 we get the
requested constraints in Theorem 2.3.

Finally we prove Corollary 2.4. Assume th&tis not arithmetically normal. Then, by
Theorem 1.2 of [2] we know thaX is a birational projection of a rational normal scroll
Z C P from a pointp € P} \ Z. As X is not a cone/ is not a cone either and

thereforecodim X + 2 = Zle a; > k = dim X. This contradicts the assumption of
Corollary 2.4. ThereforeX is arithmetically normal and séim X < 6 by Remark 3.4.
That is,codim X = 3. So our claim follows by Theorem 2.2.

For the existence of the samples described in Theorems 2.1 and 2.2 we refer to the next

section.

We close this section with a result on the number of cubics in a minimal generating set
of the defining ideal of a certain varieties of almost minimal degree.

Lemma 3.5. Let X C P} be a variety of almost minimal degree witbdepth Ay =1
and ¢ := codim X > 4. Then the defining idealx of X is generated by“}') — 2
guadrics and at most one cubic.
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Proof. First we reduce the problem to the case in whidh X = 1. Letd = dim X > 1.
By an argument of Bertini type (cf. [11]) we may find generic linear fofms. ., l;_; €

Sy such that = X NPy € Pyt = Proj(S/(ly, .. .,l4-1)S) is a non-degenerate
integral variety of almost minimal degree. As...,l; , are chosen generically and
depth Ax = d they form anAx-regular sequence. Therefore the Betti diagramsyof
and/y, are the same. In particulasdepth Ay, = 1.

So we assum& C Pj with dim X = 1 ands = ¢ + 1. The statement about the
number of quadrics is a consequence of Lemma 3.2. Sihissof almost minimal degree
we know thatl/ = I is 3-regular (cf. 3.3). Writd = (J, LS) with J = .S and with a
K-vector spacd. C S; such thatls; = J3 @ L. Our aim is to show thadimy L < 1.

After an appropriate linear coordinate change we may assume tkatS; is generic.
LetT := S/zsS = Klxg,...,xs-1]. ThenR = T/(J,L)T ~ S/(I,z:S) defines a
schemeZ of s + 1 points in semi uniform position iP5, '. The short exact sequence
0 — Ax(—1) & Ax — R — 0 induces an isomorphistily, (R) ~ K(—2). But
this means that the vanishing ideal6fin 7" has the form(.J, L, ¢)T with an appropriate
qguadricq € S,. Sinces > 3 the minimal free resolution of this ideal has the form

T92(-3) % 7% (=2) 5 (J,L,q)T — 0.

This allows us to writd J, L, q)T = (J,q)T and to assume that the fikst — 1 generators
of 7% (—2) are mapped byt onto aK -basis of(JT'), and the last generator is mapped
by 7 to ¢ - 1. Clearly, ¢ is given by a matrix with linear entries. This shows that:=
JT 7 q C T is a proper ideal generated by linear forms.

As JT C M and agJ, ¢T) = IT is of heights — 1 we must have — 2 < height M <
s. As M is generated by linear form$7'/M ), is a K-vector space of dimension €
{0,1,2}. So the graded short exact sequence

0—-T/M(-2)—-T/JT —-T/(J,q)T —0

shows that

Therefore, we may writé/, z,) = (J, L', z;) whereL’ C L C S;is a K-vector space
of dimension< t. As I is a prime ideal and as, € S5 \ [ it follows I = (J,L’), hence
L' = L. So, ifdimg L' < 1, we are done.

Otherwise,dimy L' = dimyx L = 2 = t and we may writel = (J, k1, k) with
ki,ky € S3. As height I = s — 1 it follows height / > s — 3. As JT C M and as
height M = s — 2 we haveheight JT < s — 2. As x, is a generic linear form, this means
thatheight J < s — 3 and hencéweight J = s — 3. As I = (J, ki, k2) is a prime ideal of
heights — 1 = height J + 2, the idealJ must be prime too.

As z, is generic andieight J < s — 3, we may conclude by Bertini’'s theorem that
JT C T defines an integral subschemel§f' = Proj(T). So, the saturation

JT :p (Ty)y CcTof JT'inT

is a prime ideal of height — 2. As JT' C M C T, and asM is a prime ideal we get
JT .7 (T}) = M. Therefore

Proj(T/IT) = Proj(T/(J,q)T) = Proj(T/(M,qT))
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consists of two points, so thatt- 1 = 2, a contradiction. So, the cadény L' > 2 does
not occur at all. O

The previous Lemma 3.5 is inspired by a corresponding statement for curves of degree
r + 2 in P shown by the authors (cf. [1, Lemma (6.4)]).

Moreover, ifcodepth Ax > 2 the number of cubics needed to defikies not bounded
by 1 (cf. the examples in [2, Section 9]).

4. EXAMPLES

In this section we want to confirm the existence of all types of varieties of almost
minimal degreeX C P which are described in the Theorems 2.1, 2.2 and 2.3.

First of all we want to show the existence of a Del Pezzo variety as required by Theorem
2.3 (a).

Example 4.1.Let X = P2 x P2 C P%. be the Segre product of two projective planes. Its
defining ideall x is generated by thigx 2-minors of the the following generitx 3-matrix

To T1 T2
T3 T4 Ts
Te L7 Tg

Itis easy to see thafim X = 4, codim X = 4 anddeg X = 6. Therefore X is a variety of
almost minimal degree. Moreovet,y is a Cohen-Macaulay and therefore a Gorenstein
ring. An example of dimension 3 is the Segre prodictx PL. x P1.  P% (cf. [5, (8.11),
6)]). Examples of smaller dimensions are obtained by taking generic linear sections.

In the next examples let us show that the two different Betti diagrams of statement (b)
in 2.3 indeed occur. Note that they requirelepth Ay = 1 andcodim X = 4.

Example 4.2. Consider the rational normal surface sctBl= S(3,3) C PL.. Let P, =
0:0:0:0:1:0:0:1)andP, =(1:0:0:0:0:0:1)inP%. Then
P, e PL\ Z,i = 1,2, as it is easily seen. Defin&; to be the projection of from
P;,i =1,2. Thendim X; = 2 andcodepth Ax, = 1 for i = 1,2. The Betti diagrams of
Ix,,i = 1,2, are those of Theorem 2.3 (b).

Now we construct non-arithmetically Cohen-Macaulay varieties of almost minimal de-
gree of the type mentioned in Theorem 2.2. To this end we use the possible rational
normal scrollsZ = S(aq,...,a;) of the proof of Theorem 2.2 which after appropriate
projection furnish the varieties we are looking for. The construction of the examples cor-
responding to Theorems 2.1 and 2.3 follows similarly, and so we skip the details in these
cases.

Example 4.3.Let Z = S(5) C P5, denote the rational normal curve of degree 5. Choose
P € P% \ Z a generic point. Then, the projection C P} of Z from P is an example of
a variety of almost minimal degree withm X = 1 andcodepth Ay = 1.

Next we want to investigate the case of surfaces.

Example 4.4.Let Z = S(4,1) C PY%. Consider the two point®, = (0:1:0:0:0:
0:0)andP, =(0:0:1:0:0:0:0). ThenP, e P%. \ Z,fori =1,2. Let X;,i = 1,2,
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denote the projection of from P,. Thencodepth Ay, = 1 andcodepth Ay, = 2. The
same type of examples may be produced by projections of the S¢fR).

Our next examples are of dimension 3.

Example 4.5.Let Z = S(3,1,1) C P%. Consider the point$> = (0 : 1 : 0 : 0 :
0:0:0:0andP, =(0:0:0:1:1:0:0:0). Thenitis easy to see that
P, € P\ Z,i = 1,2. Let X, denote the projection df from P,. Thencodepth Ay, = 2
andcodepth Ax, = 1. The same type of examples may be produced by projections from
the scrollS(2,2,1).

Now, let us consider the situation of fourfolds.

Example 4.6. Consider the scrol = S(2,1,1,1) c P%. Let P, =(0:1:0:0:0:
0:0:0:00andP,=(0:0:0:0:0:0:1:1:0). ThenP, € P\ Z,i = 1,2.
Let X; C P" denote the projection of from P;,i = 1,2. Thencodepth Ay, = 2, while
codepth Ax, = 1.

Finally let us consider the case whelien X = 5.

Example 4.7.Let Z = S(1,1,1,1,1) C P}, be the Segre variety. Then € P}, \ Z for
thepointP = (0:1:1:0:0:0:0:0:0:0). Let X C P} denote the projection
of Z from P. Thendepth Ax = 4, and thereforeodepth Ax = 2. Finally observe that
codepth Ax = 1 is impossible ifdim X = 5, asdepth Ay < 4 (cf. Lemma 3.1).

The Examples 4.3 — 4.7 provide the existence of the samples claimed by Theorem 2.2.
Similar constructions provide varieties as mentioned in Theorem 2.1 and 2.3.

In the final examples, we will show that in higher codimension, the shape of the Betti
diagram of/x for a variety X of minimal degree may vary in a much stronger way: In
fact the "beginning of the Betti diagrams” may be rather different from each other.

Example 4.8.Let Z = S(8) C P% denote the rational normal curve of degree 8. Let
P=0:0:0:0:0:0:1:0:0,PR=(0:0:0:0:0:1:0:02:0)
andP; = (0:0:0:0:1:0:0:0:0). ThenP, € P}, \ Z fori = 1,2,3. Let

X; C PL i = 1,2,3, denote the projection of from P,. Then the Betti diagrams of
Ix,,i=1,2,3, resp. have the form:

i 1 2 3 4 5 67
1{1|19 58 75 44 5 0 (¢
2|1 6 15 20 21 8 1
211119 57 70 34 5 0 (
2/0 1 5 20 21 8 1
3111119 57 69 34 5 0 (
2/0 0 5 20 21 8 1
1.

In all three casesodim X; = 4 andcodepth Ay, = Remember that the number
of cubics in the defining ideals is bounded by 1 (cf. Lemma 3.5). It follows #hat
is contained in the scrolf(5, 1), while X, is contained in the scrolf(4,2) and X3 is
contained in the scrol§ (3, 3).
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In view of the Example 4.8 and corresponding examples in higher dimensions one
might expect that the type of the rational normal sckglthat contains the varietX of
almost minimal degree as a one codimensional subvariety, determines the Betti diagram
"near the beginning of the resolution”. In small codimensions, the different types of these
scrollsY are much more limited than imposed by Theorems 2.1, 2.2 and 2.3. It seems
rather challenging to understand tliderof the scrollg” for the beginning of the minimal
free resolution of x.

Moreover the examples in 4.8 show that the estimates for the Betti numbers given in
Lemma 3.3 near the beginning of the Betti diagram are fairly weak.

Remark 4.9. To compute the Betti diagrams and hence the arithmetic depths of the above
examples, we have made use of the computer algebra systeswShiR (cf. [8]). More-

over, there is in preparation a conceptual approach for the computation ddjitie A y

in terms of the center of the projection and the secant varie{@f, . .., a;) C IP”"K“.
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