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ABSTRACT. We study the arithmetic properties of projective varieties of almost minimal degree,
that is of non-degenerate irreducible projective varieties whose degree exceeds the codimension
by precisely 2. We notably show, that such a variety X ⊂ Pr is either arithmetically normal
(and arithmetically Gorenstein) or a projection of a variety of minimal degree X̃ ⊂ Pr+1 from
an appropriate point p ∈ Pr+1 \ X̃ . We focus on the latter situation and study X by means of
the projection X̃ → X .

If X is not arithmetically Cohen-Macaulay, the homogeneous coordinate ring B of the pro-
jecting variety X̃ is the endomorphism ring of the canonical module K(A) of the homogeneous
coordinate ring A of X. If X is non-normal and is maximally Del Pezzo, that is arithmetically
Cohen-Macaulay but not arithmetically normal B is just the graded integral closure of A. It turns
out, that the geometry of the projection X̃ → X is governed by the arithmetic depth of X in any
case.

We study in particular the case in which the projecting variety X̃ ⊂ Pr+1 is a (cone over a)
rational normal scroll. In this case X is contained in a variety of minimal degree Y ⊂ Pr such
that codimY (X) = 1. We use this to approximate the Betti numbers of X .

In addition we present several examples to illustrate our results and we draw some of the links
to Fujita’s classification of polarized varieties of ∆-genus 1.

1. INTRODUCTION

Let Pr
k denote the projective r-space over an algebraically closed field k. Let X ⊂ Pr

k be an
irreducible non-degenerate projective variety of dimension d. The degree deg X of X is defined
as the number of points of X ∩ L, where L is a linear subspace defined by generically chosen
linear forms `1, . . . , `d. It is well known that

deg X ≥ codim X + 1,

(cf e.g. [12]), where codim X = r− d is used to denote the codimension of X . In case equality
holds, X is called a variety of minimal degree. Varieties of minimal degree are classified and
well understood. A variety X of minimal degree is either a quadric hypersurface, a (cone over a)
Veronese surface in P5

k, or a (cone over a smooth) rational normal scroll (cf [21, Theorem 19.9]).
In particular these varieties are arithmetically Cohen-Macaulay and arithmetically normal.

The main subject of the present paper is to investigate varieties of almost minimal degree,
that is irreducible, non-degenerate projective varieties X ⊂ Pr

k with deg X = codim X + 2.
From the point of view of polarized varieties, Fujita [14], [15], [16] has studied extensively such
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varieties in the framework of varieties of ∆-genus 1. Nevertheless, in our investigation we take
a purely arithmetic point of view and study our varieties together with a fixed embedding in a
projective space.

A natural approach to understand a variety X ⊂ Pr
k of almost minimal degree is to view it

(if possible) as a birational projection of a variety of minimal degree X̃ ⊂ Pr+1
k from a point

p ∈ Pr+1
k \ X̃ . If sufficiently many varieties of almost minimal degree can be obtained by such

projections, we may apply to them the program of: “classifying by projections of classified
varieties”. It turns out, that this classification scheme can indeed be applied to an interesting
class of varieties of almost minimal degree X ⊂ Pr

k, namely those, which are not arithmetically
normal or equivalently, to all those which are not simultaneously normal and arithmetically
Gorenstein. More precisely, we shall prove the following result, in which Secp(X̃) is used to
denote secant cone of X̃ with respect to p:

Theorem 1.1. Let X ⊂ Pr
k be a non-degenerate irreducible projective variety and let t ∈

{1, 2, · · · , dim X + 1}. Then, the following conditions are equivalent:
(i) X is of almost minimal degree, of arithmetic depth t and not arithmetically normal.

(ii) X is of almost minimal degree and of arithmetic depth t, where either t ≤ dim X or
else t = dim X + 1and X is not normal.

(iii) X is of almost minimal degree and of arithmetic depth t, where either X is not normal
and t > 1 or else X is normal and t = 1.

(iv) X is a (birational) projection of a variety X̃ ⊂ Pr+1
k of minimal degree from a point

p ∈ Pr+1
k \ X̃ such that dim Secp(X̃) = t− 1.

For the proof of this result see Theorem 5.6 (if t ≤ dim X) resp. Theorem 6.9 (if t =
dim X + 1). In the spirit of Fujita [14] we say that a variety of almost minimal degree is
maximally Del Pezzo if it is arithmetically Cohen-Macaulay (or – equivalently – arithmetically
Gorenstein). Then, as a consequence of Theorem 1.1 we have:

Theorem 1.2. A variety X ⊂ Pr
k of almost minimal degree is either maximally Del Pezzo and

normal or a (birational) projection of a variety X̃ ⊂ Pr+1
k of minimal degree from a point

p ∈ Pr+1
k \ X̃ .

In this paper, our interest is focussed on those varieties X ⊂ Pr
k of almost minimal degree

which are birational projections of varieties of minimal degree. As already indicated by Theo-
rem 1.1 and in accordance with our arithmetic point of view, the arithmetic depth of X is the
key invariant of our investigation. It turns out, that this arithmetic invariant is in fact closely
related to the geometric nature of our varieties. Namely, the picture sketched in Theorem 1.1
can be completed as follows:

Theorem 1.3. Let X ⊂ Pr
k be a variety of almost minimal degree and of arithmetic depth t,

such that X = %(X̃), where X̃ ⊂ Pr+1
k is a variety of minimal degree and % : Pr+1

k \ {p} → Pr
k

is a birational projection from a point p ∈ Pr+1
k \ X̃. Then:

(a) ν := % �: X̃ → X is the normalization of X .
(b) The secant cone Secp(X̃) ⊂ Pr+1

k is a projective subspace Pt−1
k ⊂ Pr+1

k .
(c) The singular locus Sing(ν) = %(Secp(X̃) \ {p}) ⊂ X of ν is a projective subspace

Pt−2
k ⊂ Pr

k and coincides with the non-normal locus of X .
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(d) If t ≤ dim X, Sing(ν) coincides with the non S2-locus and the non-Cohen-Macaulay
locus of X and the generic point of Sing(ν) in X is of Goto-type.

(e) The singular fibre ν−1(Sing(ν)) = Secp(X̃) ∩ X̃ is a quadric in Pt−1
k = Secp(X̃).

For the proves of these statements see Theorem 5.6 and Corollary 6.10.
Clearly, the projecting variety X̃ ⊂ Pr+1

k of minimal degree plays a crucial rôle for X . We
thus may distinguish the exceptional case in which X is a cone over the Veronese surface and
the general case in which X̃ is a cone over a rational normal scroll. In this latter case, we have
the following crucial result, in which we use the convention dim ∅ = −1 :

Theorem 1.4. Let X ⊂ Pr
k be a variety of almost minimal degree which is a birational projec-

tion of a (cone over a) rational normal scroll X̃ ⊂ Pr+1
k from a point p ∈ Pr+1

k \ X̃ . Then, there
is a (cone over a) rational normal scroll Y ⊂ Pr

k such that X ⊂ Y and codimX(Y ) = 1.
Moreover, if the vertex of X̃ has dimension h, the dimension l of the vertex of Y satisfies
h ≤ l ≤ h + 3. In addition, the arithmetic depth t satisfies t ≤ h + 5.

For a proof of this result see Theorem 7.3 and Corollary 7.5. It should be noticed, that there
are varieties of almost minimal degree, which cannot occur as a 1-codimensional subvariety of
a variety of minimal degree (cf Example 9.4 and Remark 6.5).

Our paper is built up following the idea, that the arithmetic depth t := depth A of a variety
X ⊂ Pr

k = Proj(S), S = k[x0, · · · , xr], of almost minimal degree with homogeneous coordi-
nate ring A = AX is a key invariant. In Section 2 we present a few preliminaries and discuss
the special case where X is a curve.

In Section 3 we consider the case where t = 1. We show that the total ring of global sections
⊕n∈ZH0(X,OX(n)) of X – that is the S+-transform D(A) of A – is the homogeneous coordi-
nate ring of a variety X̃ ⊂ Pr+1

k of minimal degree. In geometric terms: X is isomorphic to X̃
by means of a projection from a generic point p ∈ Pr+1

k and hence normal but not arithmetically
normal (cf Propositions 3.1 and 3.4).

In Section 4 we begin to investigate the case (1 <) t ≤ dim X , that is the case in which
X is not arithmetically Cohen-Macaulay. First, we prove some vanishing statements for the
cohomology of X and describe the structure of the t-th deviation module Kt(A) of A. Moreover
we determine the Hilbert series of A and the number of defining quadrics of X (cf Theorem 4.2
and Corollary 4.4).

In Section 5 we aim to describe X as a projection if t ≤ dim X . As a substitute for the
S+-transform D(A) of the homogeneous coordinate ring A (which turned out to be useful in
the case t = 1) we now consider the endomorphism ring B := EndA(K(A)) of the canonical
module of A (cf Theorem 5.3). It turns out that B is the homogeneous coordinate ring of
variety X̃ ⊂ Pr+1

k of minimal degree, and this allows to describe X as a projection of X̃ (cf
Theorem 5.6). Endomorphism rings of canonical modules have been studied extensively in a
purely algebraic setting (cf [2], [28]). The striking point is the concrete geometric meaning of
these rings in the case of varieties of almost minimal degree.

In Section 6 we study the case where t = dim X + 1, that is the case where X is arithmeti-
cally Cohen-Macaulay. Now, X is a Del Pezzo variety in the sense of Fujita [16]. According
to our arithmetic point of view we shall speak of maximal Del Pezzo varieties in order to dis-
tinguish them within the larger class of polarized Del Pezzo varieties. We shall give several
equivalent characterizations of these varieties (cf Theorem 6.2). We shall in addition introduce
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the notion of Del Pezzo variety and show among other things that this notion coincides with Fu-
jita’s definition for the polarized pair (X,OX(1)) (cf Theorem 6.8). Finally we shall prove that
the graded integral closure B of the homogeneous coordinate ring A of a non-normal maximal
Del Pezzo variety X ⊂ Pr

k is the homogeneous coordinate ring of a variety of minimal degree
X̃ ⊂ Pr+1

k (cf Theorem 6.9) and describe X as a projection of X̃ (cf Corollary 6.10). Contrary
to the case in which t ≤ dim X , we now cannot characterize B as the endomorphism ring of the
canonical module K(A), simply as A is a Gorenstein ring. We therefore study B by geometric
arguments, which rely essentially on the fact that we know already that the non-normal locus
of X is a linear subspace (cf Proposition 5.8). It should be noticed that on turn these geometric
arguments seem to fail if t ≤ dim X .

In Section 7 we assume that X is a (birational) projection of a (cone over a) rational normal
scroll X̃ ⊂ Pr+1

k . We then prove what is claimed by the previous Theorem 1.4. Here, we exten-
sively use the determinantal description of rational normal scrolls (cf [21]). As an application
we give some constraints on the arithmetic depth t of X (cf Corollary 7.5 and Corollary 7.6).

In Section 8 we study the Betti numbers of the homogeneous coordinate ring A of our variety
of almost minimal degree X ⊂ Pr

k. We focus on those cases, which after all merit a particular
interest, that is the situation where t ≤ dim X and X is a projection of a rational normal scroll.
Using what has been shown in Section 7, we get a fairly good and detailed view on the behaviour
of the requested Betti numbers.

Finally, in Section 9 we present various examples that illustrate the results proven in the
previous sections. In several cases we calculated the Betti numbers of the vanishing ideal of the
occuring varieties on use of the computer algebra system SINGULAR [20].

2. PRELIMINARIES

We first fix a few notation, which we use throughout this paper. By N0 (resp. N) we denote
the set of non-negative (resp. positive) integers.

Notation 2.1. A) Let k be an algebraically closed field, let S := k[x0, · · · , xr] be a polynomial
ring, where r ≥ 2 is an integer. Let X ⊂ Pr

k = Proj(S) be a reduced irreducible projective
variety of positive dimensions d. Moreover, let J = JX ⊂ OPr

k
denote the sheaf of vanishing

ideals of X , let I = IX = ⊕n∈ZH0(Pr
k,J (n)) ⊂ S denote the vanishing ideal of X and let

A = AX := S/I denote the homogeneous coordinate ring of X .
B) If M is a finitely generated graded S-module and if i ∈ Z, we use H i(M) = H i

S+
(M) to

denote the i-th local cohomology module of M with respect to the irrelevant ideal S+ = ⊕n∈NSn

of S. Let D(M) = DS+(M) denote the S+-transform lim−→HomS(Sn
+, M) of M . Moreover, let

us introduce the i-th deficiency module of M :

Ki(M) = Ki
S(M) := Extr+1−i

S (M, S(−r − 1)).

The S-modules D(M), H i(M) and Ki(M) are always furnished with their natural gradings.

Reminder 2.2. A) Let i ∈ Z. If U = ⊕n∈Z Un is a graded S-module, we denote by
∗ Homk(U, k) the graded S-module ⊕n∈Z Homk(U−n, k). If M is a finitely generated graded
S-module, by graded local duality, we have isomorphisms of graded S-modules

Ki(M) ' ∗ Homk(H
i(M), k) and(2.1)

H i(M) ' ∗ Homk(K
i(M), k) ' HomS(Ki(M), E),(2.2)
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where E denotes the graded injective envelope of the S-module k = S/S+.
B) By depth M we denote the depth of the finitely generated graded S-module M (with respect
to the irrelevant ideal S+ of S), so that

depth M = inf{i ∈ Z
H i(M) 6= 0}

= inf{i ∈ Z
Ki(M) 6= 0},

(2.3)

(with the usual convention that inf ∅ = ∞). Here depth A is called the arithmetic depth of the
variety X ⊂ Pr

k. If we denote the Krull dimension of M by dim M , we have

dim M = sup{i ∈ Z
H i(M) 6= 0}

= sup{i ∈ Z
Ki(M) 6= 0},

(2.4)

(with the conventions that sup ∅ = −∞ and dim 0 = −∞).
C) For a graded S-module U = ⊕n∈Z Un, let end U := sup{n ∈ Z | Un 6= 0} and beg U :=
inf{n ∈ Z | Un 6= 0} denote the end resp. the beginning of U . In these notation, the
Castelnuovo-Mumford regularity of the finitely generated graded S-module M is defined by

(2.5) reg M = sup{ end H i(M) + i
i ∈ Z} = inf{− beg Ki(M)) + i

i ∈ Z}.
Keep in mind that the Castelnuovo-Mumford regularity of the variety X ⊂ Pr

k is defined as

(2.6) reg X = reg I = reg A + 1.

We are particularly interested in the canonical module of A, that is in the graded A-module

(2.7) K(A) := Kdim(A)(A) = Kd+1(A).

Remark 2.3. A) Let 0 < i < dim(A) = d + 1 and let p ∈ Spec S with dim S/p = i.
Then, the Sp-module Ap has positive depth and hence vanishes or is of projective dimension
< dim Sp = r + 1− i. Therefore Ki(A)p ' Extr+1−i(Ap, Sp) = 0. So

(2.8) dim Ki(A) < i for 0 < i < dim(A) = d + 1.

B) Let n ∈ N and let f ∈ An\{0}. Then, f is A-regular and the short exact sequence
0 → A(−n)

f−→ A → A/fA → 0 yields an epimorphism of graded A-modules f :
Hd+1(A)(−n) � Hd+1(A). So, by the isomorphisms (2.1) of Reminder 2.2, the multipli-
cation map f : Kd+1(A) → Kd+1(A)(n) is injective. Moreover, localizing at the prime ideal
I ⊂ S we get

Kd+1(A)⊗A Quot(A) ' Kd+1(A)I ' Extr−d
SI

(SI/ISI , SI) ' SI/ISI = Quot (A).

So, we may resume:

(2.9) The canonical module K(A) of A is torsion free and of rank 1.

C) Let ` ∈ S1\{0} be a linear form. We write T := S/`S and consider T as a polynomial
ring in r indeterminates. For the T -deficiency modules Ki

T (A/`A) of A/`A, the isomorphisms
(2.1) of Reminder 2.2 together with the base ring independence of local cohomology furnish
the following isomorphisms of graded A/`A-modules

Ki
T (A/`A) ' ∗ Homk

(
H i

T+
(A/`A), k

)
' ∗ Homk

(
Ki

S+
(A/`A), k

)
' Ki

S(A/`A).
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So for all i ∈ Z we obtain

(2.10) Ki
T (A/`A) ' Ki

S(A/`A) = Extr+1−i
S (A/`A, S(−r − 1)) .

D) Let ` be as above. If we apply Extr+1−i
S (•, S(−r − 1)) to the short exact sequence 0 →

A(−1)
`−→ A → A/`A → 0 and keep in mind the isomorphisms (2.10), we get for each i ∈ Z

an exact sequence of graded A/`A-modules

(2.11) 0 →
(
Ki+1

S (A)/`Ki+1
S (A)

)
(1) → Ki

T (A/`A) → 0 :Ki
S(A) ` → 0.

Correspondingly, applying local cohomology, we get for each i ∈ Z an exact sequence of
graded A/`A-modules

(2.12) 0 → H i
S+

(A)/`H i
S+

(A) → H i
T+

(A/`A) → (0 :Hi+1
S+

(A) `)(−1) → 0.

E) We keep the above notation. In addition, we assume that ` ∈ S1\{0} is chosen generically.
Then, according to Bertini’s Theorem (cf [24]) the hyperplane section

Y : = X ∩ Proj(T ) = Proj(T/IT ) ' Proj(A/`A) ⊂ Proj(T ) = Pr−1
k

is reduced and irreducible if dim A > 2. The homogeneous coordinate ring of Y is

A′ = A/(`A)sat ' T/(IT )sat,

where •sat is used to denote the saturation of a graded ideal in a homogeneous k-algebra.
Observe that we have the following isomorphisms of graded A/`A-modules (cf (2.1), (2.10)).

H i
S+

(A/`A) ' H i
T+

(A/`A) ' H i
T (A′) for all i > 0;(2.13)

Ki
S(A/`A) ' Ki

T (A/`A) ' Ki
T (A′) for all i > 0.(2.14)

On use of (2.12) and (2.13) we now easily get

(2.15) H i
T+

(A′)≥m = 0 ⇒ H i+1
S+

(A)≥m−1 = 0 for all i > 0 and all m ∈ Z,

where, for a graded S-module U = ⊕n∈ZUn, we use U≥n to denote the m-th left truncation
⊕n≥mUn of U . Finally, if depth A > 1, we have A′ = A/`A. If depth A = 1, we know that
H1

S+
(A) is a finitely generated non-zero A-module so that, by Nakayama, `H1

S+
(A) 6= H1

S+
(A)

and hence H1
T+

(A′) 6= 0 (cf (2.12) and (2.13)). So, the arithmetic depth of Y behaves as follows

(2.16) depth A′ =

{
depth A− 1, if depth A > 1,

1, if depth A = 1.

The aim of the present paper is to investigate the case in which the degree of X exceeds the
codimension of X by 2. Keep in mind, that the degree of X always exceeds the codimension
of X by 1. Therefore, we make the following convention.

Convention 2.4. We write dim X, codim X and deg X for the dimension, the codimension
and the degree of X respectively, so that d = dim X = dim A − 1, codim X = height I =
r − dim X = r − d. Keep in mind that

deg X ≥ codim X + 1
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(cf e.g. [12]). We say that X is of almost minimal degree, if deg X = codim X +2 = r−d+2.
Note that X is called of minimal degree (cf [12]) whenever deg X = codim X + 1.

We now discuss the case in which X is a curve of almost minimal degree.

Remark 2.5. A) We keep the hypotheses and notations of Remark 2.3 and assume that dim X =
1 and that deg X = codim X + 2 = r + 1. Then, for a generic linear form ` ∈ S1\{0} and in
the notation of part E) of Remark 2.3, the generic hyperplane section

Y : = Proj(T/IT ) ' Proj(A/`A) = Proj(A′) ⊂ Proj(T ) = Pr−1
k

is a scheme of r + 1 points in semi-uniform position in Pr−1
k (cf [3], [25]). Consequently,

by (cf [19]) we can say that IT is generated by quadrics. Therefore we may conclude: The
homogeneous T -module

(2.17) H0
T+

((IT )sat/IT ) ' H0
T (A/`A) is generated in degree 2.

Moreover, (cf [4, (2.4) a)])

(2.18) dimk H1
T+

(A/`A)n = dimk H1
T+

(A′)n =


r + 1, if n < 0

r, if n = 0

≤ 1, if n = 1

0, if n > 1

So, by the exact sequences (2.12) and by statement (2.15) we get

H1(A)/`H1(A) ⊂ k(−1) and(2.19)

end H2(A) ≤ 0.(2.20)

B) Assume first, that A is a Cohen-Macaulay ring. Then H1(A) = 0 and so, by (2.20), the
Hilbert polynomial PA(x) ∈ Q[x] of A satisfies PA(n) = dimk An for all n > 0. As dimk A1 =
r + 1 it follows PA(x) = (r + 1)x and hence H2(A)−n ' An for all n ∈ Z. So, by (2.1)
K(A)n = K2(A)n ' An for all n ∈ Z. As K(A) is torsion-free of rank 1 (cf (2.9)), we get an
isomorphism of graded A-modules K(A) ' A(0). Therefore, A is a Gorenstein ring.

If A is normal, X ⊂ Pr
k is a smooth non-degenerate curve of genus dimk K(A)0 = 1 and of

degree r + 1, hence an elliptic normal curve: we are in the case Ī of [4, (4.7) B)].
C) Yet assume that A is a Cohen-Macaulay (and hence a Gorenstein) ring. Assume that A is
not normal. Let B denote the graded normalization of A. Then, there is a short exact sequence
of graded S-modules 0 → A → B

π→ C → 0 with dim C = 1. As H0
S+

(B) = H1
S+

(B) =

H0
S+

(A) = H1
S+

(A) = 0 we get H0
S+

(C) = 0 and an exact sequence of graded S-modules

0 → H1
S+

(C) → H2(A) → H2
S+

(B) → 0.

As dim C = 1 and H0
S+

(C) = 0, there is some c ∈ N such that

dimk Cn + dimk H1
S+

(C)n = c for all n ∈ Z.

By (2.20) and the above sequence dimk Cn = c for all n > 0. As C0 = 0 and dimk H2(A)0 =
dimk A0 = 1 (cf part B) ) it follows c = 1. As H0

S+
(C) = 0, there exits a C-regular element
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h ∈ S1 \ {0}, and choosing t ∈ C1 \ {0} we get

(2.21) C = k[h]t ' k[h](−1).

Choose ȳ ∈ B1 such that π(ȳ) = t. Then we get B/A = (ȳA + A)/A and hence B = A[ȳ]. So,
if y is an indeterminate, there is a surjective homomorphism of homogeneous k-algebras

S[y] = k[x0, · · · , xr, y]
β
� B, y 7→ ȳ,

which occurs in the commutative diagram

S[y]
β // B

S
� ?

OO

α // A
� ?

α

OO

where α is the natural map. Thus, the normalization X̃ := Proj(B) of X is a curve of degree r+
1 in Proj(S[y]) = Pr+1

k – a rational normal curve – and the normalization morphism ν : X̃ → X
is induced by a simple projection % : Pr+1\{p} � Pr

k with center {p} = |Proj(S[y]/S+S[y])|.
Moreover, by (2.21) we have ν∗OX̃/OX ' C̃ ' k, so that ν∗OX̃/OX is supported in a single

point q ∈ X , – the unique singularity of X – a double point. That is, we are in the case ĪII of
[4, (4.7) B)].
D) We keep the notations and hypotheses of part A). But contrary to what we did in parts B)
and C) we now assume that A is not Cohen-Macaulay, so that H1(A) 6= 0. Then, by (2.19)
and by Nakayama it follows H1(A)/`H1(A) = k(−1). In particular H1(A)1 ' k and the
multiplication map ` : H1(A)n → H1(A)n+1 is surjective for all n ≥ 1.

Now we claim that H1(A)n = 0 for all n > 1. Assuming the opposite, we would have
an isomorphism H1(A)1

`→ H1(A)2 and the exact sequence of graded S-modules 0 →
H0

S+
(A/`A) → H1(A)(−1)

`→ H2(A) would imply that H0
T+

(A/`A)2 ' H0
S+

(A/`A)2 = 0

and hence H0
T+

(A/`A) = 0 (cf (2.17)). This would imply depth A > 1, a contradiction. This
proves our claim and shows (cf (2.1))

(2.22) H1(A) ' k(−1) and K1(A) ' k(1).

By (2.18) (applied for n = 1) it follows that the natural map H1(A)1 → H1(A/`A)1 is an
isomorphism. So H2(A)0 = 0. In particular, we get

(2.23) PA(x) = (r + 1)x + 1, end H2(A) = −1,

where PA(x) ∈ Q[x] is used to denote the Hilbert polynomial of A.
As K(A) is torsion-free over the 2-dimensional domain A (cf (2.9)) and satisfies the second

Serre property S2 (cf [28, 3.1.1]), in view of the second statement of (2.23) we get :

(2.24) K(A) is a CM -module with beg K(A) = 1.

According to (2.22), the S+-transform D(A) of A is a domain which appears in a short exact
sequence 0 → A → D(A) → k(−1) → 0. Choosing ȳ ∈ D(A)1 \A1 we obtain D(A) = A[ȳ].
So, if y is an indeterminate, there is a surjective homomorphism of homogeneous k-algebras
S[y] = k[x0, · · · , xr, y]

γ
� D(A), sending y to ȳ and extending the natural map α : S → A (cf

part C) ). In particular X̃ := Proj(D(A)) is a curve of degree r + 1 in Proj(S[y]) = Pr+1
k – a
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rational normal curve. Moreover, the natural morphism ε : X̃ → X is an isomorphism induced
by the simple projection % : Pr+1

k \{p} � Pr
k with {p} = |Proj(S[y]|S+S[y])| (6∈ X̃). That is,

we are in the case ĪI of [4, (4.7) B)].

3. THE CASE “ARITHMETIC DEPTH = 1”

In this section we study varieties of almost minimal degree and arithmetic depth one. In par-
ticular, we shall extend the results of part D) of Remark 2.5 from curves to higher dimensions.

Proposition 3.1. Let X ⊂ Pr
k be a projective variety of almost minimal degree such that

depth A = 1 and dim X = d. Then
(a) H i(A) = Ki(A) = 0 for all i 6= 1, d + 1;
(b) end Hd+1(A) = − beg K(A) = −d;
(c) H1(A) ' k(−1), K1(A) ' k(1);
(d) K(A) is a torsion-free CM -module of rank one;
(e) D(A) is a homogeneous CM integral domain with reg D(A) = 1 and dimk D(A)1 =

r + 2.

Proof. (Induction on d = dim X). For d = 1 all our claims are clear by the results of part D) of
Remark 2.5.

So, let d > 1. Let ` ∈ S1\{0} be generic. Then in the notation of part E) of Remark 2.3 we
have dim A′ = d and depth A′ = 1 (cf (2.16)). By induction H i

T+
(A′) = 0 for all i 6= 1, d. So,

by (2.15) we obtain

(3.1) H i(A) = 0, for all i 6= 1, 2, d + 1.

Moreover, by induction and in view of (2.13) we get H1
T+

(A/`A) ' k(−1). As H1(A) is a
non-zero and finitely generated graded S-module, we have `H1(A) 6= H1(A). So, by (2.12) we
obtain

(3.2) H1(A)/`H1(A) ' k(−1)

and

(3.3) H2(A) = 0.

Combining (3.1), (3.3) and (2.1), we get claim (a). By induction

end Hd(A/`A) = end Hd
T+

(A′) = −d + 1.

As Hd(A) = 0, (2.12) gives end Hd+1(A) = −d. In view of (2.1) we get claim (b). Also,
by induction depth Kd

T (A′) = d. As d > 0, we have Hd
T+

(A′) ' Hd
T+

(A/`A) and hence
Kd

T (A/`A) ' Kd
T (A′), (cf (2.1)). As Kd(A) = 0, (2.9) and (2.11) prove statement (d). More-

over D(A) is a positively graded finite integral extension domain of A such that H1
S+

(D(A)) =

0 and H i
S+

(D(A)) ' H i(A) for all i > 1, it follows from statements (a) and (b), that D(A) is a
CM -ring with reg D(A) = 1. In view of (3.2) and the natural exact sequence

(3.4) 0 → A
η→ D(A)

ξ→ H1(A) → 0

there is some δ ∈ D(A)1\A such that D(A) = A + δA. In particular we have D(A) = A[δ]
and D(A)1 ' A⊕ k. Therefore statement (e) is proved.
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It remains to show statement (c). In view of (2.1) it suffices to show that H1(A) ' k(−1).
By (3.2) and as H1(A)n = 0 for all n � 0, there is an isomorphism of graded S-modules
H1(A) ' S/q(−1), where q ⊂ S is a graded S+-primary ideal. We have to show that q = S+.
There is a minimal epimorphism of graded S-modules

π : S ⊕ S(−1) → D(A) → 0

such that π �S coincides with the natural map α : S � A and π(S(−1)) = δA = δS. As
beg(Ker (α) = I) ≥ 2 and π(S1) ∩ π(S(−1)1) = A1 ∩ δk = 0, it follows beg Ker (π) ≥ 2.
Moreover, by statement (e) we have reg D(A) = 1. Therefore a minimal free presentation of
D(A) has the form

(3.5) Sβ(−2) → S ⊕ S(−1)
π→ D(A) → 0

with β ∈ N0. It follows TorS
1 (k, D(A)) ' kβ(−2). As 1 = η(1) is a minimal generator of the

S-module D(A), the sequence (3.4) induces an epimorphism of graded S-modules

TorS
1 (k,D(A)) → TorS

1 (k,H1(A)) → 0.

Therefore

(q/S+q)(−1) ' TorS
0 (k, q(−1)) ' TorS

1 (k, (S/q)(−1)) ' TorS
1 (k,H1(A))

is concentrated in degree 2. So, by Nakayama, q is generated in degree one, thus q = S+. �

Varieties of almost minimal degree and arithmetic depth one can be characterized as simple
generic projections from varieties of minimal degree.

Reminder 3.2. A) Recall that an irreducible reduced non-degenerate projective variety X̃ ⊂ Ps
k

is said to be of minimal degree if deg X̃ = codim X̃ + 1.
B) Projective varieties of minimal degree are rather well understood, namely (cf e.g. [21, The-
orem 19.9]): A projective variety X̃ ⊂ Ps

k of minimal degree is either

a quadric hypersurface ,(3.6)

a (cone over a) Veronese surface in P5
k or(3.7)

a (cone over a) rational normal scroll.(3.8)

C) In particular, a variety X̃ ⊂ PS
k of minimal degree is arithmetically Cohen-Macaulay and

arithmetically normal.

Remark 3.3. A) Let X̃ ⊂ Ps
k be an irreducible reduced projective variety, let p ∈ Ps

k\X̃ , let
% : Ps

k\{p} � Ps−1
k be a projection with center p and let X := %(X̃) ⊂ Ps−1

k . Then, the induced
morphism % �: X̃ � X is finite. Moreover, we have deg X = deg X̃ if and only if % � is
birational, hence if and only if there is a line ¯̀⊂ Ps

k with p ∈ ¯̀and such that the scheme ¯̀∩ X̃
is non-empty, reduced and irreducible. It is equivalent to say that there are lines ¯̀⊂ Ps

k which
join p and X̃ and are not secant lines of X̃ .

But this means precisely that the join Join(p, X̃) of p and X̃ is not contained in the secant
cone Secp(X̃) of X̃ of p. Observe that here Secp(X̃) is understood as the union of all lines
¯̀⊂ Ps

k such that ¯̀∩ X̃ is a scheme of dimension 0 and of degree ≥ 1.
Also, % � is an isomorphism if and only if for any line ¯̀⊂ Ps

k with p ∈ ¯̀, the scheme ¯̀∩ X̃

is either empty or reduced and irreducible. It is equivalent to say that p /∈ Sec(X̃), where the
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secant variety Sec(X̃) of X̃ is understood as the union of all lines ¯̀⊂ Ps
k such that ¯̀∩ X̃ is a

scheme of dimension 0 and of degree > 1, or else ¯̀⊂ X̃ .
B) Assume now in addition that X̃ ⊂ Ps

k is of minimal degree. Then by the above observation
we can say:

(3.9) X ⊂ Ps−1
k is of almost minimal degree if and only if Join(p, X̃) 6⊂ Secp(X̃).

X ⊂ Ps−1
k is of almost minimal degree and % �: X̃ → Xan isomorphism

if and only if p /∈ Sec(X̃), thus if and only if Secp(X̃) = {p}.
(3.10)

Now, we can give the announced geometric characterization of varieties of almost minimal
degree and arithmetic depth one.

Proposition 3.4. The following statements are equivalent:
(i) X is of almost minimal degree and of arithmetic depth 1.

(ii) X is the projection %(X̃) of a variety X̃ ⊂ Pr+1
k of minimal degree from a point p ∈

Pr+1
k \ Sec(X̃).

Proof. (i) =⇒ (ii): Assume that X is of almost minimal degree with depth A = 1. Then, by
statement e) Proposition 3.1, there is some ȳ ∈ D(A)1\A1 such that D(A) = A[ȳ]. Now, as
in the last paragraph of part D) in Remark 2.5, we may view X̃ := Proj(D(A)) as a non-
degenerate irreducible projective variety in Pr+1

k such that deg(X̃) = deg(X) and such a pro-
jection % : Pr+1

k \{p} � Pr
k from an appropriate point p ∈ Pr+1

k \X̃ induces an isomorphism
% �: X̃ → X . In view of (3.10) this proves statement (ii).

(ii) =⇒ (i): Assume that there is a variety X̃ ⊂ Pr+1
k of minimal degree and a projection

% : Pr+1
k \{p} � Pr

k from a point p /∈ Sec(X̃) with X = %(X̃). Then, by (3.10), X is of almost
minimal degree and % �: X̃ → X is an isomorphism. It remains to show that depth A = 1,
hence that H1(A) 6= 0. So, let B denote the homogeneous coordinate ring of X̃ ⊂ Pr+1

k .
Then, the isomorphism % �: X̃ → X leads to an injective homomorphism of graded integral
domains A ↪→ B such that B/A is an A-module of finite length. Therefore B ⊂

⋃
n∈N (A :B

Sn
+) = D(A). As X̃ ⊂ Pr+1

k is non-degenerate, we have dimk B1 = r + 2 > dimk A1, hence
A $ B ⊂ D(A) so that H1(A) ' D(A)/A 6= 0. �

4. THE NON-ARITHMETICALLY COHEN-MACAULAY CASE

In this section we study projective varieties of almost minimal degree which are not arith-
metically Cohen-Macaulay. So, we are interested in the case where deg X = codim X + 2 and
1 ≤ depth A ≤ dim X .

Our first aim is to generalize Proposition 3.1. In order to do so, we prove the following
auxiliary result, in which NZDS(M) is used to denote the set of non-zero divisors in S with
respect to the S-module M .

Lemma 4.1. Let M be a finitely generated graded S-module, let m ∈ {0, · · · , r} and n ∈ Z.
Let zm, · · · , zr ∈ S1 be linearly independent over k such that zm ∈ NZDs(M) and such that
there is an isomorphism of graded S-modules M/zmM ' (S/(zm, · · · , zr))(n).

Then, there are linearly independent elements ym+1, · · · , yr ∈ S1 such that there is an iso-
morphism of graded S-modules M ' (S/(ym+1, · · · , yr))(n).
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Proof. By Nakayama there is an isomorphism of graded S-modules M ' (S/q)(n), where
q ⊂ S is a homogeneous ideal. In particular

(4.1) zm ∈ NZDS(S/q).

As S/(zm, q) ' (M/zmM)(−n) ' S/(zm, · · · , zr), we have

(zm, q) = (zm, zm+1, · · · , zr).

Also, by (4.1), we have zm /∈ q1, so that q1 becomes a k-vector space of dimension r −m. Let
ym+1, · · · , yr ∈ S1 form a k-basis of q1. As

(ym+1, · · · , yr) ⊂ q ⊂ (zm, ym+1, · · · , yr)

and in view of (4.1) we obtain

q = (ym+1, · · · , yr) + q ∩ zmS = (ym+1, · · · , yr) + zmq.

So, by Nakayama q = (ym+1, · · · , yr). �

Now, we are ready to prove the first main result of this section, which recover results of [23]
written down in the context of the modules of deficiency.

Theorem 4.2. Assume that X ⊂ Pr
k is of almost minimal degree and that t := depth A ≤

dim X =: d. Then
(a) H i(A) = Ki(A) = 0 for all i 6= t, d + 1;
(b) end Hd+1(A) = − beg K(A) = −d;
(c) There are linearly independent forms yt−1, · · · , yr ∈ S1 such that there is an isomor-

phism of graded S-modules

Kt(A) ' (S/(yt−1, · · · , yr))(2− t);

(d) K(A) is a torsion-free CM-module of rank one.

Proof. (Induction on t). The case t = 1 is clear by Proposition 3.1.
So, let t > 1 and ` ∈ S1\{0} be generic. Then, in the notation of Remark 2.3 E) we have

A′ = A/`A, dim A′ = dim Y + 1 = d and depth A′ = t− 1 ≤ d− 1 = dim Y (cf (2.16)).
(a): By induction, Hj

T+
(A′) = 0 for all j 6= t − 1, d. So, (2.15) gives H i(A) = 0 for all

i 6= 0, 1, t, d + 1. As t > 1, we have H0(A) = H1(A) = 0. In view of (2.1) this proves
statement (a).

(b): By induction end Hd
T+

(A/`A) = −d + 1. As Hd(A) = 0, (2.12) implies that end Hd+1

(A) = −d and (2.1) gives our claim.
(c): By induction there are forms zt−1, · · · , zr ∈ S1 whose images z̄t−1, · · · , z̄r ∈ T1

are linearly independent over k and such that there is an isomorphism of graded T -modules
Kt−1(A/`A) = (T/(z̄t−1, · · · , z̄r))(2 − (t − 1)). Let zt−2 := `. Then zt−2, · · · , zr ∈ S1 are
linearly independent and

Kt−1
T (A/`A) ' (S/(zt−2, zt−1, · · · , zr))(3− t).

By statement (a) we have Kt−1(A) = 0. So, the sequence (2.11) gives an isomorphism of
graded S-modules

(4.2) Kt(A)/zt−2K
t(A) ' (S/(zt−2, · · · , zr))(2− t).
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Assume first, that t < d. By induction Kt
T (A/zt−2A) = Kt

T (A′) vanishes and hence (2.11)
yields 0 :Kt(A) zt−2 = 0, thus zt−2 ∈ NZDS(Kt(A)). So, (4.2) and Lemma 4.1 imply statement
(c).

Now, let t = d. Then (4.2) implies dim Kd(A)/zt−2K
d(A) = d − 2. Our first aim is to

show that dim Kd(A) = d − 1. If d > 2, this follows by the genericity of zt−2 = `. So,
let t = d = 2. Then A/`A is a domain of depth 1 which is the coordinate ring of a curve
Y ⊂ Pr−1

k of almost minimal degree (cf Remark 2.5 A)). So, according to Remark 2.5 D) we
have H1(A/`A) ' k(−1) and H2(A/`A)n = 0 for all n ≥ 0. If we apply cohomology to the
exact sequence 0 → A(−1)

`→ A → A/`A → 0 and keep in mind that H1(A) = 0 we thus get
` : H2(A)−1

'−→ H2(A)0 ' k. According to Remark 2.5 D) there is an isomorphism Ỹ
'−→ Y,

where Ỹ ⊂ Pr−1
k is a rational normal curve, so that Y ' P1

k is smooth. As Y is a hyperplane
section of X it follows that the non-singular locus of X is finite. So, if we apply [1, Proposition
5.2] to the ample sheaf of OX-modules L := OX(1) and observe that H2(A)n ' H1(X,L⊗n)
for all n ∈ Z, we get that H2(A)n ' k for all n ≤ 0. Consequently, K2(A)n 6= 0 for all n ≥ 0,
hence dim K2(A) > 0 = dim K2(A)/z0K

2(A). Therefore dim K2(A) = 1, which concludes
the case t = d.

According to (4.2) the S-module Kd(A)/zt−2K
d(A) is generated by a single homogeneous

element of degree d − 2. By Nakayama, Kd(A) has the same property. So, there is a graded
ideal q ⊂ S with Kd(A) ' (S/q)(2− d). In particular we have dim S/q = d− 1.

Now, another use of (4.2) yields

S/(q, zd−2) ' (S/q)/zd−2(S/q) ' Kt(A)(d− 2)/zd−2K
t(A)(d− 2)

' (Kt(A)/zd−2K
t(A))(d− 2) ' S/(zt−2, · · · , zr),

so that (q, zd−2) = (zt−2, · · · , zr) is a prime ideal. As

dim S/q = d− 1 > dim(S/(zt−2, · · · , zr))

it follows, that q is a prime ideal. Moreover, as zd−2 /∈ q, we obtain zd−2 ∈ NZDS(S/q) =
NZDS(Kd(A)).

Now, our claim follows from (4.2) and Lemma 4.1.
(d): In view (2.9) it remains to show that depth K(A) = d+1. By (2.9) and by induction we

have

(4.3) ` ∈ NZDS(K(A)) and depth Kd
T (A/`A) = d.

So, by the sequence (2.11), applied with i = d, it suffices to show that 0 :Kd(A) ` = 0. If t < d,
this last equality follows from statement (a). If t = d, statement (c) yields depth Kd(A) =
d− 1 > 0 and by the genericity of ` we get ` ∈ NZDS(Kd(A)). �

Remark 4.3. Keep the notations and hypotheses of Theorem 4.2. Then, by statement (c) of
Theorem 4.2 and in view of (2.1) we get end H t(A) = 2 − t. So, by statements (a) and (b) of
Theorem 4.2 we obtain

(4.4) reg(A) = 2 and dimk An = PA(n), for all n > 2− t.

Corollary 4.4. Let X ⊂ Pr
k be of almost minimal degree with dim X = d and depth A = t.

Then:
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(a) The Hilbert series of A is given by

F (λ, A) =
1 + (r + 1− d)λ

(1− λ)d+1
− λ

(1− λ)t−1
.

(b) The Hilbert polynomial of A is given by

PA(n) = (r − d + 2)

(
n + d− 1

d

)
+

(
n + d− 1

d− 1

)
−
(

n + t− 2

t− 2

)
.

(c) The number of independent quadrics in I is given by

dimk(I2) = t +

(
r + 1− d

2

)
− d− 2.

Proof. (a): (Induction on t). If t = 1, D(A) is a CM-module of regularity 1 (cf Proposition 3.1
(e) ) and of multiplicity deg X = r − d + 2. Therefore

(4.5) F (λ, D(A)) =
1 + (r + 1− d)λ

(1− λ)d+1
.

In view of statement c) of Proposition 3.1 we thus get

F (λ, A) = F (λ, D(A))− λ =
1 + (r + 1− d)λ

(1− λ)d+1
− λ

and hence our claim.
So, let t > 1. Then, as t′ = t− 1 (cf (2.16)) and A′ = A/`A we get by induction

F (λ, A) =
F (λ, A′)

1− λ
= [

1 + ((r − 1) + 1− (d− 1))λ

(1− λ)d
− λ

(1− λ)t−2
](1− λ)−1

=
1 + (r + 1− d)λ

(1− λ)d+1
− λ

(1− λ)t−1
.

(b), (c): These are purely arithmetical consequences of statement (a). �

Remark 4.5. Observe that Corollary 4.4 also holds if X is arithmetically Cohen-Macaulay. In
this case, the shape of the Hilbert series F (λ, A) (cf statement (a) ) yields that A is a Gorenstein
ring (cf [29]) which says that a projective variety of almost minimal degree which is arithmeti-
cally Cohen-Macaulay is already arithmetically Gorenstein. For dim X = 0 this may be found
in [23].

Finally, by Remark 2.5 B), by statement (2.9) and the exact sequence (2.12) it follows im-
mediately by induction on d = dim X that K(A) ∼= A(1 − d) if X is is arithmetically Cohen-
Macaulay. This shows again that X is arithmetically Gorenstein.

5. ENDOMORPHISM RINGS OF CANONICAL MODULES

Or next aim is to extend the geometric characterization of Proposition 3.4 to arbitrary non-
arithmetically Cohen-Macaulay varieties of almost minimal degree.

We attack this problem via an analysis of the properties of the endomorphism ring of the
canonical module K(A) of A, which in the local case has been studied already in [2]. The
crucial point is, that this ring has a geometric meaning in the context of varieties of almost
minimal degree.
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Notation 5.1. We write B for the endomorphism ring of the canonical module of A, thus

B := HomS(K(A), K(A)).

Observe that B is a finitely generated graded A-module and that

(5.1) B = HomA(K(A), K(A)).

In addition we have a homomorphism of graded A-modules

(5.2) ε : A → B, a 7→ a idK(A).

Keep in mind, that B carries a natural structure of (not necessarily commutative) ring and that
ε is a homomorphism of rings.

The homomorphism ε : A → B occurs to be of genuine interest for its own. So we give a
few properties of it.

Proposition 5.2. Let d := dim X ≥ 1. Then
(a) B = k ⊕ B1 ⊕ B2 ⊕ · · · is a positively graded commutative integral domain of finite

type over B0 = k.
(b) ε : A → B is a finite injective birational homomorphism of graded rings.
(c) There is a (unique) injective homomorphism ε̃ of graded rings, which occurs in the

commutative diagram
A

ε
��>

>>
>>

>>
>
� � // D(A)

ε̃||yy
yy

yy
yy

B

(d) If p ∈ Spec(A), the ring Ap has the second Serre property S2 if and only if the localized
map εp : Ap → Bp is an isomorphism.

(e) ε : A → B is an isomorphism if and only if A satisfies S2.
(f) ε̃ : D(A) → B is an isomorphism if and only if X satisfies S2.
(g) B satisfies S2 (as an A-module and as a ring).
(h) If the A-module K(A) is Cohen-Macaulay, then B is Cohen-Macaulay (as an A-module

and as a ring).

Proof. (a), (b): By (2.9) (cf Remark 2.3) we know that K(A) is torsion-free and of rank one.
From this it follows easily that B is a commutative integral domain. Also the map ε : A → B
is a homomorphism of A-modules, and so becomes injective by the torsion-freeness of the A-
module K(A). The intrinsic A-module structure on B and the A-module structure induced
by ε are the same. As B is finitely generated as an A-module it follows that ε is a finite
homomorphism of rings.

It is easy to verify that the natural grading of the A-module B respects the ring structure on
B and thus turns B into a graded ring. In particular ε becomes a homomorphism of graded
rings. As A is positively graded, ε is finite and B is a domain, it follows that B is finite. As k is
algebraically closed and B0 is a domain, we get B0 ' k. As A is of finite type over k and ε is
finite, B is of finite type over k, too.

(c): As dim A > 1 we know that H1
S+

(A) is of finite length. Therefore

Extj
S(H1

S+
(A), S) = 0 for all j 6= r + 1.
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So, the short exact sequence 0 → A → D(A) → H1(A) → 0 yields an isomorphism of graded
A-modules

K(A) = Extr−d
S (A, S(−r − 1)) ' Extr−d

S (D(A), S(−r − 1)).

Therefore, K(A) carries a natural structure of graded D(A)-module. As D(A) is a birational
extension ring of A, we can write

B = HomA(K(A), K(A)) = HomD(A)(K(A), K(A))

and hence consider B as a graded D(A)-module in a natural way. In particular, there is a
homomorphism of rings

ε̃ : D(A) → B, c 7→ c idK(A),

the unique homomorphism of rings ε̃ which appears in the commutative diagram

A
ε

��>
>>

>>
>>

>
� � // D(A)

ε̃

||yy
yy

yy
yy

B

As A, D(A) and B are domains and as ε is injective, ε̃ is injective, too. Clearly ε̃ is finite, and
respects gradings.

(d): Let p ∈ Spec(A). Then, by the chain condition in Spec(S), K(A)p is nothing else
than the canonical module KAp of the local domain Ap. In particular we may identify Bp =
HomA(K(A), K(A))p ' HomAp(KAp , KAp). Then, the natural map εp : Ap → Bp induced by
ε coincides with the natural map

Ap → HomAp(KAp , KAp), b 7→ b idKAp
.

But this latter map is an isomorphism if and only if Ap satisfies S2 (cf [28, 3.5.2]).
(e): Is clear by statement (d).
(f): By statement (d), X satisfies S2 if and only if εp : Ap → Bp is an isomorphism for all

p ∈ Proj(A). But this latter statement is equivalent to the fact that B/ε(A) has finite length,
thus to the fact that B ⊂ ε(A) :B An

+ for some n, hence to B ⊂ ε̃(D(A)).
(g): Let p ∈ Spec(A) of height ≥ 2. Then, the canonical module KAp is of depth ≥ 2 (cf

[28, 3.1.1]). So, there is a KAp-regular sequence x, y ∈ Ap. By the left-exactness of the functor
HomAp(KAp , ·) it follows that x, y is a regular sequence with respect to HomAp(Ap, Ap) = Bp,
so that depthAp

Bp ≥ 2. This shows that the A-module B satisfies S2. As B is finite over A, it
satisfies S2 as a ring.

(h): Assume that K(A) is a Cohen-Macaulay module. Consider the exact sequence of graded
A-modules 0 → A

ε→ B → B/A → 0. By statement (d) we have (B/A)p = 0 as soon
as p ∈ Spec(A) is of height ≤ 1. So dim B/A ≤ d − 1 and ε induces an isomorphism
of graded S-modules Hd+1(A) ' Hd+1(B). By (2.1) we get an isomorphism of graded S-
modules Kd+1(B) ' K(A). Therefore, the A-module Kd+1(B) is Cohen-Macaulay. In view
of [28, 3.2.3] we thus get H i

A+
(B) = 0 for i = 2, · · · , d. By statement g) we have H i

A(B) = 0
for i = 0, 1. So, the A-module B is Cohen-Macaulay. As B is finite over A, it becomes a
Cohen-Macaulay ring. �

We now apply the previous result in the case of varieties of almost minimal degree. We
consider B as a graded extension ring of A by means of ε : A → B.
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Theorem 5.3. Assume that X ⊂ Pr
k is of almost minimal degree and that t := depth A ≤

dim X =: d. Then

(a) B is a finite graded birational integral extension domain of A and CM .
(b) There are linearly independent linear forms yt−1, · · · , yr ∈ S1 and an isomorphism of

graded S-modules B/A ' (S/(yt−1, · · · , yr))(−1).
(c) The Hilbert polynomial of B is given by

PB(x) = (r − d + 2)

(
x + d− 1

d

)
+

(
x + d− 1

d− 1

)
.

(d) If t = 1, then B = D(A).

Proof. (a): According to statement (d) of Theorem 4.2 the A-module K(A) is CM. So our claim
follows form statements (a), (b) and (h) of Proposition 5.2.

(d): Let t = 1. According to Proposition 3.4 and statement (3.10) of Remark 3.3, X is
isomorphic to a variety X̃ ⊂ Pr+1

k of minimal degree and thus CM (cf Reminder 3.2, part B) ).
So, by statement (f) of Proposition 5.2 we have D(A) = B.

(b): We proceed by induction on t. If t = 1, statement (d) gives B/A ' H1(A) and so we
may conclude by statement (c) of Proposition 3.1. Let t > 1. We write C = B/A and consider
the exact sequence of graded S-modules

0 → A
ε→ B → C → 0.

Let ` ∈ S1\{0} be generic. As t > 1 and B is CM (as an A-module) we have depthA(C) > 0.
Therefore ` ∈ NZD(C). We write A′ = A/`A and T = S/`S. Then A′ is a domain and
Y := Proj(A′) ⊂ Proj(T ) = Pr−1

k is a variety of almost minimal degree (cf Remark 2.3).
Let K(A′) := Kd

T (A′), B′ := HomT (K(A′), K(A′)) and C ′ = B′/A′. By induction there
are linearly independent linear forms z̄t−1, · · · , z̄r ∈ T1 and an isomorphism of graded T -
modules B′/A′ ' (T/(z̄t−1, · · · , z̄r)T )(−1). We write ` = zt−2. Then, there are linear forms
zt−1, · · · , zr ∈ S1 such that zt−2, zt−1, · · · , zr are linearly independent and such that there is an
isomorphism of graded S-modules C ′ ' (S/(zt−2, · · · , zr)S)(−1). As zt−2 = ` ∈ NZD(C), it
suffices to show that there is an isomorphism of graded S-modules C/`C ' C ′ (cf Lemma 4.1).
As ` ∈ NZD(C) there is an exact sequence of graded S-modules

0 → A′ α→ B/`B → C/`C → 0

in which α is induced by ε. It thus suffices to construct an isomorphism of graded A-modules
γ̄, which occurs in the commutative diagram

A′

ε′

  @
@@

@@
@@

@
α

||yyyyyyyy

B/`B
γ̄

// B′

where ε′ is used to denote the natural map. As A′ is a domain and as the A-module B is CM
and torsion free of rank 1 (by statement (a)), the A′-module B/`B is torsion-free and again of
rank 1 (as ` ∈ S1 is generic). By statement (a) the A′-module B′ is also torsion-free of rank 1.
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So, it suffices to find an epimorphism γ : B → B′, which occurs in the commutative diagram

A
can0 //

ε

��

A′

ε

��
B

γ // B′ // 0

and hence such that γ(1B) = 1B′ .
By our choice of ` and in view of statements (a), (c) and (d) of Theorem 4.2 we have ` ∈

NZD(Kd(A))∩NZD(K(A)). So, by (2.11) of Remark 2.3 we get an exact sequence of graded
S-modules

0 → K(A)(−1)
`→ K(A)

π→ K(A′)(1) → 0.

Let U := Ext1
S(K(A), K(A))(−1). If we apply the functors

HomS(K(A), ·) and HomS(·, K(A′))(1)

to the above exact sequence, we get the following diagram of graded S-modules with exact
rows and columns

(5.3) 0

��
B′ = HomS(K(A′), K(A′))

ν

��
HomS(K(A), K(A))

µ // HomS(K(A), K(A′))(−1)

0
��

// 0 :U ` // 0

B HomS(K(A), K(A′))

where µ := HomS(idK(A), π), ν := HomS(π, idK(A′)). With γ := ν−1 ◦ µ, it follows

γ(1B) = γ(idK(A)) = ν−1(µ(idK(A))) = ν−1(π ◦ idK(A)) = ν−1(π)

= ν−1(idK(A′)(−1) ◦ π) = ν−1(ν(idK(A′))) = idK(A′) = 1B′ .

So, it remains to show that µ is surjective. It suffices to show that (0 :U `) = 0. Assume
to the contrary, that 0 :U ` 6= 0. Then ` belongs to some associated prime ideal p ∈ AssS U.
As ` is generic, this means that S1 ⊂ p so that S+ ⊂ p and hence 0 :U S+ 6= 0, thus 0 :(0:U `)

S+ 6= 0. Therefore depthS(0 :U `) = 0. In view of statement (a) we have depthS(B/`B) =
depthS(B′) = d. Moreover the above diagram (5.3) yields an exact sequence of graded S-
modules

0 → B/`B → B′ → 0 :U ` → 0,

which shows that depthS(0 :U `) ≥ d− 1 > 0, a contradiction.
(c): By statement (b) we have PB/A(x) =

(
x+t−3

t−2

)
if t > 1 and PB/A(x) = 0 if t = 1. In view

of statement (a) of Corollary 4.4 we get our claim. �

Now, we are ready to draw a few conclusions about the geometric aspect.
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Notation 5.4. A) We convene that P−1
k = ∅ and we use CM(X), S2(X) and Nor(X) to denote

respectively the locus of Cohen-Macaulay points, S2-points and normal points of X .
B) If ν : X̃ → X is a morphism of schemes, we denote by Sing(ν) the set

{x ∈ X | ν]
x : OX,x

6'−→ (ν∗OX̃)x}

of all points x ∈ X over which ν is singular.

Definition 5.5. We say that x ∈ X is a Goto or G-point, if the local ringOX,x is of “Goto type”
(cf [17]) thus if dimOX,x > 1 and

H i
mX,x

(OX,x) =

{
0, if i 6= 1, dimOX,x,

κ(x), if i = 1.

Theorem 5.6. Assume that X ⊂ Pr
k is of almost minimal degree and that t := depth A ≤

dim X =: d. Then

(a) B is the homogeneous coordinate ring of a d-dimensional variety X̃ ⊂ Pr+1
k of minimal

degree.
(b) B is the normalization of A.
(c) The normalization ν : X̃ → X given by the inclusion ε : A → B is induced by a

projection % : Pr+1
k \ {p} → Pr

k from a point p ∈ Pr+1
k \ X̃ .

(d) The secant cone Secp(X̃) ⊂ Pr+1
k is a projective subspace of dimension t − 1 and

Sing(ν) = %(Secp(X̃) \ {p}) ⊂ X is a projective subspace Pt−2
k ⊂ Pr

k.
(e) The generic point x ∈ X of Sing(ν) is a G-point.
(f) Nor(X) = S2(X) = CM(X) = X \ Sing (ν).

Proof. (a): By Proposition 5.2 (a), (b) we see that B is an integral, positively graded k-algebra
of finite type and with dim B = dim A = d + 1. By Theorem 5.3 (b) and on use of Nakayama
we have in addition B = k[B1] with dimk B1 = dimk A1 + 1 = r + 2. So, B is the homo-
geneous coordinate ring of a non-degenerate projective variety X̃ ⊂ Pr+1

k of dimension d. By
Theorem 5.3 (c) we have deg X̃ = r + 1.

(b): By statement (a) the ring B is normal (cf Reminder 3.2 C) ). In addition, B is a birational
integral extension ring of A.

(c): This follows immediately from the fact that dimk B1 = dimk A1 + 1 = r + 2 (cf part C)
of Remark 2.5).

(e): According to Theorem 5.3 (b) we have an exact sequence of graded S-modules

0 → A → B → (S/P )(−1) → 0,

where P := (yt−1, · · · , yr)S with appropriate independent linear forms yt−1, · · · , yr ∈ S1. In
particular 0 :S B/A = P and hence I ⊂ P . It follows that

Sing(ν) = Supp Coker(ν : OX → ν∗OX̃) = Supp((B/A)∼) = Proj(S/P )

and that x := P/I ∈ Proj(A) = X is the generic point of Sing(ν). Localizing the above
sequence at x we get an exact sequence of OX,x-modules

(5.4) 0 → OX,x → (ν∗OX̃)x → κ(x) → 0
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in which OX,x has dimension d− t + 1 > 1. As B is a CM-module over A (cf Theorem 5.3 (a)
), (ν∗OX̃)x ' B̃x is a CM-module over the local domain OX,x. So, the sequence (5.4) shows
that H1

mX,x
(OX,x) ' κ(x) and H i

mX,x
(OX,x) = 0 for all i 6= 1, dim(OX,x).

(d): Let P ⊂ S be as above. We already know that Sing(ν) = Proj(S/P ) = Pt−2
k ⊂ Pr

k.
Moreover, a closed point q ∈ X belongs to Sing(ν) if and only if the line %−1(q) ⊂ Pr+1

k is a
secant line of X̃ . So

Secp(X̃) = {p} ∪ %−1(Sing(ν)) = {p} ∪ %−1(Pt−1
k ) = Pt−1

k ⊂ Pr+1
k

and Sing(ν) = %(Secp(X̃) \ {p}).
(f): ν �: X̃ \ ν−1(Sing(ν)) → X \ Sing(ν) is an isomorphism. As X̃ is a normal CM-

variety (cf Reminder 3.2 C) ) it follows that Nor(X), CM(X) ⊇ X \ Sing(ν). As S2(X) ⊇
Nor(X) ∪ CM(X) it remains to show that S2(X) ⊂ X \ Sing(ν). As the generic point x of
Sing(ν) is not an S2-point (cf statement (e) ), our claim follows. �

Now, we may extend Proposition 3.4 to arbitrary non arithmetically Cohen-Macaulay vari-
eties.

Corollary 5.7. Let 1 ≤ t ≤ dim(X). Then, the following statements are equivalent:
(i) X is of almost minimal degree and of arithmetic depth t.

(ii) X is the projection %(X̃) of a variety X̃ ⊂ Pr+1
k of minimal degree from a point p ∈

Pr+1
k \ X̃ such that dim Secp(X̃) = t− 1.

Proof. (i) =⇒ (ii): Clear by Theorem 5.6 (d).
(ii) =⇒ (i): Let X̃ ⊂ Pr+1

k , p and % : Pr+1
k \ X̃ → X be as in statement (ii). Let Ã be

the homogeneous coordinate ring of X̃ . Then Ã is normal (cf Reminder 3.2 C) ). Observe that
% �: X̃ � X is a finite morphism (cf Remark 3.3 A) ) so that dim X̃ = d.

As dim Secp(X̃) = t − 1 < d = dim X̃ < dim Join(p, X̃) there are lines joining p and X̃

which are not secant lines of X̃ . So, in view of Remark 3.3 A) and statement (3.9) of Remark 3.3
B), the morphism % �: X̃ � X is birational and X ⊂ Pr

k is of almost minimal degree.
Moreover, the finite birational morphism % �: X̃ � X is induced by a finite injective bi-

rational homomorphism δ : A ↪→ Ã of graded rings. Thus, by Theorem 5.6 (b) we get an
isomorphism of graded rings ι, which occurs in the commutative diagram

A
ε′

��>
>>

>>
>>

δ

����
��

��
��

B
ι

'
// Ã

Now Theorem 5.6 d) shows that depth A = dim Secp(X̃) + 1 = t. �

As a further application of Theorem 5.6 we now have a glance at arithmetically Cohen-
Macaulay varieties of almost minimal degree and show that their non-normal locus is either
empty or a linear space. More precisely

Proposition 5.8. Assume that X ⊂ Pr
k is of almost minimal degree, S2 and not normal. Let

dim X =: d. Then X is arithmetically Cohen-Macaulay and the non-normal locus X \Nor(X)
is a linear space Pd−1

k ⊂ Pr
k.
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Proof. (Induction on d) Let d = 1. Then X is a curve of degree r + 1 and thus may have at
most one singular point (cf [4, (4.7) (B)]). So, let d > 1. Then Nor(X) ⊂ X = S2(X) shows
that X is arithmetically Cohen-Macaulay (cf Theorem 5.6 f) ). Moreover, as X is S2 and not
normal, the Serre criterion for normal points shows that the non-normal locus X \ Nor(X) of
X is of pure codimension 1.

Let Z ⊂ X be the reduced and purely (d − 1)-dimensional closed subscheme supported by
X \ Nor(X). It suffices to show that deg Z = 1. Now, let ` ∈ S1 be a generic linear form and
consider the hyperplane Pr−1

k := Proj(S/`S). Then, the hyperplane section X ′ := Pr−1
k ∩X =

Proj(A/`A) is an arithmetically Cohen-Macaulay-variety of almost minimal degree in Pr−1
k

with dim X ′ = d−1, and Z ′ := Pr−1
k ∩Z ⊂ X ′ is a reduced purely 1-codimensional subscheme

with deg Z ′ = deg Z. Now, let z′ be one of the generic points of Z ′. Then z′ ∈ Z shows that
OX,z′ is not normal and hence not regular. As OX′,z′ is a hypersurface ring of OX,z, the ring
OX′,x′ is not regular either. As dimOX′,z′ = 1 it follows that OX′,z′ is not normal and hence
z′ ∈ X ′ \ Nor(X ′). By induction we have X ′ \ Nor(X ′) = Pd−2

k for some linear subspace
Pd−2

k ⊂ Pr
k. It follows that {z̄′} = Pd−2

k . This shows that the closed reduced subschemes Z ′ and
Pd−2

k of Pr
k coincide, hence deg Z = deg Z ′ = 1. �

6. DEL PEZZO VARIETIES AND FUJITA’S CLASSIFICATION

In this section we shall treat projective varieties of almost minimal degree which are arith-
metically Cohen-Macaulay. We call these varieties maximal Del Pezzo varieties and make sure
that this is in coincidence with Fujita’s notion of Del Pezzo variety [16]. We also briefly discuss
the link with Fujita’s classification of varieties of ∆-genus 1.

Remark 6.1. A) Let d := dim(X) > 0 and let ωX = K(A)∼ denote the dualizing sheaf of X .
Keep in mind that a finitely generated graded A-module of depth > 1 is determined (up to a
graded isomorphism) by the sheaf of OX-modules M̃ induced by M . So, as K(A) satisfies the
second Serre property S2 (cf [28, 3.1.1]), we have for each r ∈ Z:

ωX ' OX(r) if and only if K(A) ' D(A)(r).(6.1)

If depth A > 1, then ωX ' OX(r) if and only if K(A) ' A(r).(6.2)

B) X ⊂ Pr
k is said to be linearly complete if the inclusion morphism X ↪→ Pr

k is induced
by the complete linear system |OX(1)|. It is equivalent to say that the natural monomorphism
η : A1 → H0(X,OX(1)) = D(A)1 is an isomorphism hence – equivalently – that H1(A)1 = 0.

Theorem 6.2. The following statements are equivalent:
(i) X is arithmetically Gorenstein and of almost minimal degree.

(ii) X is arithmetically Cohen-Macaulay and of almost minimal degree.
(iii) X is S2, linearly complete and of almost minimal degree.
(iv) ωX ' OX(1− d) and X is of almost minimal degree.
(v) K(A) ' A(1− d) and X is arithmetically Cohen-Macaulay.

(vi) ωX ' OX(1− d) and X is arithmetically Cohen-Macaulay.
(vii) Hd+1(A)1−d ' k and H1(A)1 = H i(A)n = 0 for 2 ≤ i ≤ d and 1− d ≤ n ≤ 1.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) and (v) =⇒ (vi) are obvious. The implication (ii)
=⇒ (i) follows by Remark 4.5, the implication (vi) =⇒ (v) by (6.2). It remains to prove the
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implications (v) =⇒ (vii) =⇒ (ii) and (ii) =⇒ (v) =⇒ (iv) =⇒ (iii) =⇒ (ii). The implication
(v) =⇒ (vii) is easy.

(vii) =⇒ (ii): Hd+1(A)1−d ' k implies that Hd+1(A)n = 0 for all n > 1 − d. As PA(n) =

dimk Ak −
∑d+1

i=1 (−1)i dimk H i(A)n, statement (vii) implies that

PA(n) =


(−1)d, if n = 1− d,

0, if 1− d < n < 0,

1, if n = 0,

r + 1, if n = 1.

So, we may write PA(n) = (r−d+2)
(

n+d−1
d

)
+
(

n+d−2
d−2

)
. In particular, X is of almost minimal

degree. But then, by Corollary 4.4 b) we see that X must be arithmetically Cohen-Macaulay.
(ii) =⇒ (v): Assume that X is arithmetically Cohen-Macaulay and of almost minimal degree.

Then, the shape of the Hilbert series given in Corollary 4.4 (a) allows to conclude that K(A) '
A(1− d).

(v) =⇒ (iv): We know that (v) =⇒ (vii) and (vii) =⇒ (ii). So, (v) implies that X is of almost
minimal degree and hence induces (iv).

(iv) =⇒ (iii): By (6.2), statement (iv) implies K(A) ' D(A)(1 − d) and hence by Theo-
rem 4.2 (b) that X is arithmetically Cohen-Macaulay.

(iii) =⇒ (ii): Assume that X is of almost minimal degree, S2 and linearly complete. We have
to show that X is arithmetically Cohen-Macaulay. Assume to the contrary that t = depth A ≤
d. As H1(A)1 = 0, Proposition 3.1 (c) yields t > 1. But now, by Theorem 5.6 (d) and (e), X
contains a G-point and thus cannot be S2 – a contradiction. �

Definition 6.3. A) X ⊂ Pr
k is called a maximal Del Pezzo variety if it satisfies the equivalent

conditions (i) – (vii) of Theorem 6.2.
B) X ⊂ Pr

k is called a Del Pezzo variety, if there is an integer r′ ≥ r, a maximal Del Pezzo
variety X ′ ⊂ Pr′

k and a linear projection π : Pr′

k \Pr′−r−1
k → Pr

k with X ′∩Pr′−r−1 = ∅ and such
that π gives rise to an isomorphism π�: X ′ '−→ X . So, X ⊂ Pr

k is Del Pezzo if and only if it is
obtained by a non-singular projection of a maximal Del Pezzo variety.

Remark 6.4. A) As a linearly complete variety X ⊂ Pr
k cannot be obtained by a proper non-

singular projection of a non-degenerate variety X ′ ⊂ Pr′

k we can say that X ⊂ Pr
k is maximally

Del Pezzo if and only if it is Del Pezzo and linearly complete.
B) Keep the previous notation and let r′ = h0(X,OX(1))− 1, whence

r′ = dimk D(A)1 − 1 = r + dimk H1(A)k.

Moreover let ϕ : X → Pr′

k be the closed immersion defined by the complete linear system
|OX(1)| and set X ′ := ϕ(X). Then X ′ ⊂ Pr′

k is linearly complete with homogeneous coordi-
nate ring A′ = k[D(A)1] ⊂ D(A), whereas the isomorphism ϕ : X

'−→ X ′ is induced by the
inclusion A ↪→ A′ and inverse to an isomorphism π� : X ′ '−→ X which is the restriction of
a linear projection π : Pr′

k \ Pr′−r−1
k → Pr

k with X ′ ∩ Pr′−r−1
k = ∅. Now, clearly X ′ ⊂ Pr′

k is
linearly complete and moreover

D(A′) = D(A), H i(A′) ' H i(A), i 6= 1, K(A′) ' K(A) and PA′(x) = PA(x).
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Note that X ′ ⊂ Pr′

k is called the linear completion of X ⊂ Pr
k.

C) Observe that the linear completion of X ⊂ Pr
k is the maximal non-degenerate projective

variety X ′ ⊂ Pr′

k which can be projected non-singularly onto X. More precisely: If X̃ ⊂ Pr
k is

a non-degenerate projective variety and π̄� : X̃
'−→ X is an isomorphism induced by a linear

projection π̄ : Pr
k −→ Pr

k, then r̄ ≤ r′ and the isomorphism π̄�−1 ◦ π� : X ′ '−→ X̃ comes from
a linear projection % : Pr′

k −→Pr̄
k. In particular, if X̃ ⊂ Pr̄

k is linearly complete we have r′ = r̄

and % becomes an isomorphism so that we may identify X ′ with X̃ . Consequently, by what we
said in part A) it follows that X ⊂ Pr

k is Del Pezzo if and only if its linear completion X ′ ⊂ Pr′

k

is (maximally) Del Pezzo.

We now shall tie the link to Fujita’s classification of polarized Del Pezzo varieties.

Remark 6.5. (see [16]). A) A polarized variety over k is a pair (V,L) consisting of a reduced
irreducible projective variety V over k and an ample invertible sheaf of OV -modules L.

B) Let (V,L) be a polarized k-variety. For a coherent sheaf of OV -modules F and i ∈ N0

let hi(V,F) denote the k-dimension of the i-th Serre cohomology group H i(V,F) of V with
coefficients in F . Then, the function

n 7→ χ(V,L)(n) :=
dim V∑
i=0

(−1)ihi(V,L⊗n)

is a polynomial of degree dim V , the so called Hilbert polynomial of the polarized variety
(V,L).

C) Let (V,L) be a polarized variety of dimension d. Then, there are uniquely determined
integers χi(V,L), i = 0, . . . , d such that

χ(V,L)(n) =
d∑

i=0

χi(V,L)

(
n + i− 1

i

)
.

Clearly χd(V,L) > 0. The degree, the ∆-genus and the sectional genus of the polarized variety
(V,L) are defined respectively by

deg(V,L) := χd(V,L);

∆(V,L) := d + deg(V,L)− h0(V,L);

gs(V,L) := 1− χd−1(V,L).

D) According to Fujita (cf [16]) the polarized variety (V,L) is called a Del Pezzo variety, if
it satisfies the following conditions

∆(V,L) = 1,(6.3)

gs(V,L) = 1,(6.4)

V has only Gorenstein singularities and ωV ' L⊗(1−dim V ),(6.5)

For all i 6= 0, dim V and all n ∈ Z it holds H i(V,L⊗n) = 0.(6.6)

Remark 6.6. A) We consider the polarized variety (X,OX(1)). For all n ∈ Z we have
H0(X,OX(1)⊗n) = H0(X,OX(n)) = D(A)n. Thus:

(6.7) χ(X,OX(1))(n) = PA(n),
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where PA is the Hilbert polynomial of A. Therefore

deg(X,OX(1)) = deg X,(6.8)

∆(X,OX(1)) = deg X − codim X − 1− dimk H1(A)1.(6.9)

As a consequence of the last equality we obtain

(6.10) ∆(X,OX(1)) ≤ deg X − codim X + 1,

with equality if and only if X ⊂ Pr
k is linearly complete.

B) Let X ′ ⊂ Pr′

k be the linear completion of X ⊂ Pr
k. Then (X,OX(1)) and (X ′,OX′(1))

are isomorphic polarized varieties. In particular (X ′,OX′(1)) is Del Pezzo in the sense of Fujita
if and only (X,OX(1)) is.

Lemma 6.7. Let X ⊂ Pr
k be of almost minimal degree. Then

(a)

∆(X,OX(1)) =

{
0, if depth A = 1,

1, if depth A > 1.

(b)

gs(X,OX(1)) =

{
0, if X is not arithmetically Cohen-Mcaulay,
1, if X is arithmetically Cohen-Macaulay.

Proof. (a): This follows immediately from Proposition 3.1 c), Theorem 4.2 b) and by (6.9).
(b): This is a consequence of Corollary 4.4 b) and (6.7). �

Theorem 6.8. Let X ⊂ Pr
k be of dimension d > 0. Then, the following statements are equiva-

lent:
(i) X is Del Pezzo in the sense of Definition 6.3 B).

(ii) (X,OX(1)) is Del Pezzo in the sense of Fujita.
(iii) ∆(X,OX(1)) = gs(X,OX(1)) = 1.
(iv) ∆(X,OX(1)) = 1 and H i(X,OX(n)) = 0 for all i 6= 0, d and all n ∈ Z.
(v) gs(X,OX(1)) = 1 and H i(X,OX(n)) = 0 for all i 6= 0, d and all n ∈ Z.

(vi) ∆(X,OX(1)) = 1 and ωX ' OX(1− d).
(vii) H i(X,OX(n)) = 0 for all i 6= 0, d and all n ∈ Z, and ωX ' OX(1− d).

(viii) ∆(X,OX(1)) = 1 and X is S2.

Proof. First let us fix a few notation. Let r′ = h0(X,OX(1)) = dimk D(A)1 and let X ′ ⊂ Pr′

k

be the linear completion of X ⊂ Pr
k.

(i) =⇒ (ii): Let X be Del Pezzo in the sense of Definition 6.3 B). According to Remark 6.4 C)
we get that X ′ ⊂ Pr′

k is maximally Del Pezzo. According to Theorem 6.2, the pair (X ′,OX′(1))
thus satisfies the requirements (6.3) - (6.6) of Remark 6.5 D) and hence is Del Pezzo in the
sense of Fujita. By Remark 6.6 B) the same follows for (X,OX(1)).

Clearly statement (ii) implies each of the statements (iii) - (viii). So, it remains to show that
each of the statements (iii) - (viii) implies statement (i). According to Remark 6.4 C) we may
replace X by X ′ in statement (i). As (X ′,OX′(1)) and (X,OX(1)) are isomorphic polarized
varieties we may replace X by X ′ in each of the statements (iii) - (viii). So, we may assume
that X ⊂ Pr

k is linearly complete.
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(iii) =⇒ (i): According to statement (6.10) of Remark 6.6 A) the equality ∆(X,OX(1)) = 1
implies that X ⊂ Pr

k is of almost minimal degree. But now by Lemma 6.7 b) the equality
gs(X,OX(1)) = 1 implies that X is arithmetically Cohen-Macaulay.

(iv) =⇒ (i): By ∆(X,OX(1)) = 1 we see again that X ⊂ Pr
k is of almost minimal degree. As

H1(A)1 = 0 we have depth A > 1 (Proposition 3.1 C) ). As H i+1(A)n ' H i(X,OX(n)) = 0
for all i 6= 0, d, it follows that depth A = d + 1, so that X is arithmetically Cohen-Macaulay.

(vi) =⇒ (i): As we have proved the implication (iii) =⇒ (i) it suffices to prove that state-
ment (v) implies the equality ∆(X,OX(1)) = 1. We proceed by induction on d. Let d = 1.
As gs(X,OX(1)) = 1 implies χ0(X,OX(1)) = 0 we get χ(X,OX(1))(n) = (deg X)n. As
H1(X,OX(1)) = 0 it follows r + 1 = h0(X,OX(1)) = χ(X,OX(1))(1) = deg X and hence by
(6.10) we get ∆(X,OX(1)) = 1.

So, let d > 1, let ` ∈ S1 be a generic linear form and consider the irreducible projective
variety Y := Proj(A/`A) ⊂ Pr

k := Proj(S/`S) of dimension d − 1 and with homogeneous
coordinate ring A′ = (A/`A)/H0(A/`A). As

χ(Y,OY (1))(n) = PA′(n) = ∆PA(x) = ∆χ(X,OX(1))(n)

it follows ∆(Y,OY (1)) = ∆(X,OX(1)) and gs(Y,OY (1)) = gs(X,OX(1)) = 1. So, by
induction it suffices to show that

H i(Y,OY (n)) = H i+1(A′)n = 0 for all i 6= 0, d− 1 and all n ∈ Z,

and that Y ⊂ Pr−1
k is linearly complete, hence that H1(A′)1 = 0. As

H i+1(A)n = H i(X,OX(n)) = 0

for all i 6= 0, d and all n ∈ Z and as H1(A)1 = 0 this follows immediately if we apply
cohomology to the sequence

0 → A(1)
`−→ A → A/`A → 0

and observe that Hj(A′) ' Hj(A/`A) for all j > 0.
(vi) =⇒ (i): This is immediate by (6.10) and Theorem 6.2.
(vii) =⇒ (i): As X is linearly complete, H1(A)1 = 0. Moreover by our hypothesis H i(A) =

0 for all i 6= 1, d + 1. Finally, by (6.2) we have K(A) ' D(A)(1 − d), hence Hd+1(A)1−d '
K(A)d−1 ' D(A)0 ' k. So, statement (vii) of Theorem 6.2 is true.

(viii) =⇒ (i): In view of (6.10), statement (viii) implies statement (iii) of Theorem 6.2. �

Our next aim is to extend Theorem 5.3 to maximal Del Pezzo varieties.

Theorem 6.9. Let X ⊂ Pr
k be a maximal Del Pezzo variety of dimension d which is non-normal.

Let B = k ⊕B1 ⊕B2 ⊕ · · · be the graded normalization of A. Then:
(a) There are linearly independent linear forms yd, yd+1, · · · , yr ∈ S1 such that B/A ∼=

(S/(yd, yd+1, · · · , yr))(−1).
(b) B is the homogeneous coordinate ring of a variety of minimal degree X̃ ⊂ Pr+1

k . In
particular, B is a Cohen-Macaulay ring.

Proof. We make induction on d. The case d = 1 is clear by Proposition 5.2 C). Therefore, let
d > 1. Statement (b) follows easily from statement (a). So, we only shall prove this latter.
According to Proposition 5.8 there are linearly independent linear forms yd, yd+1, · · · , yr ∈ S1

such that I ⊂ (yd, yd+1, · · · , yr) and such that s := (yd, yd+1, · · · , yr)/I ⊂ S/I = A defines
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the non-normal locus X \ Nor(X) of X . Observe that s ⊂ A is a prime of height 1 and that
A/s ' S/(yd, yd+1, · · · , yr)S is a polynomial ring in d inderminates over k. Next, we consider
the canonical exact sequence

(6.11) 0 → A → B → C → 0

in which C := B/A is a finitely generated graded A-module such that C≤0 = 0 and
Rad AnnB C = s. Our aim is to show that C ' (A/s)(−1). Let ` ∈ S1 be a generic
linear form.

Then, according to Bertini and as depth A > 1, the ideal `A ⊂ A is prime. Moreover
(A \ `A) ∩ s 6= ∅, so that (A \ `A)−1B = A`A. It follows that `B has a unique minimal prime
p and that pBp = `Bp. As B is S2 we get `B = p, so that `B is a prime ideal of B. Therefore
B/`B is a finite birational integral extension domain of A′ := A/`A and hence a subring of the
graded normalization B′ of A′.

As depth A > 2 and depth B ≥ 2, the short exact sequence (6.11) yields depth C ≥ 2. In
particular ` is C-regular. Hence we get the following commutative diagram with exact rows and
columns in which U = Coker ι is a graded A-module

0

��

0

��
0 // A/`A // B/`B

λ

��

// C/`C

ι

��

// 0

0 // A′ // B′

��

// C ′

��

// 0

U

��

' // U

��
0 0

(6.12)

Now X ′ := Proj(A′) ⊂ Proj(S/`S) = Pr−1
k is again a maximal Del Pezzo variety. Moreover

X ′ is non-normal, since otherwise B/`B = A/`A, hence B = A. Let s′ ⊂ A′ be the prime of
height 1 which defines the non-normal locus of X ′ and keep in mind that A′/s′ is a polynomial
ring in d− 1 inderminates over k. By induction C ′ ' (A′/s′)(−1).

Our next aim is to show that dim U ≤ 0. As C 6= 0, we have C/`C 6= 0. As C ′ is a free A′/s′-
module of rank one, it follows dim U < dim(A′/s′) = d− 1. As dim(B/`B) = dim(B′) = d
it follows that λ is an isomorphism in codimension one. As B′ is normal and hence satisfies the
property R1, it follows that B/`B satisfies R1, too.

Let s ∈ s \ {0}. As B is normal, it satisfies the Serre property S2 so that B/sB satisfies S1.
Therefore the set of generic points of the (closed) non-S2-locus of the B-module B/sB is given
by

Q := {q ∈ V (sB) : depth(Bq/sBq) = 1 < height q− 1}.
In particularQ is finite, and hence ` avoids all members of P := (AssB(B/sB)∪Q)∩Proj B.

Now, let r ∈ Proj B ∩ V (`B) such that height r > 2. If s /∈ r, the equality As = Bs yields
that Br is a Cohen-Macaulay ring, so that depth(Br/`Br) > 1. If s ∈ r the fact that ` avoids
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all members of P implies that s, ` is a Br-sequence and depth Br/sBr) > 1. It follows again
that depth(Br/`Br) > 1. This proves, that the scheme Proj(B/`B) is S2. As B/`B satisfies
R1 it follows that Proj(B/`B) is a normal scheme, hence that Proj(B/`B) = Proj B′. As a
consequence, we get indeed that dim U ≤ 0, that is U is a graded A-module of finite length.

Now, let t ⊂ A be the preimage of s′ under the canonical map A → A′. Then t and s + `A
are primes of height 2 in A and so

s + `A = Rad((AnnA C) + `A) = Rad(AnnA C/`C) ⊇ AnnA C ′ = AnnA(A′/s′(−1)) = t

implies that s + `A = AnnA(C/`C) = t. As a consequence we get sC ⊆ `C and hence, by
the genericity of `, that sC = 0. It follows sB ⊆ s and s becomes an ideal of B. Now, let
a ∈ A and c ∈ C \ {0} such that ac = 0. By the genericity of ` we may assume that c /∈ `C so
that ι(c + `C) 6= 0 and aι(c + `C) = 0. It follows a ∈ t = s + `A and hence, by genericity,
that a ∈ s. This shows that C is a torsion-free A/s-module and hence that B/s is a torsion-free
A/s-module.

As rankA/s C = e0(C) = e0(C/`C) = e0(C
′) = rankA′/s′ C

′ = 1 we get an exact sequence
of graded A/s-modules

(6.13) 0 → C → (A/s)(−m) → W → 0

with m ∈ Z and dim W < dim A/s = d. We choose m maximally. Then, there is no ho-
mogeneous element f ∈ A/s of positive degree with C(m) ⊆ f(A/s), so that dim W =
dim(W (m)) = dim((A/s)/C(m)) < d− 1.

As depth C ≥ 2 we have depth W ≥ 1. As ` is generic we thus get an exact sequence

0 → C/`C → (A′/s′)(−m) → W/`W → 0

with dim W/`W = dim W − 1 < d − 2 = dim A′/s′ − 1. Comparing Hilbert coefficients we
get e1(C/`C) = e1((A

′/s′)(−m)) = m.
The diagram (6.12) contains the short exact sequence 0 → C/`C → (A′/s′)(−1) → U → 0

with dim U ≤ 0. Assume first, that d ≥ 3 so that dim U < dim A′/s′ − 1. Then, we may
again compare Hilbert coefficients and get e1(C/`C) = e1((A

′/s′)(−1)) = 1, hence m = 1.
It follows dim W/`W = dim U ≤ 0, thus dim W ≤ 1. Suppose that dim W = 1. Then
H1(W )n 6= 0 for all n � 0 and the sequence (6.11) yields H2(C)n 6= 0 for all n � 0. As
H3(A) = 0, the sequence (6.11) induces that H2(B)n 6= 0 for all n � 0; but this contradicts
the fact that B is S2. So, we have dim W ≤ 0. Now, by the sequence (6.13) we get W =
H0(W ) ' H1(C), and depth C > 1 implies W = 0. Therefore C ' A/s(−1).

It remains to treat the case d = 2. Now A′/s′ ' k[x] so that the A′/s′-submodule C/`C of
(A′/s′)(−1) is generated by a single homogeneous element of degree m ≥ 1. By Nakayama it
follows C ' (A/s)(−m). It remains to show that m = 1.

By the case d = 1 we know that B′ is the homogeneous coordinate ring of a rational
normal curve, so that H2(B′)0 = 0. The middle column of the diagram (6.12) now implies
H2(B/`B)0 = 0. Applying cohomology to the exact sequence 0 → B(−1)

`→ B → B/`B →
0 we thus get an isomorphism H3(B)−1 ' H3(B)0 so that H3(B)−1 = 0. If we apply coho-
mology to the sequence (6.11) we thus get an exact sequence

0 → H2(B)−1 → H2(A/s)−1−m → H3(A)−1 → 0.
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By Theorem 6.2 (cf statement (vii)) we have H3(A)−1 ' k. As A/s is a polynomial ring in two
indeterminates over k we have H2(A/s)−1−m ' km. It follows H2(B)−1 ' km−1.

Moreover X̃ := Proj B is a projective normal surface and the natural morphism ν : X̃ → X
is a normalization of X. In particular L := B(1)∼ = ν∗OX(1) is an ample invertible sheaf of
OX̃-modules and L⊗n = ν∗OX(n) = B(n)∼ for all n ∈ Z. In addition we have H2(B)−1 '
H1(X̃,L⊗−1) and B1 ' H0(X̃,L). Moreover Y := Proj B/`B ' Proj B′ is the effective
divisor on X̃ defined by the global section ` ∈ H0(X̃,L)\{0}. As H1(Y,OY ) = H2(B/`B) =
0, the sectional genus gs(X̃,L) vanishes (cf [1, (5.3) B)]). As dimk H0(X̃,L) = dimk B1 ≥ r+
1 > 1 it follows H1(X̃,L⊗−1) = 0 (cf [1, Proposition (5.4)]). Therefore km−1 ' H2(B)−1 = 0,
hence m = 1. �

Now, we may extend Theorem 5.6 as follows

Corollary 6.10. Let X ⊂ Pr
k be of almost minimal degree. Assume that either t := depth A ≤

dim X =: d or that X is maximally Del Pezzo (that is t = d + 1) and non-normal. Then, there
is a d-dimensional variety X̃ ⊂ Pr+1

k of minimal degree, a point p ∈ Pr+1
k \ X̃ and a projection

% : Pr+1
k \ {p} → Pr

k from p such that:

(a) %(X̃) = X and ν := % �: X̃ → X is the normalization of X.
(b) The secant cone Secp(X̃) ⊂ Pr+1

k is a projective subspace Pt−1
k ⊂ Pr+1

k and

X \ Nor X = Sing(ν) = %(Secp(X̃ \ {p}) ⊂ X

is a projective subspace Pt−2
k ⊂ Pr

k.

(c) The singular fibre ν−1(Sing(ν)) = Secp(X̃)∩ X̃ ⊂ X̃ is a quadric in Pt−1
k = Secp(X̃).

Proof. Let B be the graded normalization of A. Then, according to Theorem 5.6 resp. Theo-
rem 6.9 we see that B is the homogeneous coordinate ring of a variety X̃ ⊂ Pr+1

k of minimal de-
gree. Moreover, by Theorem 5.3 resp. Theorem 6.9 there are linearly independent linear forms
yt−1, yt, · · · , yr ∈ S1 such that I ⊆ (yt−1, yt, · · · , yr) and B/A ' (S/(yt−1, yt, · · · , yr))(−1).
Now, all claims except statement (c) follow as in Theorem 5.6.

To prove statement (c), we consider the prime s := (yt−1, yt, . . . , yr)/I ⊂ A. Then A/s is a
polynomial ring in t − 1 indeterminates over k and we have B/A ' (A/s)(−1). In particular
s ⊂ B is an ideal and we have an exact sequence 0 → A/s → B/s → (A/s)(−1) → 0.
Therefore B/s ' (A/s)[z]/(f) for some polynomial f = z2 + uz + v with u ∈ (A/s)1 and
v ∈ (A/s)2. As

ν−1(Sing(ν)) = Proj(B/s) ⊂ Secp(X̃) = Pt−1
k = Proj((A/s)[z])

the claims of (c) follows. �

7. VARIETIES OF ALMOST MINIMAL DEGREE THAT ARE PROJECTIONS

We now wish to give a more detailed insight in the nature of those varieties of almost minimal
degree which are projections of cones over rational normal scrolls. Let us first recall a few facts
on such scrolls.

Remark 7.1. (cf [21, pp 94, 97, 108-110] and [11]) A) Let n ∈ N and let l, a1, . . . , al−1 ∈ N.
Let a0 = −1, al = n and assume that ai − ai−1 > 1 for i = 1, . . . , l. Then, up to pro-
jective equivalence, the numbers a1, a2, . . . , al−1 define a unique rational normal l-fold scroll
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Sa1···al−1
⊂ Pn

k . Keep in mind that Sa1···al−1
is smooth, rational, arithmetically Cohen-Macaulay

and of dimension l.
B) Keep the notation of part A). After an appropriate linear coordinate transformation we may
assume that the vanishing ideal of Sa1···al−1

in the polynomial ring k[x0, . . . , xr] is the ideal
generated by the 2× 2-minors of the 2× (n− l + 1)-matrix

Ma1···al−1
:=

 x0 · · · xa1−1

 xa1+1 · · · xa2−1

 · · ·
 xal−1+1 · · · xn−1

x1 · · · xa1

 xa1+2 · · · xa2

 · · ·
 xal−1+2 · · · xn

 .

C) Let V ∈ GL2(k) and W ∈ GLn−l(k). Then, the 2 × 2-minors of the conjugate matrix
V Ma1···al−1

W−1 generate the same ideal as the 2 × 2-minors of the matrix of Ma1···al−1
. So, if

we subject Ma1···al−1
to regular k-linear row and column transformations, the 2 × 2-minors of

the resulting 2× (n− l+1)-matrix still generate the vanishing ideal of the same scroll Sa1···al−1
.

D) A 2 × (n − l + 1)-matrix N whose entries are linear forms in k[x0, . . . , xr] is said to be
1-generic, if no conjugate of N has a zero entry. Observe that the property of being 1-generic is
preserved under conjugation. Moreover, if N ′ is obtained by deleting some columns from the
1-generic matrix N, then N ′ is again 1-generic.

Finally, let N be a 1-generic 2 × (n − l + 1)-matrix whose entries are linear forms in
k[x0, . . . , xr]. Let y0, . . . , ym be a basis of the k-vector space L ⊂ k[x0, . . . , xr]1 generated
by the entries of N. Then, m > n− l + 1, thus h := m− n + l > 1.

Moreover, there are integers b1, . . . , bh−1 ∈ N such that with b0 = −1 and bh = m we have
bi − bi−1 > 1 for i = 1, . . . , h, and such that N is conjugate to the 2× (m− l + 1)-matrix

N ′ :=

 y0 · · · yb1−1

 yb1+1 · · · yb2−1

 · · ·
 ybh−1+1 · · · ym−1

y1 · · · yb1

 yb1+2 · · · yb2

 · · ·
 ybh−1+2 · · · ym

 .

So, by parts B) and C) the 2× 2-minors of N generate the vanishing ideal of a rational normal
h-fold scroll in Pm

k = Proj(k[y0, . . . , ym]).

Remark 7.2. A) Let s ∈ N and let X̃ ⊂ Ps
k = Proj(R), R = k[x0, . . . , xs], be a cone over a

rational normal scroll Sa1···al−1
⊂ Pn

k with n ∈ {1, 2, . . . , s}. According to the previous remark
we may assume that the vanishing ideal of X̃ in R is generated by the 2 × 2-minors of the
2 × (n − l + 1)-matrix Ma1···al−1

. In this case (and with the convention that P−1
k = ∅ and

dim ∅ = −1), the vertex Sing(X̃) of X̃ is given by Ps−n−1
k = Proj(R/(x0, . . . , xn)R) and so

dim Sing(X̃) = s− n− 1 and dim X̃ = l + s− n.
B) According to 7.1 C) the 2× 2-minors of any matrix obtained from Ma1···al−1

by k-linear row
and column operations generate the vanishing ideal of X̃ in R.
C) Let N be a 1-generic 2× (n− l + 1)-matrix whose entries are linear forms in k[x0, . . . , xn].
Let y0, . . . , ym be a basis of the k-space spanned by the entries of N and let h := m − n + l.
Then, by parts A) and B) and by Remark 7.1 C), the 2× 2-minors of N generate the vanishing
ideal of a cone Y ⊂ Ps

k over a rational normal h-fold scroll Z ⊂ Pm
k . In particular dim Y =

h + s−m = l + s− n and dim Sing(Y ) = s−m− 1.

We now prove the result which shall be crucial in the rest of this chapter.
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Theorem 7.3. Let X̃ ⊂ Pr+1
k be a (cone over a) rational normal scroll and let % : Pr+1

k \
{p} → Pr

k be a linear projection from a point p ∈ Pr+1
k \ X̃. Then, there is a (cone over a)

rational normal scroll Y ⊂ Pr
k such that Y ⊃ %(X̃), dim Y = dim X̃ + 1 and dim Sing(X̃) ≤

dim Sing(Y ) ≤ dim Sing(X̃) + 3.

Proof. According to Remark 7.2 A) we may assume that the vanishing ideal of X̃ in S ′ =
k[x0, . . . , xr+1] is generated by the 2× 2-minors of the 2× (n− l + 1)-matrix

M :=

 x0 · · · xa1−1

 xa1+1 · · · xa2−1

 · · ·
 xal−1+1 · · · xn−1

x1 · · · xa1

 xa1+2 · · · xa2

 · · ·
 xal−1+2 · · · xn


with appropriate integers n, l, a1, . . . , al−1 ∈ N such that, with a0 = −1, al = n, we have
ai − ai−1 > 1 for i = 1, . . . , l, n ≤ r + 1, dim X̃ = l + r + 1− n and dim Sing(X̃) = r − n.

Let p := (c0 : c1 : · · · : cr+1). As p 6∈ X̃ there are two different indices i, j ∈ {0, 1, . . . , n−
1} \ {a1, a2, . . . , al−1} such that

δ := det

(
ci cj

ci+1 cj+1

)
6= 0.

Without loss of generality we may assume that ci+1 6= 0. Define

yα :=

{
xα, if α = i + 1,

xα − cα

ci+1
xi+1, if α ∈ {0, . . . , r + 1} \ {i + 1}.

Then S ′ = k[y0, y1, . . . , yr+1] and with respect to the coordinates y0, . . . , yr+1 the point p may
be written as (0 : · · · : 0 : 1 : 0 : · · · : 0) with the entry ”1” in the (i + 1)-th position. Therefore
we may assume that the projection % is induced by the inclusion map

S ′′ := k[y0, . . . , yi, yi+2, . . . , yr+1] ↪→ S ′.

We now express the indeterminates which occur in the matrix M in terms of the variables yα :

xα =

{
yα, for α = i + 1,

yα + cα

ci+1
yi+1, , if α ∈ {0, . . . , r + 1} \ {i + 1}.

Let us first assume that i < j. Then, the 2 × 2-submatrix U of M which contains xi and xj in
its first row takes the form

U =

(
yi + ci

ci+1
yi+1 yj +

cj

ci+1
yi+1

yi+1 yj+1 +
cj+1

ci+1
yi+1

)
.

Now performing sucessively k-linear row and column operations we finally get the following
transformed matrix

U ′ =

(
yi yj − ci

ci+1
yj+1 − cj+1

ci+1
yi − δ

c2i+1
yi+1

yi+1 yj+1

)
.

If i + 1 = j, then by performing k-linear row and column operations, U can be brought to the
form

U ′ =

(
yi − ci

ci+1
yi+2 − ci+2

ci+1
yi − δ

c2i+1
yi+1

yi+1 yi+2

)
.
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Let M ′ be the 2×(n−l+1)-matrix which is obtained if the above row and column operations
are performed with the whole matrix M. Observe that the submatrix U of M is transformed
into the submatrix U ′ of M ′, which sits in the same columns as U. Now, as − δ

c2i+1
6= 0 we

may add appropriate k-multiples of the columns of U ′ to the columns of M ′ to remove the
indeterminate yi+1 from all entries of M ′ which do not belong to the two columns of U ′. So, we
get a 2×(n− l+1)-matrix M̃, conjugate to M. In particular, M̃ is 1-generic (cf Remark 7.1 D))
and the entries of M̃ span the same k-space as the entries of M, namely

∑n
t=0 kxt =

∑n
t=0 kyt.

Now, let N be the matrix of size 2 × (n − l − 1) = 2 × (n − 1 − (l + 1) + 1) obtained by
deleting the two columns of U ′ from M̃. Then N is 1-generic (cf Remark 7.1 D)) and yi+1 does
not appear in N. So, the entries of N span a subspace

L ⊆ Σn
t=0,t6=i+1kyt ⊂ k[y0, . . . , yi, yi+1, . . . , yn] ⊂ S ′′,

whose dimension m is such that n−m ∈ {1, 2, 3, 4}.
By Remark 7.2 C) the ideal I2(N) ⊂ S ′′ generated by the 2× 2-minors of N is the vanishing

ideal of a cone Y ⊂ Pr
k = Proj(S ′′) over a rational normal scroll such that dim Y = (l + 1) +

r − (n− 1) = dim X̃ + 1 and dim Sing(Y ) = r −m− 1 = dim Sing(X̃) + (n−m− 1). As
n−m− 1 ∈ {0, 1, 2, 3} we get dim Sing(X̃) ≤ dim Sing(Y ) ≤ dim Sing(X̃) + 3. According
to Remark 7.2 B) the ideal I2(M̃) ⊂ S ′ generated by the 2 × 2-minors of M̃ is the vanishing
ideal of X̃. Therefore I2(M̃) ∩ S ′′ is the vanishing ideal of %(X̃). As each 2× 2-minor of N is
a 2× 2-minor of M̃, it follows I2(N) ⊆ I2(M̃) ∩ S ′′ and hence Y ⊇ %(X̃).

This settles the case i < j. If j < i we first commute the columns of U and then conclude as
above. �

We now apply the previous result to varieties of almost minimal degree. We still keep the
convention that P−1

k = ∅ and dim ∅ = −1, and begin with a preliminary remark.

Remark 7.4. (cf [21]) A) Let l, n, a1, . . . , al−1 ∈ N be as in Remark 7.1 and consider the
rational l-fold scroll Sa1···al−1

. We set a0 = −1, al = n, di = ai − ai−1 − 1, for i = 1, . . . , l and
define the linear subspaces

Ei = Proj(S/Σj 6∈{ai−1+1,...,ai}Sxj) = Pdi
k ⊂ Pn

k , i = 1, . . . , l.

For each i ∈ {1, . . . , l} we consider the Veronese embedding

νi : P1
k → Ei, (s : t) 7→ (sdi : sdi−1t : . . . : stdi−1 : tdi),

so that νi(P1
k) ⊂ Ei = Pdi

k is a rational normal curve. Now, for each q ∈ P1
k let

E(q) = 〈ν1(q), . . . , νl(q)〉 = Pl−1
k ⊂ Pn

k

be the projective space spanned by the l points ν1(q), . . . , νl(q). Then q 6= q′ implies E(q) ∩
E(q′) = ∅ for all q, q′ ∈ P1

k. Moreover, Sa1···al−1
= ∪q∈P1

k
E(q).

B) Keep the above notation. For each 1 ≤ i ≤ l let Vi = kdi+1 ⊂ kn+1 be the affine cone over
Ei, fix q = (s : t) ∈ P1

k and set vi = (sdi , sdi−1t, . . . , tdi). Moreover, for each 1 ≤ i ≤ l let
wi = (wi0, . . . , widi

) ∈ Vi such that (wi0 : . . . : widi
) ∈ Ei \ νi(q) is a point on the tangent

of the rational normal curve νi(P1
k) ⊂ Ei in the point νi(q). In particular, vi and wi are lineraly

independent. Now let π : kn+1 \ {0} � Pn
k = P(kn+1) be the canonical projection and let

r = π(Σl
i=1rivi) ∈ E(q) = π(⊕l

i=1kvi \ {0}) = P(⊕l
i=1kvi),



32 MARKUS BRODMANN AND PETER SCHENZEL

where (r1, . . . , rl) ∈ kl \ {0}. Then the tangent space to the scroll Sa1···al−1
in the point r is

given by

Tr(Sa1···al−1
) = P(k(Σl

i=1riwi) +⊕l
i=1kvi) = 〈E(q) ∪ π(Σl

i=1riwi)〉.
From this we easily deduce that Tr(Sa1···al−1

) ∩ Tr′(Sa1···al−1
) = E(q) for all r, r′ ∈ E(q) with

r 6= r′.
C) Now, let s ∈ N such that n < s and let X̃ ⊂ Ps

k = Proj(R), R = k[x0, . . . , xn], be a cone
over the rational normal l-fold scroll

Sa1···al−1
⊂ Pn

k = Proj(R/(xn+1, . . . , xs)R = k[x0, . . . , xn]).

Then, the vertex of X̃ is given by Sing(X̃) = Proj(R/(x0, . . . , xn)) = Ps−n−1
k ⊂ Ps

k (cf
Remark 7.2 A)). Now, for each q ∈ P1

k let

F(q) = 〈E(q) ∪ Sing(X̃)〉 = Pl+s−n−1
k = Pdim X̃

k ⊂ Ps
k

be the linear subspace spanned by E(q) = Pl−1
k ⊂ Ps

k and the vertex Sing(X̃) of X̃. Then by part
A), q 6= q′ implies that F(q)∩F(q′) = Sing(X̃) for all q, q′ ∈ P1

k and moreover X̃ = ∪q∈P1
k
F(q).

It also follows easily from part B), that for any q ∈ P1
k and any r ∈ E(q)\Sing(X̃) the tangent

space of X̃ at r is given by Tr(X̃) = 〈Tr̃(Sa1···al−1
)∪ Sing(X̃)〉 = Pd

k, where r̃ = (r0 : . . . : rn)

is the canonical projection of r from Sing(X̃). As a consequence of the last statement in part B)
we thus get for all q ∈ P1

k and all r, r′ ∈ F(q)\Sing(X̃) : If r 6= r′, then Tr(X̃)∩Tr′(X̃) = F(q).

Theorem 7.5. Let X ⊂ Pr
k be a variety of almost minimal degree which is the projection

of a (cone over a) rational normal scroll X̃ ⊂ Pr+1
k with dim Sing(X̃) =: h from a point

p ∈ Pr+1
k \ X̃. Then

(a) X is contained in a (cone over a) rational normal scroll Y ⊂ Pr
k such that codimY (X) =

1 and h ≤ dim Sing(Y ) ≤ h + 3.
(b) X is of arithmetic depth t ≤ h + 5.

Proof. (a): This is clear by Theorem 7.3.
(b): Assume first that X is not arithmetically Cohen-Macaulay. Then, the non CM-locus Z
of X is a linear subspace Pt−2

k of Pr
k (cf Theorem 5.6 (d), (f)). As codimY (X) = 1,OX,x is a

Cohen-Macaulay ring for each point x ∈ X \Sing(Y ). It follows that Pt−2
k = Z ⊆ X∩Sing(Y )

and hence t− 2 ≤ dim Sing(Y ) ≤ h + 3.
Now, let X be arithmetically Cohen-Macaulay. In this case we conclude by a geometric

argument which in fact also implies in the previous case. Let d = dim X. After an appropriate
change of coordinates, we may assume that we are in the situation of Remark 7.4 B) and C).
So, we may write X̃ = ∪q∈P1

k
F(q), where F(q) = Pd−1

k ⊂ Pr
k is a linear subspace for all

q ∈ P1
k. Let U = {(q, q′) ∈ P1

k × P1
k|q 6= q′}. Then, according to Remark 7.4 C) we have

F(q) ∩ F(q′) = Sing(X̃) = Ph
k, whenever (q, q′) ∈ U. Now, for each pair (q, q′) ∈ U consider

the linear subspace

H(q, q′) = 〈F(q) ∪ {p}〉 ∩ 〈F(q′) ∪ {p}〉 ⊂ Pr+1
k .

Observe that Sing(X̃) ⊆ H(q, q′) and dim H(q, q′) ≤ h + 2 for all (q, q′) ∈ U. Moreover
dim H(q, q′) = h + 2 if and only if p ∈ 〈F(q) ∪ F(q′)〉. Consequently we have dim H(q, q′) =
h + 2 if and only if there is a line running through p and intersecting F(q) and F(q′). Clearly
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such a line is contained in H(q, q′) and its intersection points with F(q) and F(q′) are different
as p 6∈ F(q) ∪ F(q′).

Let V ⊆ U be the closed subset of all pairs (q, q′) for which dim H(q, q′) = h + 2. It
follows that the union of all proper secant lines of X̃ which run through p is a subset of W =
∪(q,q′)∈V H(q, q′). Moreover, it follows from the last statement of Remark 7.4 C), that for each
point q ∈ P1

k there is at most one point r(q) ∈ F(q) \ Sing(X̃) such that there is a tangent
line l(q) = P1

k of X̃ at r(q) running through p. Let T ⊂ P1
k be the closed subset of all q ∈ P1

k

for which this happens. Then, all tangents to non-singular points of X̃ through p are contained
in Y = ∪q∈T l(q). Finally observe that the remaining tangents are the lines running trough p

and Sing(X̃). It follows Pt−1
k = Secp(X̃) ⊆ W ∪ Y ∪ 〈Sing(X̃) ∪ {p}〉 and hence t − 1 ≤

max{dim W, dim Y, h + 1}. As {H(q, q′)|(q, q′) ∈ V } is a family of linear (h + 2)-subspaces
of Pr+1

k , it follows dim W ≤ h + 2 + dim V ≤ h + 4. As {l(q)|q ∈ T} is a family of lines we
have dim Y ≤ 1 + dim T ≤ 2. So we get t− 1 ≤ h + 4, hence t ≤ h + 5. �

Corollary 7.6. Let X ⊂ Pr
k be a variety of almost minimal degree which is a projection of a

rational normal scroll X̃ ⊂ Pr+1
k from a point p ∈ Pr+1

k \ X̃. Then X is of arithmetic depth
t ≤ 4.

Proof. Clear from Theorem 7.5. �

As a final comment of this section let us say something about the exceptional case of projec-
tions of the Veronese surface.

Remark 7.7. (The exceptional case) Let us recall that the Veronese surface F ⊂ P5
k is defined

by the 2× 2-minors of the matrix

M =

 x0 x1 x2

x1 x3 x4

x2 x4 x5

 .

Let p ∈ P5
K \ F denote a closed point. Suppose that rank M|p= 3, i.e. the case of a generic

point and remember that det M = 0 defines the secant variety of F. Then the projection of F
from p defines a surface X ⊂ P4

K of almost minimal degree and depth A = 1.
Recall that dimk(I)2 = 0 (cf. Corollary 4.4 C)). Therefore the surface X is cut out by cubics,

i.e. it is not contained in a variety of minimal degree.

8. BETTI NUMBERS

Our next aim is to study the Betti numbers of A if X is of almost minimal degree, non-
arithmetically Cohen-Macaulay and a projection of a (cone over a) rational normal scroll.

Lemma 8.1. Assume that X ⊂ Pr
k is of almost minimal degree and of arithmetic depth ≤ d =

dim X. Let B = HomA(K(A), K(A)). Then

TorS
i (k, B) '

 k(0)⊕ k(−1), if i = 0,
kbi(−i− 1), if 0 < i ≤ r − d,
0, if r − d < i,

where bi = (r + 1− d)
(

r−d
i

)
−
(

r−d
i+1

)
for 1 ≤ i ≤ r − d.
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Proof. By Theorem 5.3 (a) the A-module B is Cohen-Macaulay and hence of depth d + 1 over
S. Therefore TorS

i (k,B) = 0 for all i > r − d. According to Theorem 5.3 (b) there is a short
exact sequence of graded S-modules

(8.1) 0 → A → B → C → 0, C ' (S/(yt−2, . . . , yr)S)(−1),

where y0, . . . , yr form a generic set of linear forms of S. In particular, C is of dimension t −
1 < d and generated by a single element of degree 1. This already shows that TorS

0 (k,B) '
k(0)⊕ k(−1).

Applying cohomology to the above short exact sequence we get an isomorphism Hd+1(A) '
Hd+1(B) which shows that end Hd+1(B) = −d (cf Theorem 4.2 (b)). As depth B = d + 1 it
follows reg B = 1. Moreover the above exact sequence yields

dimk B1 = dimk A1 + 1 = r + 2 = dimk(S(0)⊕ S(−1))1.

So, the graded S-module B must have a minimal free resolution of the form

0 → Sbr−d(−r + d− 1) → . . . → Sbi(−i− 1) → . . . → Sb1(−2) → S ⊕ S(−1) → B → 0

with b1, . . . , br−d ∈ N.
As B is a Cohen-Macaulay module of dimension d + 1, regularity 1 and of multiplicity

deg X = r − d + 2 (cf Theorem 5.3 (c)) its Hilbert series is given by

F (λ, B) =
1 + (r + 1− d)λ

(1− λ)d+1
.

On the use of Betti numbers bi we also may write

F (λ, B) =
1

(1− λ)d+1
(1 + λ +

r−d∑
i=0

(−1)ibiλ
i+1).

Comparing coefficients we obtain

bi = (r + 1− d)

(
r − d

i

)
−
(

r − d

i + 1

)
, i = 1, . . . , r − d,

as required. �

Next we recall a well known result about the Betti numbers of a variety of minimal degree.

Lemma 8.2. Let Y ⊂ Pr
k be a variety of minimal degree with dim Y = d + 1. Let U be the

homogeneous coordinate ring of Y. Then

TorS
i (k, U) '

 k, if i = 0,
kci(−i− 1), if 0 < i < r − d,
0, if r − d ≤ i,

where ci = i
(

r−d
i+1

)
for 1 ≤ i < r − d.

Proof. This is well known (cf for instance [10]). In fact the Eagon-Northcott complex provides
a minimal free resolution of U over S. �
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Theorem 8.3. Let X ⊂ Pr
k be a variety of almost minimal degree which is the projection of

a (cone over a) rational normal scroll X̃ ⊂ Pr+1
k from a point p ∈ Pr+1

k \ X̃. Assume that
t := depth A ≤ d := dim X. Then

TorS
i (k,A) '


k, if i = 0,

kui(−i− 1)⊕ kvi(−i− 2), if 0 < i ≤ r − t + 1,

0, if r − t + 1 < i,

where
(a) u1 = t +

(
r+1−d

2

)
− d− 2,

i
(

r−d
i+1

)
≤ ui ≤ (r + 1− d)

(
r−d

i

)
−
(

r−d
i+1

)
, if 1 < i < r − 2d + t− 1,

ui = i
(

r−d
i+1

)
, if r − 2d + t− 1 ≤ i < r − d,

ui = 0, if r − d ≤ i < r − t + 1,

(b) max{0,
(

r−t+2
i+1

)
− (i + 2)

(
r−d
i+1

)
} ≤ vi ≤

(
r−t+2

i+1

)
, if 1 ≤ i < r − 2d + t− 2,

vi =
(

r−t+2
i+1

)
− (i + 2)

(
r−d
i+1

)
, if r − 2d + t− 2 ≤ i < r − d,

vi =
(

r−t+2
i+1

)
, if r − d ≤ i ≤ r − t + 1.

Moreover, vi − ui+1 =
(

r−t+2
i+1

)
− (r − d + 1)

(
r−d
i+1

)
+
(

r−d
i+2

)
for all 1 ≤ i < r − d.

Proof. As depth A = t and reg A = 2 (cf Theorem 4.2) the modules TorS
i (k,A) behave as

stated in the main equality. So let the numbers ui, vi be defined according to this main equality
with the convention that ui = vi = 0 for i > r − t + 1. Moreover let bi and ci be as in Lemma
8.1 resp. 8.2 with the convention that bi = 0 for i > r − d and ci = 0 for i ≥ r − d.

According to Corollary 7.6 there is a (cone over a) rational normal scroll Y ⊂ Pr
k of dimen-

sion d + 1 such that X ⊂ Y. Let J ⊂ S be the vanishing ideal of Y and let U := S/J be
the homogeneous coordinate ring of Y. The short exact sequence 0 → I/J → U → A → 0
together with Lemma 8.2 implies short exact sequences

(8.2) 0 → kci(−i− 1) → kui(−i− 1)⊕ kvi(−i− 2) → TorS
i−1(k, I/J) → 0

for all i ≥ 1.
Keep in mind that beg(I/J) = 2, u1 = dimk I2 = t +

(
r+1−d

2

)
− d− 2 (cf Corollary 4.4 (c))

and dimk J2 =
(

r−d
2

)
(cf Lemma 8.2) so that

dimk(I/J)2 = r − 2d + t− 2.

Whence, by Green’s Linear Syzygy Theorem (cf [11, Theorem 7.1]) we have

TorS
j (k, I/J)j+2 = 0 for all j ≥ r − 2d + t− 2.

So, the sequence 8.2 yields that ui = ci for all i ≥ r − 2d + t− 1. This proves statement (a) in
the range i ≥ r−2d+ t−1. The sequence 8.2 also yields that ci ≤ ui for all i ≤ r−2d+ t−1.

Next we consider the short exact sequence of graded S-modules 8.1. In particular we have
TorS

i (k, C) ' k(r−t+2
i )(−i − 1) for all i ∈ N0. So, by the sequence 8.1 and in view of Lemma

8.2 we get exact sequences

(8.3) kbi+1(−i− 2) → k(r−t+2
i+1 )(−i− 2) → kui(−i− 1)⊕ kvi(−i− 2)

→ kbi(−i− 1) → k(r−t+2
i )(−i− 1) → kui−1(−i)⊕ kvi−1(−i− 1) → kbi−1(−i)
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for all i ≥ 2. Now, we read off that ui ≤ bi for all i ≥ 1 and statement (a) is proved completely.
The sequence 8.3 also yields that

(8.4) vi = ui+1 − bi+1 +

(
r − t + 2

i + 1

)
for all i ≥ 1.

Observe that ci+1−bi+1 = −(i+2)
(

r−d
i+1

)
for 1 ≤ i < r−d. If 1 ≤ i < r−2d+ t−1, statement

(a) gives ci+1 ≤ ui+1 ≤ bi+1 so that

ci+1 − bi+1 +

(
r − t + 2

i + 1

)
≤ vi ≤

(
r − t + 2

i + 1

)
.

This proves the first estimate of statement (b).
If r−2d+t−2 ≤ i < r−d, statement (a) yields ui+1 = ci+1, hence vi = ci+1−bi+1+

(
r−t+2

i+1

)
.

This proves the second claim of statement (b). Finally, if r − d ≤ i < r − t + 1 statement (a)
and Lemma 8.2 yield that ui+1 = ci+1 = 0. Now the last claim of the statement (b) follows by
8.4. �

9. EXAMPLES

In this final section we present a few examples which illustrate the previous results. All
calculations of the “graded Betti numbers” ui and vi (cf Theorem 8.3) have been performed by
means of the computer algebra system SINGULAR [20]. As for rational scrolls and their secant
varieties we refer to [9] and [21].

First, we present three examples of 3-folds X of almost minimal degree in P11
k , one of them

being defined by 32 quadrics, the second by 32 quadrics and 1 cubic, the third by 32 quadrics
and 3 cubics. These examples show that, contrary to the number of defining quadrics (cf Corol-
lary 4.4 (c) ), the number of defining cubics may vary if the embedding dimension r, the dimen-
sion d and the arithmetic depth t of X are fixed. Notice that each smooth variety X ⊂ P11

k of
almost minimal degree which is not arithmetically Cohen-Macaulay is obtained by projecting a
rational scroll X̃ ⊂ P12

k from a point p ∈ P12
k \ Sec(X̃) (cf Theorem 5.6).

We first fix some notation. Let l, n, d1, . . . , dl ∈ N such that d1 ≤ d2leq . . . dl and
∑l

i=1 di =

n − l + 1. Let ai = i − 1 +
∑i

j=1 dj, i = 1, . . . , l − 1. Then, we write S(d1, . . . , dl) for the
rational normal scroll Sa1··· ,al−1

(cf Remark 7.1).

Example 9.1. A) Let X̃ ⊂ P12
k the 3-scroll S(2, 2, 6), thus the smooth variety of degree 10

defined by the 2× 2 minors of the matrixx0 x1

x3 x4

x6 x7 x8 x9 x10 x11

x1 x2

x4 x5

x7 x8 x9 x10 x11 x12

 .

Its homogeneous coordinate ring is

B = k[(s, t)2u5, (s, t)2v5, (s, t)6w] ⊂ k[s, t, u, v, w].

Projecting X̃ from the point

p1 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0) ∈ P12
k \ X̃

we get a non-degenerate variety X ⊂ P11
k of dimension 3 and of degree ≤ 10, (cf Remark 3.3

A) ). Let S denote a polynomial ring in 12 indeterminates, let I ⊂ S be the homogeneous
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vanishing ideal and let A = S/I be the homogeneous coordinate ring of X . Also, consider the
only not necessarily vanishing graded Betti numbers

ui := dimk TorS
i (k,A)i+1, vi := dimk TorS

i (k,A)i+2

of X . These numbers present themselves as shown below:

i 1 2 3 4 5 6 7 8 9 10 11
ui 32 130 234 234 140 48 7 0 0 0 0
vi 0 20 155 456 728 728 486 220 66 12 1

In particular t := depth A = 1 so that X cannot be of minimal degree and hence deg X =
10 = 11 − 3 + 2. Therefore, X is of almost minimal degree and of arithmetic depth 1. In
particular the projection map ν : X̃ → X is an isomorphism (cf Theorem 5.7) and so X
becomes smooth. Observe, that I is generated by 32 quadrics.
B) Let X̃ ⊂ P12

k be as in part A) but project X̃ from the point

p2 = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0) ∈ P12
k \ X̃.

Again let X ⊂ P11
k be the image of X̃ under this projection and define S, I, A as in part A).

Now the Betti numbers ui, vi present themselves as follows:

i 1 2 3 4 5 6 7 8 9 10 11
ui 32 131 234 234 140 48 7 0 0 0 0
vi 1 20 155 456 728 728 486 220 66 12 1

So, as above, we see that X is a smooth variety of almost minimal degree having dimension
3 and arithmetic depth 1. Observe, that now I is minimally generated by 32 quadrics and 1
cubic. So, if the same scroll X̃ = S(2, 2, 6) ⊂ P12

k is projected from two different points
p1, p2 ∈ P12

k \ Sec(X̃), the homological nature of the projection X ⊂ P11
k may differ.

C) Now, consider the scroll X̃ := S(2, 4, 4) ⊂ P12
k , so that X̃ is the smooth variety of dimension

3 and degree 10 defined by the 2× 2-minors of the matrixx0 x1

x3 x4 x5 x6

x8 x9 x10 x11

x1 x2

x4 x5 x6 x7

x9 x10 x11 x12

 .

Its homogeneous coordinate ring is

B = k[(s, t)2u3, (s, t)4v, (s, t)4w] ⊂ k[s, t, u, v, w].

Define X ⊂ P11
k as the projection of X̃ from the point p2 ∈ P12

k \ X̃ (cf part B) ). In this case,
the Betti numbers ui and vi of X take the values listed in the following table:

i 1 2 3 4 5 6 7 8 9 10 11
ui 32 133 248 234 140 48 7 0 0 0 0
vi 3 34 155 456 728 728 486 220 66 12 1

So, again X ⊂ P11
k is a smooth variety of almost minimal degree having dimension 3 and

arithmetic depth 1. But this time, besides 32 quadrics three cubics are needed to generate the
homogeneous vanishing ideal I of X .
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The previous example where all of arithmetic depth 1 and of dimension 3. By projecting
rational 3-scrolls in P12

k from appropriate points we also may obtain 3-dimensional varieties
X ⊂ P11

k of almost minimal degree and of arithmetic depth not equal to 1. We present two
examples to illustrate this.

Example 9.2. A) Next consider the 3-scroll X̃ := S(3, 3, 4) ⊂ P12
k defined by the 2× 2-minors

of the matrix x0 x1 x2

x4 x5 x6

x8 x9 x10 x11

x1 x2 x3

x5 x6 x7

x9 x10 x11 x12

 .

X̃ has the homogeneous coordinate ring

B = k[(s, t)3u2, (s, t)3v2, (s, t)4w] ⊂ k[s, t, u, v, w].

We project X̃ from the point

p3 = (0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0 : 0) ∈ P12
k \ X̃.

Like above we get a non-degenerate variety X ⊂ P11
k of degree 10 = codim X + 2 and Betti

numbers:
i 1 2 3 4 5 6 7 8 9 10
ui 33 142 278 284 155 48 7 0 0 0
vi 1 9 40 141 266 266 156 55 11 1

So, X is of arithmetic depth 2.
The tangent line of the curve

σ : k → X̃; s 7→ σ(s) := (0 : 0 : 0 : 0 : s3 : s2 : s : 1 : 0 : 0 : 0 : 0 : 0)

in the point σ(0) contains p3. So, the secant cone Secp3(X̃) – which must be a line according to
Theorem 5.6 (d) – is just the line ` which joins p3 and σ(0). The projection of ` from p3 to P11

k

is the point
q := (0 : 0 : 0 : 0 : 0 : 0 : 1 : 0 : 0 : 0 : 0 : 0) ∈ X.

So, in the notation of Theorem 5.6, we have Sing(ν) = %(` \ {p2}) = {q}. Now, let a :=
u2

v2 , b := s
t
, c := tw

v2 . An easy calculation shows that there is an isomorphism

ε : Xt3v2
'−→ Y := Spec(k[a, ab, b2, b3, b2c, bc, c])

with ε(q) = 0, where Xt3v2 ⊂ X is the affine open neighborhood of q defined by t3v2 6= 0.
It is easy to verify, that OY,0 is a G-ring and hence that q ∈ X is a G-point, as predicted by
Theorem 5.6.
B) Next, we project the 3-scroll X̃ := S(2, 4, 4) ⊂ P12

k of Example 9.1 C) from the point

p4 = (0 : 1 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0) ∈ P12
k \ X̃.

We get a 3-dimensional variety X ⊂ P11
k of degree 10 whose non-vanishing Betti numbers are:

i 1 2 3 4 5 6 7 8 9
ui 34 151 314 364 230 69 7 0 0
vi 0 0 0 6 35 56 36 10 1
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Now, X is of arithmetic depth 3 = dim(X). For each pair (s, t) ∈ k2 \ {(0, 0)} consider the
point

π(s, t) := (s2 : st : t2 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0) ∈ X̃.

Whenever st 6= 0, the two points π(s, t) and π(−
√
−1s,

√
−1t) are different and the line joining

them contains p4 and hence belongs to the secant cone Secp4(X̃). Moreover the tangent line of
the curve

τ : k → X̃; s 7→ π(s, 1)

in the point τ(0) = π(0, 1) runs through p4 and thus belongs to Secp4(X̃). Altogether this shows
(cf Theorem 5.6 (d) ) that Secp4(X̃) coincides with the 2-plane

{(a : b : c : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)
(a : b : c) ∈ P2

k} ⊂ P12
k .

Projecting this plane from p4 we obtain the line

h := {(a : c : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)
(a : c) ∈ P1

k} ⊂ X.

So, in the notation of Theorem 5.6 we have h = Sing(ν). Let a := t
s
, b := s2v

u3 , c = s2w
u3 and

let Xs2u3 ⊂ X be the affine open set defined by s2u2 6= 0. It is easy to verify, that there is an
isomorphism ϕ : Xs2u3

'→ Y := Spec(k[a2, b, ab, c, ac]) such that P := (b, ab, c, ac) ∈ Y is the
generic point of ϕ(h ∩Xs2u3). An easy calculation shows that OY,P is a G-ring and hence, that
the generic point of h in X is again a G-point.

We now present a class of non-normal Del Pezzo varieties. Note that these varieties are in
fact arithmetically Gorenstein.

Example 9.3. A) Let r ≥ 4 and let X̃ ⊂ Pr+1
k be the rational surface scroll S(2, r − 1), hence

the variety which is defined by the 2× 2-minors of the matrixx0 x1

x3 x4 · · · xr

x1 x2

x4 x5 · · · xr+1

 .

X̃ has the homogeneous coordinate ring

B := k[(s, t)2ur−2, (s, t)r−2v2] ⊂ k[s, t, u, v].

Now, let % : Pr+1
k \ {p} � Pr

k, (x0 : x1 : x2 : · · · : xr+1) 7→ (x0 : x2 : x3 : · · · : xr+1) be the
projection from the point p = (0 : 1 : 0 : · · · : 0) ∈ Pr+1

k \ X̃ and let X := %(X̃) ⊂ Pr
k. Then

X is a surface and has the homogeneous coordinate ring

A := k[s2ur−2, t2ur−2, (s, t)r−2v2] ⊂ B.

As B is a birational extension of A, the morphism ν = % �: X̃ → X is birational, so that
deg X = deg X̃ = r and X ⊂ Pr

k is a surface of almost minimal degree. Moreover, as X̃ is
smooth, ν = % �: X̃ → X is a normalization of X and Sing(ν) = %(Secp(X̃) \ {p}) is the
non-normal locus of X .

Similar as in example 9.2 B) we can check that the secant cone of X̃at p satisfies

Secp(X̃) = {(a : b : c : 0 : · · · : 0)
(a : b : c) ∈ P2

k}
and hence is a 2-plane. So, by Theorem 5.6, X cannot be of arithmetic depth ≤ 2 = dim X
and hence is arithmetically Cohen-Macaulay.
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Moreover

h := X \ Nor(X) = %(Secp(X̃) \ {p}) = {(a : c : 0 : · · · : 0) ∈ Pr
k

(a : c) ∈ P1
k}.

So, the non-normal locus h of X is a line.
Now consider the affine open set Xs2ur−2 ⊂ X defined by s2ur−2 6= 0 and let a := sr−5v2t

ur−2

and b := sr−4v2

ur−2 . Then, an easy calculation shows that there is an isomorphism

ϕ : Xs2ur−2
'−→ Y := Spec(k[a, b,

a2

b2
]) = Spec(k[a, b, c]/(cb2 − a2))

which maps h ∩Xs2ur−2 to the singular line a = b = 0 of the surface Y . The pinch point 0 of
Y can be written as ϕ(%(` \ {p})), where ` is the tangent line to X̃ at the point (1 : 0 : · · · : 0)
which contains p.

The same arguments apply to the affine open set Xt2ur−2 ⊂ X . This allows to conclude
that the open neighborhood Xs2ur−2 ∪ Xt2ur−2 of the singular line h of X is isomorphic to
the blow-up Proj(k[a, b][a2T, b2T ]) of the affine plane A2

k = Spec(k[a, b]) with respect to the
polynomials a2 and b2.
B) Let r ≥ 5 and let X̃ ⊂ Pr+1

k be the rational normal 3-scroll S(1, 1, r − 3), hence the variety
which is defined by the 2× 2-minors of the matrixx0

x2

x4 x5 · · · xr

x1

x3

x5 x6 · · · xr+1

 .

X̃ has the homogeneous coordinate ring

B := k[(s, t)ur−4, (s, t)vr−4, (s, t)r−4w] ⊂ k[s, t, u, v, w].

Now, let % : Pr+1
k \ {p} � Pr

k, (x0 : x1 : x2 : · · · : xr+1) 7→ (x0 : x1 − x2 : x3 : · · · : xr+1) be
the projection from the point p = (0 : 1 : 1 : 0 : · · · : 0) ∈ Pr+1

k \ X̃ and let X := %(X̃) ⊂ Pr
k.

Then X is of dimension 3 and has the homogeneous coordinate ring

A := k[sur−4, tur−4 − svr−4, tvr−4, (s, t)r−4w] ⊂ B.

As B is a birational extension of A, the morphism ν = % �: X̃ → X is birational, so that
deg X = deg X̃ = r and X ⊂ Pr

k has dimension 3 and is of almost minimal degree. Moreover,
as X̃ is smooth, ν = % �: X̃ → X is a normalization of X and Sing(ν) = %(Secp(X̃) \ {p}) is
the non-normal locus of X .

Similar as in example A) above we can check that the secant cone of X̃at p satisfies

Secp(X̃) = {(a : b : c : d : 0 : · · · : 0)
(a : b : c : d) ∈ P3

k}

and hence is a 3-plane. So, by Theorem 5.6 the variety X cannot be of arithmetic depth ≤ 3 =
dim X and hence is arithmetically Cohen-Macaulay, that is a non-normal Del Pezzo variety of
dimension 3.

Moreover

%(Secp(X̃) \ {p}) = {(a : b : d : 0 : · · · : 0) ∈ Pr
k

(a : b : d) ∈ P2
k}.

So, the non-normal locus of X is a plane, in accordance with Proposition 5.8 and Corollary 6.10.
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Finally observe that X in 9.3 A) is a divisor on the variety of minimal degree %(Z) ⊂ Pr
k,

where Z ⊂ Pr+1
k is the variety defined by the 2× 2 minors of the matrix(

x3 x4 · · · xr

x4 x5 · · · xr+1

)
.

In the previous example we have met arithmetically Cohen-Macaulay varieties of almost
minimal degree which occur as a subvariety of codimension one on a variety of minimal degree.
We now present an example of a normal Del Pezzo variety which does not have this property.

Example 9.4. Let X ⊂ P9
k be the smooth 6-dimensional arithmetically Gorenstein variety of

degree 5 defined by the 4× 4 Pfaffian quadrics F1, F2, F3, F4, F5 of the skew symmetric matrix
(cf [8])

M =


0 x0 x1 x2 x3

−x0 0 x4 x5 x6

−x1 −x4 0 x7 x8

−x2 −x5 −x7 0 x9

−x3 −x6 −x8 −x9 0

 .

According to [8] the columns of M provide a minimal system of generators for the first
syzygy module of the homogeneous vanishing ideal I ⊂ S = k[x0, x2, · · · , x9] of X . Assume
now that there is a variety W ⊂ P9

k of minimal degree with dim W = 7 and X ⊂ W . So,
W is arithmetically Cohen-Macaulay and of codimension 2 and by the Theorem of Hilbert-
Burch the homogeneous vanishing ideal J ⊂ S of W is generated by the three 2 × 2-minors
G1, G2, G3 ∈ S2 of a 2 × 3-matrix with linearly independent entries in S1 (cf [10]). So, after
an eventual renumbering of the generators Fi, we may assume that G1, G2, G3, F4, F5 ∈ I2 is a
minimal system of generators of I . As J admits two independent syzygies

λi1G1 + λi2G2 + λi3G3 = 0, λij ∈ S1, i = 1, 2, j = 1, 2, 3,

a minimal system of generators for the first syzygy module of I would be given by the matrix
of the form

N =


0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ∈ S5×5
1 .

On the other hand there should be a k-linear transformation which converts N into M – a
contradiction.

Remark 9.5. A) The variety X ⊂ P9
k of Example 9.4 is normal and Dell Pezzo and hence not

a projection of a variety X̃ ⊂ P10
k of minimal degree. The non-existence of the above vari-

ety W ⊂ P9
k of minimal degree thus is in accordance with Theorem 7.3. By Remark 7.7 the

projection X ⊂ P4
k of the Veronese surface F ⊂ P5

k is not contained in a variety Y ⊂ P4
k of

minimal degree either, according to the fact, that F is not a scroll. So Remark 7.7 and Example
9.4 illustrate that the hypotheses of Theorem 7.3 cannot be weakened.
B) The examples of this section (with the execption of the last one) are all of relatively big
codimension. It turns out, that the structure of varieties of almost minimal degree and small
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codimension is fairly fixed and cannot vary very much. We study these varieties more exten-
sively in [6].
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