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Abstract

We investigate approximations by finite sums of products of functions with sepa-
rated variables to eigenfunctions of certain class of elliptic operators in higher dimen-
sions, and especially conditions providing an exponential decrease of the error with
respect to the number of terms. The results of the consistent use of tensor formats
can be regarded as a base for a new class of rank truncated iterative eigensolvers
with almost linear complexity in the univariate problem size that improves dramat-
ically the traditional methods of linear scaling in the volume size. Tensor methods
can be applied to solving large scale spectral problems in the computational quantum
chemistry, for example to the Schrödinger, Hartree-Fock and Kohn-Sham equations in
electronic structure calculations. The results of numerical experiments clearly indicate
the linear-logarithmic scaling of low-rank tensor method in the univariate problem size.
The algorithms work equally well for the computation of both, minimal and maximal
eigenvalues of the discrete elliptic operators.
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1 Introduction

Recent advances in tensor approximation methods applied to the functions and operators
in Rd lead to the natural idea of solving multi-dimensional boundary and eigenvalue prob-
lems in tensor-product formats. This idea has been first time formulated in [3] in the very
general setting. The recent results on efficient methods of separable tensor approximation
of multivariate functions and their application in electronic structure calculations can be
found in [12, 4, 6, 9, 16, 18, 19] and others. The concept of separation of variables, that
is the key idea of tensor-product numerical approximation, allows to get rid of the “curse
of dimensionality” inherent to the traditional numerical methods of linear complexity in
the volume, O(nd), where n is the one-dimensional grid size. The goal of tensor-structured
numerical methods is thus the construction of numerical algorithms in high dimension that
scale linearly in both d" 1 and n, O(dn). Notice that tensor methods are applicable to the
discretisations on tensor-product grids, which is often the case in multidimensional setting.

In this paper we investigate approximations by finite sums of products of functions with
separated variables to eigenfunctions of elliptic operators with smooth coefficients, and es-
pecially conditions providing an exponential decrease of error in the number of terms. We
demonstrate that tensor-truncated version of the simple inverse power iteration allows to
compute few minimal eigenvalues of the discrete elliptic operator with the complexity O(n),
on large n×n× . . .×n tensor grid in Rd. Tensor-truncated iteration for solving the spectral
problems can be inplemented in the efficient way based on the already existing methods of
separable approximation of multivariate functions and operators [13, 12, 26, 15, 16, 5, 17].

We consider the model eigenvalue problem: Find a pair (λ, u) ∈ C × H1
0 (Ω) \ {0} such

that
Λu = λu in Ω,
u = 0 on ∂Ω

(1.1 a)

with the elliptic differential operator Λ of the form

Λu := − div (A gradu) + 〈b,∇u〉+ cu, (1.1 b)

where Ω ∈ Rd is some bounded or unbounded rectangular-type domain (in the latter case, we
assume the exponential decay of the soltion u(x), as x →∞), and the operator coefficients
A, b, c in ( 1.1 b) are supposed to be smooth (analytic) in Ω.

We will prove that the eigenfunctions of problem ( 1.1 a) allow separable approximation
that converges exponentially in the number of terms.

Problem ( 1.1 a) is discretised by the Galerkin FEM with tensor-product basis functions,
so that the arising stiffness and mass matrices of size n⊗d (with d-fold product n⊗d =
n× ...× n) are represented in the low Kronecker rank format with the storage requirements
and computational complexity of order O(dn).

In this paper, our focus is to break the curse of dimension in numerical solution of
high-dimensional elliptic eigenvalue problems. Hence, for the ease of presentation, we use
simple iterative solvers such as the power method or the inverse power iteration, though al-
gorithms of better choice can be easily adapted to our concept. Due to the above mentioned
approximation results for the continuous solutions, and relying on the rank-structured rep-
resentation of all matrices involved, we propose to solve the corresponding high-dimensional
algebraic eigenvalue problem of the size n⊗d in the low tensor-rank format. To this end,
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we introduce the so-called “truncated iterations”, where most of the intermediate vectors
have to be approximated in some fixed rank-structured tensor product form with the storage
size O(n). The corresponding rank truncation performed at each iteration can be based on
recently developed methods (cf. [18, 8, 24]). For the class of rank structured matrices, our
algorithm can be shown to have storage and complexity bounds of order O(rdn + rnd), or
even O(dRrn), where r, R are the small (often fixed) rank parameters with the theoretical
bounds r = O(log n) and R = O(logn| log ε|).

We summarise that the main concept of tensor-structured solution methods includes the
following ingredients

• Existence of the low separation rank approximation to the exact solution in Rd.

• Construction of the fix-point type iteration that allows the rank truncation procedure
at each iterative step.

• Representation of all matrices approximating Λ in the low Kronecker rank format.

• Using the efficient rank reduction algorithms for higher order tensors.

The results of the consistent use of tensor formats can be regarded as a base for a new
class of iterative eigensolvers in higher dimensions, providing almost linear complexity in the
univariate problem size, O(n). Such algorithms can be applied, in particular, in numerical
linear algebra, quantum chemistry, as well as in the stochastic PDEs for elliptic spectral
problems.

We notice that in the case d = 2 the rank truncation operator is realised by the “truncated
SVD” method applied to the rank-R, n×n matrix. It is, in practice, a finite algorithm (with
complexity at most O(nR2 + R3)) providing the best rank-r approximation to the current
iterand (see numerics in Sections 2 and 6.2). Hence, numerical results for d = 2 can be
viewed as the reference cases, demonstrating nearly optimal performance of the proposed
techniques.

The rest of the paper is organized as follows. In Section 2 we give motivating illustrations
for the Laplace operator, and for the simple Schrödinger equation in the case of Hydrogen
atom, which clearly indicate the approximability of the solutions by few separable functions.
In Section 3, we briefly describe the tensor product formats for representing multivariate
functions of the continuous and discrete arguments. Section 4 discusses the diecretization of
elliptic eigenvalue problems in tensor-structured formats and introduces the iterative solvers
with rank truncation. Section 5 proves the existence of separable approximation for the
eigenfunctions of certain class of elliptic operators posed in Rd. This result is of principal
significance for understanding the rigorous mathematical basis for applying tensor methods
in multidimensional setting. Section 6 presents numerical illustrations on the efficiency of
tensor formats for certain spectral problems in dimensions d = 2, 3.
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2 Simple Motivating Examples

We begin with simple example just to demonstrate the basis idea of the tensor method. In
particular, we are motivated by the nice solution structure for the 2D Laplace operator

∆ =
∂2

∂x2
+

∂2

∂y2

and the eigenproblem

−∆u(x, y) = λu(x, y), (x, y) ∈ [0, π]2.

If u is zero on the boundary, then the eigenvalues and eigenfunctions are

λkl = k2 + l2, ukl(x, y) = sin kx sin ly, k, l = 1, 2, ... .

A matrix counterpart of the Laplace operator can be taken in the form

Mu = λu, M = A⊗ I + I ⊗ A,

where ⊗ denotes the Kronecker (tensor) product, I is the identity and

A =






2 −1
−1 2 −1

... ... ...
−1 2 −1

−1 2






.

Let A and I be of order n. Then solution of the matrix eigenvalue problem Mx = λx can
be represented in the explicit form. The eigenvalues are

λkl = 4 sin2 πk

2(n + 1)
+ 4 sin2 πl

2(n + 1)
, 1 ≤ k, l ≤ n,

and the corresponding eigenvectors are exactly represented as tensor products:

xkl = uk ⊗ vl,

where uk and vl are n-dimensional vectors with the entries

uk
s = sin

πks

n + 1
, 1 ≤ s ≤ n; vl

t = sin
πlt

n + 1
, 1 ≤ t ≤ n.

In general, the cost of traditional iterative eigenvalue algorithms is higher than linear,
possibly O(n2). The tensor structure of eigenvectors allows to modify the eigensolvers so
that the cost of one iteration reduces to O(n). The above argument remains valid also for
d-Laplacian defined on [0, π]d. Numerical examples on the efficiency of iterative eigensolvers
in the case of well separable solution will be given in Section 6.
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The second example shows the typical situation when the well separable solution can be
found only approximately. We consider the solution of the Schrödinger equation for hydrogen
atom,

(−
1

2
∆−

1

‖x‖
)u = λu, u ∈ H1

0 (R3),

given by u(x) = e−‖x‖ and for λ = −0.5. It is proven to have the low-rank separable
approximation on the continuous and the discrete levels [12, 16]. In particular, there exist
constants ck ∈ R and λk ∈ R>0, such that

∣∣∣∣∣
e−‖x‖ −

M∑

k=1

cke
−λk‖x‖2

∣∣∣∣∣
≤ Ce−α

√
M , α > 0, x ∈ [−β, β]3,

which means that the accuracy ε > 0 can be achieved with the number of terms M =
(| log ε|2) (exponentially fast convergence). Similar rank-M approximation can be derived
for the Newton potential 1

‖x‖ . Moreover, in view of the exponential decay in the solution as

‖x‖ → ∞, we can formulate the “approximating” problem in the finite hypercube imposing
homogeneous Dirichlet conditions at the boundary.

Thus, we are interested to find tensor formats in matrix eigensolvers for more general
elliptic problems,

Λu = λu, u : [0, a]d → R,

where Λ is the elliptic operator with smooth enough (or separable) coefficients. For this
purpose, we next introduce the tensor representations.

3 Description of tensor formats

3.1 Tensor spaces and tensor representations

Several continuous and discrete spaces considered in this paper are tensor spaces of order d,
where in our application d equals the spatial dimension of the eigenvalue problem. Let

W = W1 ⊗W2 ⊗ . . .⊗Wd (3.1)

be the notation for the underlying tensor space. (Note that in the applications we have in
mind, W is some Sobolev space, e.g., H1

0 (Ω) for some product domain Ω = Πd
j=1 (aj , bj) and

Wj = H1
0 ((aj , bj)).)

In this subsection, we will explain the form in which we will seek the approximate eigen-
vector.

By definition, each w ∈W can be written as a sum

w =
∑

k

w(1)
k ⊗ w(2)

k ⊗ . . .⊗ w(d)
k (w(j)

k ∈Wj). (3.2)

The first representation, usually called the canonical format, is given by defining the subset
of those elements in W which require only R terms for their representation. They form the
set

CR =

{

w ∈W : w =
R∑

k=1

w(1)
k ⊗ w(2)

k ⊗ . . .⊗ w(d)
k , w(j)

k ∈ Wj

}

.
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We say that elements w ∈ CR with w /∈ CR−1 have the tensor rank R. Obviously, tensors
w ∈ CR can be represented by the description of the Rd elements w(j)

k ∈Wj . Hence, the cost
for their representation scales linear in d.

Next, we will introduce the Tucker representation. For given Tucker rank r = (rj)
d
j=1 ∈

Nd we set

Mr :=

{

v ∈W | ∀1 ≤ j ≤ d ∃Vj subspace of Wj with dim Vj = rj and v ∈ V =
d⊗

i=1

Vj

}

(3.3)
Then, a representation of w ∈Mr in the Tucker format (3.4) is given by

v =
∑

k

bkφ
(1)
k1
⊗ φ(2)

k2
⊗ . . .⊗ φ(d)

kd
, (3.4)

where the multi-index k = (k1, . . . , kd) runs over all 1 ≤ kj ≤ rj , 1 ≤ j ≤ d, and
(
φ(j)

k

)rj

k=1
denotes some basis of Vj appearing in definition of Mr (cf. (3.3)). This representation

requires
∏d

j=1 rj real numbers and the storage of the
∑d

j=1 rj vectors φ(j)
k .

3.2 Tensor approximation, tensor truncation

For any element w ∈ W there are numbers R and tuples r such that w ∈ CR∗ and w ∈Mr∗ ,
but the ranks R∗ and r∗ may be rather large. A representation by one of the tensor formats
(3.2) or (3.4) is only of interest if the respective ranks are small enough. Therefore, given
w ∈ W we search for approximations v ∈ CR or v ∈ Mr with suitably small ranks R or r.
When we fix the set S := CR or S := Mr, the smallest error is described by

σ(w,S) := inf
v∈S
‖w − v‖.

In the following we will give examples where σ(w,S) decays exponentially with the rank R
or min{rj : 1 ≤ j ≤ d} , respectively. In general, the infimum in the definition of σ(w,S)
cannot be replaced by a minimum, since for S = CR a minimiser is not necessarily existing.
Although, the minimiser exists for S = Mr, its computation can be performed only approx-
imately. Therefore, in practice, one has to determine a v ∈ S such that ‖w− v‖ comes close
to σ(w,S). The replacement of w by such a v ∈ S is called the tensor truncation to S and
denoted by

w 0→ v =

{
TRw if S = CR,
Trw if S = Mr.

(3.5)

Heuristic methods for computing the rank structured approximations in different problem
settings are discussed in [7, 21, 30, 18, 9, 8].

In the particular case of d = 2, the difficulties mentioned above do not appear. The
minimiser of inf

v∈S
‖w− v‖ = min

v∈S
‖w− v‖ is the result of the truncated singular value decom-

position. Furthermore, the representations by CR and Mr with r = (R, R) coincide.
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3.3 Application to function spaces

Let I = I1 × I2 × . . .× Id be the product of (possibly infinite) intervals Ij ⊂ R. Then L2(I)
is the tensor space L2(I1) ⊗ L2(I2) ⊗ . . . ⊗ L2(Id). The tensor product w =

⊗d
j=1 w(j) of

w(j) ∈ L2(Ij) corresponds to the pointwise product w(x) =
∏d

j=1 w(j)(xj).
If w is an analytical function in all variables xj , approximations by polynomials may lead

to small errors. In the case of a uniform polynomial degree r − 1, the subspaces Vj ⊂ Wj

in (3.3) are Pr−1 and any v ∈ V =
⊗d

j=1 Vj has the Tucker rank r = (r, . . . , r) . The error,
which is an upper bound of σ(w,Mr), depends on the decay of the higher derivatives. The
analysis in Section 5 will show exponential decay of σ(w,Mr).

Multivariate functions depending on the Euclidean norm as, e.g., the classical potentials
1/‖x‖, e−λ‖x‖/‖x‖, e−λ‖x‖ can be rather well approximated in CR leading to exponential decay
of σ(w, CR) with respect to R. For its computation and analysis see [13, 12, 26, 15, 16, 5].

3.4 Application to grid functions

Galerkin discretisations with tensor product basis functions or finite difference schemes lead

to grid points xi =
(
x(1)

i1 , . . . , x(d)
id

)
, where i ∈ I = I1 × . . . × Id. Hence, the grid values

u(xi) = ui belong to RI which is the tensor space

R
I = R

I1 ⊗R
I2 ⊗ . . .⊗ R

Id,

i.e., Wj = RIj from (3.1) have the dimension nj := #Ij . For simplicity we assume nj = n
for all 1 ≤ j ≤ d.

The representation of w ∈ 2R needs a storage of Rdn, while w ∈Mr with r = (r, . . . , r)
requires rdn + rd data.

3.5 Application to matrices

The index sets I1, . . . , Id and J1, . . . , Jd give rise to the two tensor spaces X := RI1⊗ . . .⊗RId

and Y := RJ1 ⊗ . . .⊗ RJd. Given matrices A(j) ∈ RIj×Jj (1 ≤ j ≤ d), its Kronecker product
A := A(1) ⊗ . . .⊗A(d) is defined as the mapping

A : X → Y, x = x(1) ⊗ . . .⊗ x(d) 0→ Ax = A(1)x(1) ⊗ . . .⊗ A(d)x(d) ∈ Y.

4 Discretisation and Numerical Solution of the Eigen-

value Problem

4.1 Discretisation

We apply the Galerkin approximation with respect to the tensor product piecewise linear
basis functions. In the following, we make use of tensor representation of functions as well
as the Kronecker tensor product representation of the elliptic operator Λ. Let us formulate
the assumptions on the coefficients which ensure the respective tensor representation.
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We consider the elliptic operators of the form

− div (A gradu) + 〈b, u〉+ cu ≡ ΛAu + ΛCu, (4.1)

where A = {aij(x)}d
i,j=1 ∈ L∞

sym

(
Ω, Rd×d

)
, b ∈ L∞ (

Ω, Rd
)

and c ∈ L∞ (Ω) satisfy the
conditions

0 < amin := inf
x∈Ω

inf
v∈Cd\{0}

〈A (x) v, v〉
〈v, v〉

≤ sup
x∈Ω

sup
v∈Rd\{0}

〈A (x) v, v〉
〈v, v〉

=: amax <∞ (4.2a)

0 ≤ −
1

2
div b + c. (4.2b)

To simplify the discussion, we further set b = 0, though all the tensor constructions apply
to this case as well. In addition, we make the following assumptions which lead to the low
Kronecker rank representation of the discrete operator (the Galerkin stiffness matrix). We
assume from the very beginning that the operator coefficients are separable, aij , c ∈ CR, with
some moderate rank parameter R ∈ N, i.e.,

aij(x) =
R∑

k=1

a(1)
ij,k(x1) · · ·a(d)

ij,k(xd), i, j = 1, ..., d,

and

c(x) =
R∑

k=1

c(1)
k (x1) · · · c(d)

k (xd).

Hence, in the case of rank-1 test and trial functions u(x) = Πd
#=1u

(#)(x#), v(x) =
Πd

#=1v
(#)(x#), the associated bilinear forms can be written using the product ansatz as follows

〈ΛAu, v〉L2 =
R∑

k=1

d∑

i,j=1

d∏

#=1

〈
a(#)

ij,k(x#)
∂δj!

∂x#
u(#)(x#),

∂δi!

∂x#
v(#)(x#)

〉

L2(Ω)

, (4.3)

〈ΛCu, v〉L2 =
R∑

k=1

d∏

#=1

〈
c(#)
k (x#)u

(#)(x#), v
(#)(x#)

〉

L2(Ω)
, (4.4)

where δji is the Kronecker delta.
In the general case, a basis of piecewise polynomial functions

φi(x) =
d∏

#=1

φi!(x#), i ∈ I = Id := {1, ..., n}d, (4.5)

can be used, where φi! are low order polynomials in the variable x#. For simplicity, we choose
the Galerkin subspace V ⊂ (H1

0 (Ω))d of piecewise linear basis functions (cf. Section 3.3).
The Galerkin approximation to the eigenvalue problem takes the form

LU ≡ (A + C)U = λMU, U ∈ R
I , (4.6)

8



with the Kronecker tensor product representation (cf. Section 3.5)

A =
R∑

k=1

d∑

i,j=1

⊗d
#=1A

(#)
ij,k, C =

R∑

k=1

⊗d
#=1C

(#)
k , M = ⊗d

#=1M
(#), (4.7)

where A(#)
ij,k, C

(#)
k , M (#) ∈ Rn×n are the tridiagonal matrices

A(#)
ij,k =

{〈
a(#)

ij,k(x#)
∂δj!

∂x#
φp,

∂δi!

∂x#
φq

〉

L2

}n

p,q=1

,

C(#)
k =

{〈
c(#)
k (x#)φp,φq

〉

L2

}n

p,q=1
, M (#) =

{
〈φp,φq〉L2

}n

p,q=1
.

The following lemma concerns the complexity of this discretisation.

Lemma 4.1 The matrices A, C, and M have the respective Kronecker ranks Rd2, R, and
1.

The storage requirements to represent these matrices scale linearly in the univariate prob-
lem size n,

Q(A) = O(3d3Rn), Q(C) = O(3dRn), Q(M) = O(3dn).

The same cost holds for the matrix-vector multiplication by a rank-1 vector.

Proof. The first assertion follows from the tridiagonal structure of the Kronecker factors in
(4.7). Suppose that vector U has the rank-1 tensor representation

U = u(1) ⊗ ...⊗ u(d), u(#) ∈ R
n.

Then the matrix-times-vector multiplication with our stiffness matrices is reduced to one-
dimensional operations,

AU =
R∑

k=1

d∑

i,j=1

⊗d
#=1A

(#)
ij,ku

(#), CU =
R∑

k=1

⊗d
#=1C

(#)
k u(#), MU = ⊗d

#=1M
(#)u(#),

which again leads to the linear cost in n.

Remark 4.2 Our approach is by no means limited to Galerkin discretisations. For example,
in the case of the Laplace operator in Rd discretised by a finite difference scheme an a uniform
product mesh, we obtain the simple Kronecker rank-d representation

A = A⊗ In ⊗ ...⊗ In + In ⊗ A⊗ In...⊗ In + ... + In ⊗ In...⊗ A, (4.8)

where A = tridiag{1,−2, 1} ∈ Rn×n and In is the n× n identity matrix (cf. Section 3.5).
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4.2 Iterative eigenvalue problem solvers with rank truncation

Now we are able to discuss iterative methods accomplished with low rank truncation for
solving the discrete eigenvalue problem as in (4.6).

Note that in the simplest case of finite difference discretisations (cf. Remark 4.2) the
matrix M (in the general form as in (4.6)) is the identity matrix. For Galerkin discreti-
sations, M is the mass matrix – however, the generalization of the power method to this
generalized eigenvalue problem is standard. Note in addition that, since the mass matrix M
has Kronecker rank one and, hence, it is diagonalisable at the expense O(n logn), so that
(4.6) could be transformed to a standard eigenvalue problem.

Now consider the algebraic eigenvalue problem

LU = λU, U ∈ R
I . (4.9)

We are interested in the approximate solutions of (4.9) in the tensor class Mr ⊂ RI . Notice,
however, that the application of the operator L to an iterate U (m) which is of low-rank tensor
format, in general, yields a result which has larger rank and is no longer contained in the
class Mr. Hence, the application of Tr : RI →Mr, i.e., the nonlinear truncation operator
to Mr defined in (3.5), to the result is essential for staying in the class Mr. On the other
hand, this is the only modification of the standard power method and, conceptually, can be
applied to the general class of iterative eigensolvers in the same fashion.

Largest eigenvalues. A standard method for computing the eigenpair (λ, U) for the
(single) largest eigenvalue is the simple power method. This includes the repeated matrix-
vector multiplication which in our approach is accomplished with the rank truncation,

U (0) ∈Mr : Ũ (m+1) := LU (m), U (m+1) = Tr(Ũ
(m+1)), (4.10)

so that ‖U (m+1)‖/‖U (m)‖ will converge to the largest eigenvalue and U (m)/‖U (m)‖ to the
associated eigenvector.

Lemma 4.3 Each step of the “truncated” power iteration needs a storage of size QP =
O(3Rd3rn + rd). The same asymptotic complexity bound holds for the matrix-vector multi-
plication with rank-1 vectors.

Smallest eigenvalues. To compute the minimal eigenvalue, we apply the “truncated”
power method (4.10) to the equivalent equation

L−1U =
1

λ
U, U ∈ R

n⊗d

. (4.11)

In the present paper we study the effect of numerical methods designed in the rank structured
tensor formats described above. In the context of equation (4.11), the power iteration applies
to a class of elliptic operators that allow the explicit low Kronecker rank representation of
the inverse matrix L−1.

In the more general situations, one can apply preconditioned truncated iterations to solve
the equation

LV − U = 0 to compute V = L−1U,
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instead of evaluating the action of inverse matrix directly, L−1U , as follows. Given U, V (0) ∈
Mr:

Ṽ (m+1) := V (m) − ωB
(
LV (m) − U

)
, V (m+1) = Tr(Ṽ

(m+1))→ L−1U, (4.12)

where B can be chosen as the inverse of the shifted Laplacian (cf. [17] for the more detailed
discussion of preconditionig issues). Likewise, one can apply the preconditioned inverse
iteration to solve equation (4.11).

In the iteration (4.12) the truncation operator Tr can be applied to the residual vector
LV (m) − U and to the correction vector B

(
LV (m) − U

)
, as well.

5 Error analysis for elliptic eigenvalue problems

In this section, we will derive error estimates for our low tensor-rank approximation for
elliptic eigenvalue problems of the form ( 1.1 b). We further emphasize that numerical
experiments (see [6]) show that the applicability of our method is by no means limited to
this problem class but also performs efficiently for problems in quantum chemistry as, e.g.,
for solutions of the Hartree-Fock equation [19].

We will prove that, for the general eigenvalue problem of the form (1.1) in
Ω = Πd

i=1 (ai, bi), d = 2, 3, the low tensor-rank approximation converges at the same
rate as in the one-dimensional case, d = 1, while the cost increases only linearly (up to
logarithmic terms) with respect to the number of univariate unknowns, n, and the spatial
dimension. The proof is structured as follows. In Subsection 5.1, we will estimate the error
of (global) polynomial tensor interpolation of entire functions u in terms of the growth of its
derivatives. In Subsection 5.2, the derivatives of the eigensolutions in (1.1) will be estimated
which in turn complete the polynomial interpolation estimates. Finally, in Subsection 5.3
we will project this approximation to the usual P1-finite element on a tensor mesh of step
size h and show that the usual linear convergence rates are preserved.

5.1 Polynomial approximation of analytic functions

To understand the separability property of eigenfunctions we analyse their regularity with
respect to some classes of functions which allow the holomorphic extension to the complex
plane.

The error estimates will be derived for the function set AM,ρ(I) and for its multidimen-
sional counterpart AM,ρ(Id), d ≥ 2. The definition of the space AM,ρ

(
Id
)

requires several
steps. For the interval I := (−1, 1) and ρ > 1, Bernstein’s regularity ellipse is given by (cf.
[2])

Eρ := {z ∈ C : |z − 1| + |z + 1| ≤ ρ + ρ−1}.

Its semi-axes are a = ρ+ρ−1

2 and b = ρ−ρ−1

2 , implying a + b = ρ.

Definition 5.1 Let I = (−1, 1) and M > 0, ρ > 1 be given constants. AM,ρ(I) is the class
of functions f ∈ C∞(I) having a holomorphic extension to Eρ(I) such that

|f(z)| ≤M ∀z ∈ Eρ(I).

11



Next, we introduce the multidimensional analogue of AM,ρ(I) on the tensor domain

Id := (−1, 1)d. Let E (j)
ρ := I × ... × I × Eρ × I × ... × I with Eρ to be inserted at the jth

position.

Definition 5.2 For given constants M > 0, ρ > 1, the set AM,ρ(Id) consists of all functions

f ∈ C∞(Id) having holomorphic extensions to E (j)
ρ , for all 1 ≤ j ≤ d, and satisfying

max
1≤j≤d

{ sup
x∈E(j)

ρ

|f(x)|} ≤M.

The following remark recalls the well-known fact that controlling all higher derivatives
of a function implies that it belongs to AM,ρ(I) (see e.g. [22] for the proof). For a Lipschitz
domain Ω ⊂ Rd and , ∈ N, we define the norms

∥∥∇#u
∥∥2

L2(Ω)
:=

∑

|α|=#

,!

α!
‖Dαu‖2L2(Ω) and

∥∥∇#u
∥∥

L∞(Ω)
:=

∥∥∥∥∥∥∥

√√√√
∑

|α|=#

,!

α!
|Dαu|2

∥∥∥∥∥∥∥
L∞(Ω)

.

For u replaced by vectors or matrices, the absolute value |·| is to be replaced by the Euclidean
or spectral norm.

Remark 5.3 Assume that a function u : I → R satisfies for some Cu, γu ≥ 0
∥∥∥∥
∂pu

∂xp

∥∥∥∥
L∞(I)

≤ Cuγ
p
up! for all p ∈ N0. (5.1)

Then u ∈ AM,ρ(I) holds with ρ = 1 + γ−1
u > 1, M = C · Cu. Definition 5.2 directly implies

the following conclusion:

‖∇pu‖L∞(Id) ≤ Cuγ
p
up! for all p ∈ N0, and u ∈ AM,ρ

(
Id
)

(5.2)

with constants ρ, M as in (5.1).

For the continuous multivariate functions f = f(x1, ..., xd) : Rd → R, we use the tensor
product interpolant

INf = I1
N ...Id

Nf ∈ PN [Id],

where I i
Nf (1 ≤ i ≤ d) denotes the interpolation polynomial of degree N with respect to the

variables xi ∈ I := [−1, 1] interpolating f with respect to the variables xi ∈ I := [−1, 1] at
the Chebyshev nodes.

Proposition 5.4 Let M > 0 and ρ > 1 be given. For all f ∈ AM,ρ(Id) and N > 1 the
estimate

‖f − INf‖L2(Id) ≤ c M (log N)d ρ−N (5.3)

holds.
The corresponding result for the Hm-norm, m ∈ N, reads as: For each 1 < ρ1 < ρ,

‖f − INf‖Hm(Id) ≤ CMNm (log N)d ρ−N
1 . (5.4)

Hence, by an appropriate diminishment of ρ, e.g., ρ← ρ+1
2 , we may select ρ1 = ρ.

Proof. The bound (5.3) was justified in [12]. Its conterpart related to Hm-norms, (5.4) is
based on the respective results in [31].

In the next section we derive the regularity results for solutions of elliptic eigenvalue
problems which will imply Remark 5.3.
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5.2 Regularity for elliptic eigenvalue problems with smooth data

Consider the eigenvalue problem for the differential operator

Λu := −∇ · (A∇u) + 〈b,∇u〉+ cu, (5.5)

where 〈a, b〉 :=
∑d

i=1 aibi (without complex conjugation). We say that Λ is uniformly elliptic
if A ∈ L∞

sym

(
Ω, Rd×d

)
, b ∈ L∞ (

Ω, Rd
)
, and c ∈ L∞ (Ω) satisfy the conditions in (4.2). We

assume that the coefficients of the operator Λ are analytic; i.e., there exist positive constants
CA, Cb, Cc and γA, γb, γc such that

‖∇pA‖L∞(Ω) ≤ CAγp
Ap! ∀p ∈ N0,

‖∇pb‖L∞(Ω) ≤ Cbγ
p
b p! ∀p ∈ N0,

‖∇pc‖L∞(Ω) ≤ Ccγp
c p! ∀p ∈ N0.

(5.6)

We consider two types of domain: Either Ω = Rd or Ω is a bounded Lipschitz domain
with analytic boundary, i.e., there is a finite family U of open subset in Rd along a family of
bijective maps1

{
χU : B1 → U

}
U∈U such that

∀U ∈ U : χU ∈ C0,1
(
B1, U

)
, χ−1

U ∈ C0,1
(
U, B1

)
,

∀U ∈ U : χU (B0
1) = U ∩ ∂Ω, χU

(
B+

1

)
= U ∩ Ω, χU

(
B−

1

)
= U ∩ Rd\Ω,

∃CΓ, γΓ ∀U ∈ U : ‖∇pχU‖L∞(B1) ≤ CΓγ
p
Γp! ∀p ∈ N0.

(5.7)
Let us consider the eigenvalue problem: Find a pair (λ, u) ∈ R×H1

0 (Ω) \ {0} such that

Λu = λu in Ω,
u = 0 on ∂Ω

(5.8)

with Λ as in (5.5). Let E (λ) denote the eigenspace for the eigenvalue λ.

Theorem 5.5 Let Ω be an analytic, bounded Lipschitz domain which satisfies (5.7). As-
sume that the coefficients A, b, c satisfy (5.6). Then, any eigenfunction u ∈ E (λ) of (5.8)
(normalised to ‖u‖L2(Ω) = 1) is analytic. There exist constants C, K > 0 depending only on
the constants in (5.6), (5.7), and on amin and the spatial dimension d such that

∥∥∇p+2u
∥∥

L2(Ω)
≤ CKp+2 max

{
p,
√

|λ|
}p+2

for all p ≥ 0. (5.9)

Proof. The statement follows from [22, Theorem 5.3.10] as follows. First, let |λ| ≥ 1 and
consider (5.8) as the equation

−ε2∇ · (A∇u) +
〈
b̃,∇u

〉
+ (c̃− 1)u = f in Ω with u|∂Ω = 0

where ε2 = λ−1, b̃ = λ−1b, c̃ = c/λ and f ≡ 0. For the quantity E in [22, Theorem 5.3.10]
we obtain the estimate

E−1 := Cb +

√
1 + Cc/ |λ|
|λ|−1/2

+ 1 ≤ 1 + Cb +
√

|λ| + Cc ≤ C1

√
|λ|,

1B1 denotes the unit ball in Rd and B0
1 := {x ∈ B1 | xd = 0}. For σ ∈ {+,−}, we set Bσ

1 :=
{x ∈ B1 | σxd > 0}.

13



where C1 := 1 + Cb +
√

1 + Cc. The other quantities which appear in [22, Theorem 5.3.10]
have to be substituted by

Cf ← 0, Cc ← Cc + 1, E ← C2 |λ|−1/2 ,

(
E
ε

)2

← C2
2

with C2 :=
(√

1 + Cc + Cb

)−1
. From (4.2) we conclude that

Re a (u, u) =

∫

Ω

〈A∇u,∇u〉+ Re (〈b,∇u〉u) + c |u|2

=

∫

Ω

〈A∇u,∇u〉+
1

2

〈
b,∇

(
|u|2

)〉
+ c |u|2

=

∫

Ω

〈A∇u,∇u〉+
(
−

1

2
div b + c

)
|u|2

(4.2)

≥ amin ‖∇u‖2L2(Ω)

holds. Since u is an eigenfunction corresponding to λ and ‖u‖L2(Ω) = 1 we obtain

‖∇u‖L2(Ω) ≤ a−1/2
min

√
Re a (u, u) =

√
(Reλ) /amin.

Plugging these quantities into the estimate in [22, Theorem 5.3.10] we get

∥∥∇p+2u
∥∥

L2(Ω)
≤ CKp+2 max

{
p,
√
|λ|

}p+2
,

where C only depends on the constants CA, Cb, Cc, γA, γb, γc, CΓ, γΓ, amin. As explained in
[22, Remark 5.3.11] the coercivity assumption which is imposed in [22, Theorem 5.3.10] is
not required for this estimate. The proof of [22, Theorem 5.3.10] covers only the case d = 2.
However, the only part therein, where d = 2 (instead of general d) is used explicitly, is the
mapping lemma [22, Lemma 4.3.1]. Inspection of the proof shows that the case d ≥ 3 can be
handled analogously while, then, the constants in (5.9) in general depend also on the spatial
dimension d.

The case |λ| < 1 is even simpler because we consider

−ε2∇ · (A∇u) + 〈b,∇u〉+ (c− λ) u = f in Ω with u|∂Ω = 0

where f = 0 and ε2 = 1. By repeating the steps in the first part of the proof with coefficients
b̃ = b, c̃ = c− λ with |λ| < 1 we obtain

∥∥∇p+2u
∥∥

L2(Ω)
≤ C (pK)p+2 .

Remark 5.6 Let Ω = Rd. Assume that the coefficients A, b, c satisfy (5.6). Then the
estimate ∥∥∇p+2u

∥∥
L2(Rd) ≤ CKp+2 max

{
p,
√
|λ|

}p+2
for all p ≥ 0

follows from [22, Prop. 5.5.1] by a simple repetition of the arguments of the previous proof.
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Now we are in a position to apply the regularity results in Theorem 5.5 to derive the low
separation rank approximations to certain class of eigenfunctions in (5.8).

Corollary 5.7 Let Ω = (−β, β)d be some fixed hypercube in Rd or let Ω = Rd. Assume that
the coefficients A, b, c satisfy (5.6). Then the estimate (5.2) holds in Ω with

ρ = 1 +
c

1 +
√

|λ|
> 1 M =

CC̃d√
2π

(
K
(
p +

√
|λ|

))k

(5.10)

for k = 8(d + 1) /29 and with c̃d, C̃ > 0 depending only on the constants C, K in Theorem
5.5 and the dimension d.

Proof. To prove the assertion we check that the bound (5.9) implies Remark 5.3 with
the respective constants Cu, γu, where u,λ is the eigenpair in (5.8). Due to the Sobolev
embedding theorem, the L2-bound (5.9) implies the corresponding estimate in L∞ norm for
k =

⌈
d+1
2

⌉

∥∥∇p+2u
∥∥

L∞(B)
≤ Cd

∥∥∇p+2u
∥∥

Hk(Ω)

(5.9)

≤ CdK
p+k+2 max

{
p + k,

√
|λ|

}p+k+2

≤ C̃d

(
K
(
p +

√
|λ|

))k
Kp+2 max

{
p,
√
|λ|

}p+2
.

Since the derivation of the sharp dependence of the error on the size of the eigenvalues is
not our goal, we simply estimate by Stirling’s formula

∥∥∇p+2u
∥∥

L∞(B)
≤ Cuγ

p+2
u (p + 2)!

with Cu = C̃d

(
K
(
p +

√
|λ|

))k

/
√

2π and γu = e
(
1 +

√
|λ|

)
K. Hence, from Proposition

5.4 the estimate (5.10) follows.

Now we are able to derive the separable approximations for a class of elliptic eigenvalue
problems.

Theorem 5.8 Let the assumptions of Corollary 5.7 be satisfied. Then, there exists an ele-
ment ur ∈Mr with r = (r, ..., r), such that for the eigenfunction in (5.8) we have

‖u− ur‖H1(Ω) ≤ cMr (log r)d ρ−r, (5.11)

where ρ and M are as in Corollary 5.7. The related representation of ur in CR has at most
rank R = rd−1.

Proof. Corollary 5.7 ensures that for the eigenfunction we have u ∈ AM,ρ(Ω) with the respec-
tive constants M, ρ. Hence, we apply the tensor product interpolant Ir−1u = I1

r−1...I
d
r−1u ∈

Pr−1 on Ω with respect to d variables as in Proposition 5.4 and obtain the bound (5.3). The
representation in the format CR is obtained by reordering of rank-1 summands in the Tucker
decomposition. This completes our proof.

Remark 5.9 By choosing

r ≥ C
√
|λ| log

1

ε
,

and taking into account (5.10), the bound in (5.11) implies

‖u− ur‖H1(Ω) ≤ Cε.
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5.3 Approximations in tensorised P1-finite element spaces

Theorem 5.8 shows that in the tensor manifold Mr, r = (r, r, . . . , r), there exists a func-
tion ur which approximates the eigenfunction of the elliptic problem (1.1) with converges
exponentially with respect to r.

The representative ur is a global polynomial. In this section we will show that, also in
the tensorised low order P1-finite element space on a tensor mesh (satisfying zero-boundary
conditions) with step size h, there exists a representative with converges linearly in h. We

set Vr :=
d⊗

i=1

Pr−1 and choose some basis (φk)
r−1
k=0 for Pr−1. Let Ih denote the interpolation

of H1
0 (I) on the P1-finite element space on a mesh of I with maximal step size h. Let

φk,h := Ihφk 0 ≤ k ≤ r − 1

and let Vr,h := span {φk,h : 0 ≤ k ≤ r − 1}. Then, the space Vr,h =
d⊗

i=1

Vr,h is a subset of Mr

and we will prove that there is an element ur,h := Ihur ∈ Vr,h which satisfies

‖ur − Ihur‖H1(Ω) ≤ Ch.

Theorem 5.10 Let Ω = (−β, β)d be some fixed hypercube in Rd. Assume that the coeffi-
cients A, b, c satisfy (5.6). Then, there exists an element ur,h ∈ Vr,h ⊂Mr with r = (r, ..., r),
such that for the eigenfunction in (5.8) we have

‖u− ur,h‖H1(Ω) ≤ ch, (5.12)

where ρ and M are as in Corollary 5.7. The related representation of ur,h in CR has at most
rank R = rd−1.

Proof. Let u, ur be as in (5.11) and let ur,h := Ihur ∈ Vr,h. Then, by the triangle inequality
and Theorem 5.8 we have

‖u− ur,h‖H1(Ω) ≤ cMr (log r)d ρ−r + ‖ur − Ihur‖H1(Ω) .

Standard interpolation results lead to

‖ur − Ihur‖H1(Ω) ≤ Ch ‖ur‖H2(Ω) .

Now, from (5.4), Theorem 5.5 and Remark 5.6, we conclude that

‖ur‖H2(Ω) ≤ ‖u‖H2(Ω) + ‖u− ur‖H2(Ω) ≤ CK2 |λ| + cMr2 (log r)d ρ−r.

The second summand is bounded uniformly in r so that the assertion follows by combining
these estimates.

Finally, we quote a standard error estimate for the Galerkin discretisation of eigenvalue
problems.
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Theorem 5.11 Assume r in Mr with r = (r, r, . . . , r) is chosen sufficiently large and h in
the definition of Vr,h be chosen sufficiently small. Let the geometric and algebraic multiplicity
of a continuous eigenvalue λ0 coincide. For any e ∈ E (λ) with ‖e‖L2(Ω) = 1, there exists a
discrete eigenfunction in er ∈ Vr ⊂Mr resp. er,h ∈ Vr,h ⊂Mr such that

‖e− er‖H1(Ω) ≤ CMr (log r)d ρ−r

‖e− er,h‖H1(Ω) ≤ Ch.

The proof of this theorem can be found in [11, Theorem 11.2.20]. The restriction to
simple eigenvalues for the eigenvector error estimates is quite strong. The error estimates
have been generalized for self-adjoint problems in [20] and [25] to the case of multiple and
also clustered eigenvalues. For the non-selfadjoint case we refer to [1].

To conclude this section we observe that for a special class of spectral problems, Theorem
5.8 can be applied in the finite hypercube Ω defined above. Specifically, we assume that the
eigenfunction of problem (5.8) with Ω = Rd exhibits the exponential decay,

|u(x)| ≤ Ce−α‖x‖ as x→∞. (5.13)

Given ε > 0, consider the “approximating” eigenvalue problem posed in the hypercube Ω
of side length β = O(| log ε|), with the corresponding eigenfunction uβ, and suppose that
‖u− uβ‖ ≤ Cε.

Remark 5.12 Corollary 5.7 ensures that the eigenfunction uβ allows the same upper bound
on the Tucker and canonical ranks as in Theorem 5.8. Hence, in this case the truncated
iteration can be applied directly to the problem in finite domain Ωβ.

6 Numerics and concluding remarks

In this section we present numerical illustrations for 2D and 3D eigenvalue problems. In
particular, we present numerical examples for the “truncated” power iteration applied to
the inverse of an elliptic operator L−1, where we set b = 0. In the case of constant/separable
coefficients , L−1 will be approximated by a low rank Kronecker product, e.g., obtained from
the sinc-quadrature method [10, 12, 16].

6.1 Operators with constant coefficients

First we consider the finite difference analogue of the negative Laplacian A on the domain
Ω = (0, 1)d, as in (4.8) for d = 2, 3 with zero boundary conditions. The case d = 2 is of
interest since in that case the projection operator Tr onto tensor structured manifold can
easily be realised by the “truncated” SVD algorithm.

We recall that the eigenvalues are

λi = (n + 1)2
d∑

#=1

4 sin2 πi#
2(n + 1)

, i ∈ N
d with components 1 ≤ i# ≤ n,
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and the corresponding eigenvectors are exact rank-1 tensors:

Ui = u(i1) ⊗ ...⊗ u(id),

where u(i!) ∈ Rn with entries

u(i!)
s = sin

πi#s

n + 1
, 1 ≤ s ≤ n.

We implement the power iteration for the matrix L = A−1, which is (approximately) repre-
sented in the rank-R Kronecker format in the form

L ≈ LR :=
M∑

k=−M

ck

d⊗

#=1

exp(−tkA
(#)) ≈ A−1, R = 2M + 1, tk, ck > 0, (6.1)

with A(#) := tridiag{−1, 2,−1} ∈ Rn×n, providing exponential convergence in R (see [12]).
Specifically, we take

tk = ekh, ck = htk, h = π/
√

M,

which leads to the convergence rate

∥∥A−1 − LR

∥∥ ≤ Ce−π
√

M , R = 2M + 1.

For even better coefficients tk, ck compare [5]. We recall that the memory requirements for
this algorithm are linear in n, i.e. O(dRn), while a linear complexity in the number of grid
points in the volume would lead to O(nd).

The matrix-vector multiplication of LR with a rank-1 vector in Rn⊗d
takes O(dRn log n)

operations by using the diagonalisation

exp(−tkA
(#)) = F ′

s · D · Fs, D = diag{e−tkλ1 , ..., e−tkλn},

where Fs is the sin-transform matrix of size n, and λi (i = 1, ..., n) are the respective
eigenvalues of the 1D Laplacian.

Example 1. We present the results for λ = λmin in the 2D case, computed in MATLAB
by using Intel(R) T230/1.66 GHz processor. Since the eigenvector has rank one, we apply
at each iteration step the truncation operator T1 implemented via truncated SVD. In the
next table we present numerical illustrations for a sequence of grids indicating the CPU
time (sec.) for one matrix-vector multiplication with LR ≈ A−1, (with fixed parameter
M = 10, the respective Kronecker rank of LR is R = 2M + 1 = 21), and accomplished
with the rank truncation applied to each iterand LRU (m). We present the number of power
iterations on each grid level, as well as the resulting relative errors δλ = |λ− λh,R|/|λ| and
δu = ‖U − Uh,R‖1/‖U‖1.

The results indicate the true asymptotical convergence of the truncated iteration in the
mesh parameter h = π/(n + 1), on a sequence of large n × n grids for n = 2p − 1, p =
8, 10, ..., 16. Table 6.1 also indicates perfect linear scaling of the tensor method in n (compare
with O(n2) for traditional methods of linear complexity). The number of power iterations
increases as O(log n) as expected.
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n× n grid size Time/it. δλ δu it.
255× 255 0.04 7.3 · 10−6 5.0 · 10−4 5

1023× 1023 0.1 2.5 · 10−7 1.1 · 10−4 6
4047× 4047 0.4 1.0 · 10−8 2.0 · 10−5 7

16191× 16191 1.45 3.8 · 10−10 4.2 · 10−6 8
64767× 64767 7.0 2.2 · 10−11 1.17 · 10−6 9

Table 6.1: Minimal eigenvalue for 2D Laplacian.

Example 2. We consider the tensor computation of several smallest eigenvalues using the
same tensor power iteration, but accomplished with successive Gram-Schmidt orthogonali-
sation at each iteration step. We again solve the problem on a sequence of large n× n grids
for n = 2p − 1, p = 6, 8, ..., 16. The number of power iterations observed is about 2 ≤ it ≤ 4
for all grids with p ≥ 8. Here the computation of the initial guess by means of a nested
iteration involving coarser grids is very helpful. Table 6.1 presents the iteration history for
three eigenpairs (λi, ui) (i = 1, 2, 3).

p Time/it. δλ1 δu1 δλ2 δu2 δλ3 δu3

6 0.02 2.3 · 10−6 2.5 · 10−4 2.7 · 10−5 1.9 · 10−3 4.2 · 10−6 3.3 · 10−3

8 0.03 2.1 · 10−7 8.9 · 10−5 1.3 · 10−6 3.9 · 10−4 5.3 · 10−7 1.1 · 10−3

10 0.1 1.7 · 10−8 2.2 · 10−5 6.9 · 10−8 9.4 · 10−5 1.3 · 10−8 1.8 · 10−4

12 0.39 9.9 · 10−10 5.2 · 10−6 4.5 · 10−9 2.3 · 10−5 1.9 · 10−9 7.0 · 10−5

14 1.6 6.5 · 10−11 1.3 · 10−6 2.8 · 10−10 6.0 · 10−6 1.5 · 10−10 1.7 · 10−5

16 6.9 3.8 · 10−12 3.2 · 10−7 1.8 · 10−11 1.5 · 10−6 4.3 · 10−11 4.5 · 10−6

Table 6.2: Several smallest eigenvalues for 2D Laplacian.

Again, these results indicate the linear scaling of the tensor method in n. The cost of one
power iteration step increases like O(n log n) as expected. Furthermore, the theory predicts
the asymptotic behaviour

δλ = O(λh2) and δu = O(
√

λh), as h→ 0,

which is in agreement with the above presented calculations. Notice that in our case the
true scaling factor between the errors on sequential refined grids is 16 for the eigenvalues
and 4 for the eigenfunctions.

Example 3. We apply the tensor method to compute the minimal eigenvalue of the 3D
Laplacian on large n× n× n grids with n = 2p − 1 (see Table 6.1). In this case, the action
of the truncation operator T1 is equivalent to the rank-1 nonlinear Tucker approximation of
the n× n× n, rank-R tensors arising at each iterative step.

We observe the asymptotic complexity O(dn logn) to achieve the theoretical error bounds
for both the eigenvalues and eigenfunctions. Notice that the problem size on the finest grid
(with n = 217, d = 3) exceeds N = nd = 217d ≈ 1015, which is far beyond the facilities
of modern super-computers. Hence tensor methods are mandatory for solving large scale
multi-dimensional spectral problems.
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p Time/it. δλ δu it.
6 0.03 2.0 · 10−4 1.5 · 10−3 4
8 0.05 1.6 · 10−5 9.4 · 10−4 4
10 0.12 7.8 · 10−7 1.2 · 10−4 5
12 0.51 4.9 · 10−8 3.4 · 10−5 5
14 2.2 3.1 · 10−9 9.3 · 10−6 5
16 10.6 1.9 · 10−10 2.8 · 10−6 5
17 22.3 4.8 · 10−11 1.6 · 10−6 5

Table 6.3: Minimal eigenvalue for 3D Laplacian on large spatial grids.

6.2 Operator with variable coefficients

In this section we consider eigenvalue problems for the elliptic operators of the form

Λu = ∆u + c(x)u, x ∈ R
d

with smooth coefficient c(x).
In the subsequent examples we consider discretisations represented by matrices of the

form
A = M + qC, q > 0, (6.2)

where M > 0 is the finite difference negative Laplacian in 2D as before, and C is the low

Kronecker rank matrix discretising the zero-order term c(x) =
R∑

k=1
c(1)
k (x1) · c(2)

k (x2) ≥ 0 as in

(4.1). We suppose that

0 ≤ 〈Cx, x〉 ≤ 〈x, x〉 ∀ x ∈ Vn \ {0}.

Example 4. In this example we apply the Lanczos algorithm for computing the largest
eigenvalues. Consider matrices of the form

A = M +
R∑

t=1

Dt ⊗Dt,

where M is the negative discrete Laplacian and Dt are diagonal matrices with positive
entries. We approximate the maximal eigenvalue by the standard Lanczos and truncated
tensor Lanczos methods for the following two examples:

(A) the entries of Dt are grid values of the function (1+Tt(x))/10, where Tt is the Chebyshev
polynomial of degree t;

(B) the entries of Dt are random values uniformly distributed in [0, 1].

We compare the results obtained after 50 iterations for both methods. The matrix size
is N = 3002, the truncation rank and the accuracy are set to 10 and 10−2, respectively.
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R 1 3 5 7 9
Standard Lanczos 7.989 7.957 7.925 7.900 7.893
Tensor Lanczos 7.977 7.940 7.917 7.893 7.906

Table 6.4: Maximal eigenvalues, case (A).

R 1 3 5 7 9
Standard Lanczos 7.862 7.615 7.302 6.800 6.460
Tensor Lanczos 7.852 7.608 7.292 6.789 6.452

Table 6.5: Maximal eigenvalues, case (B).

We observe that the computed eigenvalues in both methods are close to the truncation
accuracy even for the random case. This suggests that tensor tools may be applied to a
much broader class of matrices than required by the theory described above.

Example 5. The minimal eigenvalue is calculated for the problem (6.2) with the matrix
C corresponding to the rank-1 potential c(x) = sin(λx1) sin(λx2) in (0, 1)2. We perform the
truncated power iteration with the matrix L = A−1, such that the respective matrix-vector
multiplication y = LU is implemented by the “truncated” iterative procedure, yp → y, as
p→∞, where

yp+1 = yp − ωLR(Ayp − U), p = 0, 1, ...

with certain rank-r initial guess y0 and with a proper relaxation parameter ω ∈ (0, 2). Here
LR is the rank-R approximation to the inverse of the shifted Laplacian described in (6.1).

Table 6.6 presents the results on the sequence of n × n grids, n = 2p, p = 10, 11, 12, 13,
for the truncation rank r = 3. We give the total CPU time (sec.), the number of power
iterations and the scaling factor between the neighbouring grids. We expect an O(n logn)
time scaling provided that all nested iterations require the same number of loops and the
same tensor rank for the preconditioner (of course, there are some fluctuations).

n Time δRes Power iter. Scaling
1024 7.3 3.0 · 10−4 10 −
2048 23.6 1.5 · 10−4 14 2.3
4096 63.9 7.6 · 10−5 14 2.7
8192 209. 3.8 · 10−5 17 2.7

Table 6.6: Minimal eigenvalue for −∆ + c(x) in 2D.

This table indicates the linear-logarithmic scaling in n as well as the robust convergence
of the power iteration with the tensor modification.

6.3 Concluding remarks

The theoretical and numerical analysis of multi-dimensional eigenvalue problems presented
in the paper clearly indicate that tensor structured methods for the approximation and
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solution of “smooth” spectral problems in Rd yield a promising basis for efficient solution
methods in the modern high dimensional applications. Moreover, it seem that these methods
are not restricted to smooth problems.

Acknowledgement. The authors are thankful to Dipl. Ing. Cristóbal Bertoglio (Paris-
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[3] G. Beylkin and M. M. Mohlenkamp: Numerical operator calculus in higher dimensions,
Proc. Natl. Acad. Sci. USA, 99 (2002), 10246–10251.

[4] G. Beylkin and M. M. Mohlenkamp: Algorithms for numerical analysis in high dimen-
sions, SIAM J. Sci. Comput., 26 (2005), 2133–2159.

[5] D. Braess and W. Hackbusch: Approximation of 1/x by exponential sums in [1,∞).
IMA J. Numer. Anal., 25 (2005) 685–697.

[6] Chinnamsetty, S. R., Espig, M., Khoromskij, B. N., Hackbusch, W,. and H.-J. Flad:
Tensor product approximation with optimal rank in quantum chemistry, Journal of
Chemical Physics, 127 (2007), no.8, art-no. 084110.

[7] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank-1 and rank-
(R1, ..., RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21

(2000) 1324-1342.

[8] M. Espig: Approximation mit Elementartensorsummen. Doctoral thesis, Universität
Leipzig, 2008.

[9] H.-J. Flad, B. Khoromskij, D. Savostianov, and E. Tyrtyshnikov: Verification of the
cross 3d algorithm on quantum chemistry data. Rus. J. Numer. Anal. and Math. Mod-
elling, 4 (2008), 1–16.

[10] I.P. Gavrilyuk, W. Hackbusch, and B.N. Khoromskij: Tensor-product approximation to
elliptic and parabolic solution operators in higher dimensions. Computing 74 (2005),
131-157.

[11] W. Hackbusch. Elliptic Differential Equations. Springer Verlag, 1992.

[12] W. Hackbusch and B.N. Khoromskij: Low-rank Kronecker product approximation to
multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate
functions. Computing 76 (2006), 177-202.

22



[13] W. Hackbusch, B.N. Khoromskij, and E.E. Tyrtyshnikov: Hierarchical Kronecker
tensor-product approximations. J. Numer. Math. 13 (2005), 119–156.

[14] W. Hackbusch, B.N. Khoromskij, and E.E. Tyrtyshnikov: Approximate iterations for
structured matrices. Numer. Math. 109 (2008), 365-383.

[15] B. N. Khoromskij: Structured Rank-(r1, ..., rd) Decomposition of Function-related Ten-
sors in Rd. Comp. Meth. in Applied Math. 6 (2006), 194-220.

[16] B. N. Khoromskij: On tensor approximation of Green iterations for Kohn-Sham equa-
tions. Comp. and Visualization in Sci., 11 (2008) 259-271.

[17] B.N. Khoromskij: Tensor-structured Preconditioners and Approximate Inverse of Ellip-
tic Operators in Rd. J. Constr. Approx., 2009. DOI: 10.1007/s00365-009-9068-9.

[18] B.N. Khoromskij and V. Khoromskaia: Multigrid tensor approximation of function
related multi-dimensional arrays. SIAM J. on Sci. Comp., 31(4), 3002-3026 (2009).

[19] B.N. Khoromskij, V. Khoromskaia, and H.-J. Flad: Numerical Solution of the Hartree-
Fock Equation in Multilevel Tensor-structured Format. Preprint 44/2009, MPI MIS
Leipzig 2009 (submitted).

[20] A. Knyazev: New Estimates for Ritz Vectors. Math. Comp., 66:985–995, 1997.

[21] T. G. Kolda and B. W. Bader: Tensor decompositions and applications. Technical Re-
port No SAND2007-6702, Sandia National Laboratories, Albuquerque, NM and Liver-
more, CA, November 2007.

[22] J.M. Melenk: hp-finite element methods for singular perturbations. Springer Lecture
Notes in Mathematics, 1796, (2002).

[23] M. Melenk and S. Sauter: Convergence analysis for finite element discretizations of the
Helmholtz equation. Part I: The full space problem. 09-2008, Universität Zürich 2008.
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