
Composite Finite Elements for Elliptic Boundary

Value Problems with Discontinuous Coefficients

S.A. Sauter∗ R. Warnke†

Abstract

In this paper, we will introduce composite finite elements for solving
elliptic boundary value problems with discontinuous coefficients. The
focus is on problems where the geometry of the interfaces between the
smooth regions of the coefficients is very complicated.

On the other hand, efficient numerical methods such as, e. g., multi-
grid methods, wavelets, extrapolation, are based on a multi-scale dis-
cretization of the problem. In standard finite element methods, the
grids have to resolve the structure of the discontinuous coefficients.
Thus, straightforward coarse scale discretizations of problems with
complicated coefficient jumps are not obvious.

In this paper, we define composite finite elements for problems with
discontinuous coefficients. These finite elements allow the coarsening
of finite element spaces independently of the structure of the discontin-
uous coefficients. Thus, the multigrid method can be applied to solve
the linear system on the fine scale.

We focus on the construction of the composite finite elements and
the efficient, hierarchical realization of the intergrid transfer operators.
Finally, we present some numerical results for the multigrid method
based on the composite finite elements (CFE–MG).

1 Introduction

In many practical applications, partial differential equations with discontin-
uous coefficients have to be solved numerically. These coefficients represent
the properties of the materials which may change discontinuously, e. g., in
composite materials, by orders of magnitude.

Such problems are usually discretized via the finite element method. In
standard finite element methods, the grid has to resolve the structure of
the discontinuous coefficients. This condition links the minimal dimension
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190, CH-8057 Zürich, Switzerland

†(rwarnke@amath.unizh.ch), msg systems ag, Robert-Bürkle-Strasse 1, D-85737 Isman-
ing

1



of the finite element spaces directly to the number of discontinuities in the
coefficients. On the other hand, the efficiency of many fast solution tech-
niques as, e. g., multigrid methods, extrapolation, wavelets etc. depends on
a multi-scale discretization of the problem.

In [9], [10], [11] and [18], composite finite elements are developed for
the approximation of PDEs on complicated domains (see also [19] and [6]).
These finite elements allow coarse scale discretizations with the minimal
number of unknowns not depending on the shape of the domain.

In this paper, we generalize the concept of composite finite elements to
problems with discontinuous coefficients. As before, these finite elements can
be used for coarsening finite element spaces and the coarse space dimension is
independent of the structure of the discontinuous coefficients. In the context
of the multigrid method, the coarse scale discretizations are employed to
solve the linear system on the fine scale.

We compose the shape functions of a finite element on the coarse grids
locally of piecewise polynomials on the elements of the finest grid. They are
determined by solving locally the homogeneous PDE with suitable boundary
conditions.

The concept of adapting the finite elements or, more generally, the ansatz
functions to a given PDE is the basis for many discretization techniques
(see, e. g., [14], [12]). In [15], a multigrid algorithm is developed for periodic
coefficients using homogenization techniques.

Our goal is to construct finite elements for unstructured discontinuous
coefficients. This construction will be hierarchical. Thus, it can efficiently
be used in a multigrid algorithm. Since the finite element functions on the
coarser grids are combinations of the ones on the finer grids we call these
finite elements composite finite elements. In the following, we denote the
multigrid method based on these composite finite elements by CFE–MG.

In this paper, we concentrate on the construction of the composite finite
elements and the efficient realization of the CFE–MG. In [20], we prove an
approximation result for these finite elements in one dimension and, based on
that, the convergence of the CFE–MG. The convergence rate is independent
of the discontinuous coefficient. Thus, the total complexity of the multigrid
method is linear in the degrees of freedom on the finest grid.

The paper is organized as followed. In Section 2, we formulate the model
problem and its discretization, followed by a brief review to the multigrid
method in Section 3. In Section 4, we define the composite finite elements for
the one-dimensional problem and discuss its hierarchical realization. Section
5 is devoted to the two-dimensional problem. There, we will present a
hierarchical construction of the composite finite elements. Additionally, we
describe the efficient computation of these finite elements in the context of
the multigrid method. Finally, in Section 6, we show some numerical results.
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2 Model problem and discretization

Throughout this paper, we consider the problem

− div(a grad u) = f in Ω

u = 0 on ∂Ω

as a model problem for elliptic boundary value problems. We assume that
the coefficient a is discontinuous. The precise meaning of this problem with
a discontinuous coefficient is given later in this section. We consider this
problem on a bounded domain Ω ⊂ R

d with a polygonal Lipschitz boundary
∂Ω for d ∈ {1, 2}. However, the definitions and algorithms for the two-
dimensional problem can be transferred to three dimensions in a straight-
forward manner.

We presume that the coefficient a is piecewise constant. More precisely,
let q ∈ N and P = {ωi ⊂ Ω : 1 ≤ i ≤ q} be a finite set of disjoint subdomains
with polygonal Lipschitz boundaries ∂ωi such that

⋃

ω∈P

ω = Ω .

Let a ∈ L∞(Ω) such that there is a family of real numbers {aω}ω∈P with
a|ω = aω for all ω ∈ P and amin := min{aω : ω ∈ P} > 0. Therewith, we
define the bilinear form

b : H1
0 (Ω) ×H1

0 (Ω) → R; (u, v) 7→

∫

Ω
a 〈grad u, grad v〉 dx . (1)

Obviously, b is symmetric, bounded and coercive by the Friedrichs inequality
since we assume amin > 0. The variational formulation of the model problem
reads as follows.

Problem 2.1. Let f ∈ H1
0 (Ω)′ be given. Find u ∈ H1

0 (Ω) such that

b(u, v) = f(v)

holds for all v ∈ H1
0 (Ω).

The existence and uniqueness of Problem 2.1 is ensured by the Lax-
Milgram theorem.

We denote the internal boundary, the so called interfaces, by

γ := Ω ∩
⋃

ω∈P

∂ω (2)

and the jump of a function u in x ∈ γ by [u](x).
In [2], sufficient conditions on the regularity of the interfaces γ are given

such that the variational Problem 2.1 is equivalent to a strong formulation
with interface conditions.
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We approximate the solution of Problem 2.1 by the solution of a dis-
crete, finite dimensional problem which is obtained by Galerkin discretiza-
tion. Therefore, we replace the infinite dimensional space H1

0 (Ω) in Problem
2.1 by a finite dimensional subspace S ⊂ H1

0 (Ω). This subspace is given by
finite elements. Then, the discrete problem reads as follows.

Problem 2.2. Let f ∈ H1
0 (Ω)′ be given. Find uS ∈ S such that

b(uS , v) = f(v)

holds for all v ∈ S.

3 Multigrid method

Let {ϕx}x∈Θ be a basis of S for some index set Θ. Then, we define the
system matrix Axy := b(ϕy , ϕx) and the right hand side Fx := f(ϕx) for all
x, y ∈ Θ. Thus, Problem 2.2 is equivalent to: Find U ∈ R

Θ such that

AU = F . (3)

The solution U of (3) and uS of Problem 2.2 are linked via

uS =
∑

y∈Θ

Uy ϕy .

Using, e. g., the linear hat functions as the basis {ϕx}x∈Θ on a grid G
with the set of interior nodes Θ yields a sparse system matrix A of, typically,
very large dimension. Thus, iterative solvers have to be employed for solving
the linear system. In this paper, we use the multigrid method as an efficient
iterative method to solve large sparse systems as in (3).

Under mild conditions, each iteration step of the multigrid method has a
complexity which is linear in the number of unknowns. If, additionally, the
convergence rate is bounded below away from 1, the system can be solved
with linear complexity up to a given precision.

The key ingredients of the multigrid method are:

• a hierarchy of discretizations (given, e. g., by finite elements on a hi-
erarchy of grids),

• prolongation and restriction operators P l+1
l , Rl

l+1 which interfere be-
tween the discretizations, and

• smoothing operators Sl for the discretizations.
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Typically, the hierarchy of discretizations is obtained via a nested hier-
archy of grids {Gl}

L
l=0 and the finite element basis functions

{

ϕl
x

}

x∈Θl
on

the grids Gl. The prolongation and restriction operators are defined by

P l+1
l : R

Θl → R
Θl+1;

(

P l+1
l U

)

x
:=

∑

y∈Θl

ϕl
y(x)Uy for all x ∈ Θl+1

(4)

and

Rl
l+1 :=

(

P l+1
l

)T
: R

Θl+1 → R
Θl ;

(

Rl
l+1U

)

x
:=

∑

y∈Θl+1

ϕl
x(y)Uy for all x ∈ Θl .

(5)

We simply replace the hat basis {ϕx}x∈Θ by the composite finite element
basis for the definition of the prolongation and restriction operators in the
CFE–MG.

Finally, the multigrid method requires smoothing operators

Sl : R
Θl → R

Θl , 0 ≤ l ≤ L ,

on the grid hierarchy. For simplicity, we consider here only classical iteration
methods as the damped Jacobi iteration or the (symmetric) Gauß-Seidel
iteration.

Multigrid Algorithm 3.1. Let ν1, ν2 ∈ N0 be the number of pre- respec-
tively post-smoothing steps, let µ ∈ {1, 2} and 0 ≤ l ≤ L. Let U0 ∈ R

Θl be
a starting guess, e. g., U0 = 0 or determined by a nested iteration.

Let i ∈ N and assume that U i−1 is given. If l = 0 set U i := A−1
0 F .

Otherwise, compute U i by an iteration of the multigrid method, i. e.,

1. perform ν1 pre-smoothing steps W := Sν1

l U
i−1,

2. compute the restriction of the residuum D := Rl−1
l

(

AlW − F
)

,

3. perform µ iterations of this algorithm with l−1 instead of l, D instead
of F and the initial vector V 0 = 0. The result is denoted by V µ,

4. set W := U i−1 − P l
l−1V

µ and

5. perform ν2 post-smoothing steps U i := Sν2

l W .

Since the system matrix Al is sparse, the complexity of a multiplication
with Al is of order O(#Θl). Thus, the complexity of the damped Jacobi
iteration or the (symmetric) Gauß-Seidel iteration is of order O(#Θl) as
well. Typically, in particular for the prolongation and restriction in (4)
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respectively (5), the complexity of Algorithm 3.1 (2) and (4) is of order
O(#Θl) each.

If max
{ #Θl

#Θl+1
: 0 ≤ l < L

}

< 1 and A−1
0 F is solved with constant

complexity, then, the complexity of one iteration of Algorithm 3.1 is of
order O

(

(ν1 + ν2)#Θl

)

. For a proof, see [7].

4 Composite finite elements in one dimension

Due to the lack of regularity, standard finite elements are not suited for the
approximation of Problem 2.1, see [3]. Our goal is to adapt the shape of the
finite elements to the solution of Problem 2.1.

More precisely, we solve the homogeneous problem, i. e., Problem 2.1
with f = 0, on local neighborhoods about the elements T of the grid G
and compose these solutions with suitable boundary conditions to globally
continuous finite elements. These finite elements are a generalization of the
linear finite elements in the sense that they reduce to linear elements for
constant coefficients.

Let G be a grid for Ω = (α, β) ⊂ R and let Θ be the set of nodes of G.
We emphasize that the interface γ may not be resolved by the nodes Θ. We
assume, that the elements T ∈ G are open such that Θ ∩ T consists of the
endpoints of T and γ ∩ T of the inner interfaces with respect to T .

Throughout the paper, we use the following notation. For a grid G with
nodes Θ, {ϕx}x∈Θ denotes the standard “hat” functions while the basis of
the composite finite elements will be denoted by {ψx}x∈Θ.

The finite element function ψx, x ∈ Θ, restricted to T ∈ G, will be the
unique solution of the local and homogeneous PDE

−ai ψ
′′
x = 0 in ω ∩ T for all ω ∈ P with ω ∩ T 6= ∅ ,

[aψ′
x] = [ψx] = 0 on γ ∩ T ,

ψx(y) = δxy for all y ∈ Θ ∩ T .

(6)

It turns out that, for the generalization of this definition to the two-
dimensional case, it is preferable to reformulate (6) in a variational way.

Definition 4.1. For all x ∈ Θ and all T ∈ G, let ux,T ∈ H1
0 (T ) be the

solution of
b(ux,T , v) = −b(ϕx, v) (7)

for all v ∈ H1
0 (T ). Then, the basis functions are given by

ψx|T := ux,T + ϕx|T

and the space of composite finite elements by

SCFE := span{ψx : x ∈ Θ} ⊂ H1(Ω) .
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Figure 1: Illustration of a basis function ψx2
. The grid G = {T1, . . . , Tn}

does not resolve the interfacial points of the coefficient a.

We call this finite elements composite finite elements as they are a linear
combination of linear finite elements on the mesh which is induced by the
set of nodes Θ∪γ. In the hierarchical representation of these finite elements,
the elements on the coarser grids are a linear combination of elements on the
finer grids. Thus, they are hierarchically composed of elements with respect
to the set of nodes Θ ∪ γ.

In Figure 1, a basis function ψx2
is depicted for a characteristic example.

Lemma 4.2. For all x ∈ Θ and all T ∈ G, ψx|T solves (6) uniquely.

Remark 4.3. 1. For all x ∈ Θ, it holds

suppψx = suppϕx =
⋃

{

T : T ∈ G with x ∈ T
}

.

2. For all x ∈ Θ and all T ∈ G, the product
(

aψ′
x|T

)

is constant.

3. In the case of a constant coefficient a, it holds ψx = ϕx for all x ∈ Θ.

4. {ψx}x∈Θ is a partition of unity on Ω.

The construction of the composite finite elements allows to define a hier-
archy of discretizations for Problem 2.1. The dimension of the coarsest one
is very small and independent of the number and structure of the interfaces
γ. In order to use them in a multigrid algorithm it is essential to define, in
addition, local intergrid operators which will be done next.

Let L ∈ N and let {Gl}
L
l=0 be a hierarchy of grids on Ω. The index L

corresponds to the finest and the index 0 to the coarsest grid. Let Θl be the
set of nodes of grid Gl.
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We assume that this hierarchy of grids is nested, i. e., for 0 ≤ l < L, it
holds

Θl ⊂ Θl+1 . (8)

The set of successors of an element T l ∈ Gl is given by

sons(T l) :=
{

T l+1 ∈ Gl+1 : T l+1 ⊂ T l
}

⊂ Gl+1 .

By Lemma 4.2, the basis functions
{

ψl
x

}

x∈Θl
(cf. Definition 4.1) satisfy

(6) for all T l ∈ Gl. The basis functions ψl+1
y on the next finer grid satisfy (6)

with T = T l+1 ∈ sons(T l) for all y ∈ Θl+1∩T l. This leads to the hierarchical
ansatz

ψl
x =

∑

y∈Θl+1∩T l

αxy ψ
l+1
y . (9)

Relation (9) is a local hierarchical ansatz and it remains to determine

the coefficients αxy such that ψl
x satisfies (6) at the nodes y ∈ Θl+1 ∩ T l as

well.
This leads to uniquely solvable linear systems with dimension #

(

Θl+1 ∩

T l
)

. In particular, the dimension is very small and independent of the
coefficient a (cf. (12)).

Definition 4.1 is equivalent to the following recursion.

Lemma 4.4. Let 0 ≤ l < L. Then, for all x ∈ Θl and all T ∈ Gl, it holds

ψl
x|T = ul

x,T + ψl+1
x |T (10)

where ul
x,T ∈ SCFE

l+1 ∩H1
0 (T ) is the solution of

b(ul
x,T , ψ

l+1
y ) = −b(ψl+1

x , ψl+1
y ) (11)

for all y ∈ Θl+1 ∩ T .

Proof. We denote the function defined by (10) and (11) by ξl
x|T := ul

x,T +

ψl+1
x |T and show ξl

x|T = ψl
x|T , i. e. ξl

x satisfies (7). The interpolation onto
the space SCFE is defined by

ICFE : H1(Ω) → SCFE; u 7→
∑

x∈Θ

u(x)ψx

which is well defined on H1(Ω) in one dimension by Sobolev’s theorem. Let
x ∈ Θl, T ∈ Gl and vT ∈ H1

0 (T ). For all t ∈ sons(T ) ⊂ Gl+1, set

ut := (vT − ICFE
l+1 vT )|t ∈ H1

0 (t) .

We extend the functions vT and ut by 0 to Ω. It follows

vT = ICFE
l+1 vT +

∑

t∈sons(T )

ut
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and consequently

b(ξl
x, vT ) =

∑

y∈Θl+1∩T

vT (y) b(ξl
x, ψ

l+1
y ) +

∑

t∈sons(T )

b(ξl
x, ut) .

Equation (11) implies b(ξl
x, ψ

l+1
y ) = 0 for all y ∈ Θl+1 ∩ T and the first

sum vanishes. Furthermore, it holds ξl
x ∈ SCFE

l+1 and we can represent ξl
x

by the functions ψl+1
y which satisfy Definition 4.1. Choosing v in Definition

4.1 as ut leads to b(ξl
x, ut) = 0 for all t ∈ sons(T ) and also the second sum

vanishes.

The essential difference of Lemma 4.4 and Definition 4.1 is that the
ansatz and test spaces in (11) are not H1

0 (T ) but only SCFE
l+1 |T ∩ H1

0 (T ).
Thus, (11) is equivalent to a system of linear equations with a dimension
that does not depend on a.

The coefficients αxy in (9) can be computed as follows. In the end points
x, y of an element T = (x, y) ∈ Gl it holds αxx = 1 and αxy = 0. For an
inner point z ∈ Θl+1 ∩ T , αxz is determined by the linear system in (11).
The coefficients b(ψl+1

x , ψl+1
y ) = (Al+1)yx of these equations are given by the

elements of the system matrix Al+1 corresponding to the grid Gl+1.
Usually, the one-dimensional grid hierarchy for the multigrid method

arises from recursive bisections of the elements. Thus, the linear system in
(11) has dimension one and the solution is given by

αxy = ψl
x(y) = −

b(ψl+1
x , ψl+1

y )

b(ψl+1
y , ψl+1

y )
. (12)

Since we have ψl
x|T = ul

x,T +ψl+1
x |T ∈ SCFE

l+1 the composite finite element
spaces are nested, i. e.,

SCFE
l ⊂ SCFE

l+1 . (13)

5 Composite finite elements in two dimensions

Analogously to the one-dimensional problem, we solve the homogeneous
PDE locally for the construction of the composite finite element basis func-
tions in two dimensions. In contrast to the one-dimensional problems, these
local problems along with the Lagrange property for the nodal basis do not
define the functions uniquely since no boundary values are described in the
open interior of the boundary edges of the elements.

Therefore, we impose artificial boundary conditions on the boundary
of an element neighborhood which we call “security zone”. Similarly to
PUFEM (partition of unity finite element method), see [16], we localize the
solutions of these boundary value problems and utilize them for the finite
elements. This gives us a hierarchical construction of the finite elements
which can efficiently be combined with the multigrid method.
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γ

T

Figure 2: An element T for which the two connectivity components of T \ γ
can be subdivided into 5 successors such that γ ∩ T is resolved

In Subsection 5.1, the construction of a hierarchy of finite elements is
presented, followed by some basic properties for these finite elements in
Subsection 5.2. In Subsection 5.4, the efficient realization of the CFE–MG
will be described.

5.1 Construction of composite finite elements

Let L ∈ N and let {Gl}
L
l=0 be a hierarchy of grids of Ω (see Section 2) such

that GL is the finest and G0 the coarsest grid. Let Θl be the set of nodes
of grid Gl. We use the notation

{

ϕl
x

}

x∈Θl
for the basis of the linear finite

elements on the grid Gl and
{

ψl
x

}

x∈Θl
for the composite finite element basis.

Assumption 5.1. The finest grid GL resolves the geometry of the internal
boundary γ, i. e.,

γ ⊂
⋃

T∈GL

∂T .

The grid hierarchy is nested, i. e., for all 0 ≤ l < L and all T ∈ Gl, there
exists a set sons(T ) ⊂ Gl+1 such that

T =
⋃

t∈sons(T )

t . (14)

By (14), the sets of nodes Θl are nested, i. e.,

Θl−1 ⊂ Θl .

We say, a grid G “almost resolves” the polygonal interfaces γ if the el-
ements T ∈ G can be subdivided into O(1) successors sons(T ) such that
the refined grid resolves γ (see Figure 2). A grid hierarchy satisfying As-
sumption 5.1 can, for instance, be obtained by the following algorithm. A
starting grid G0 is refined by congruent refinement (connecting midpoints of
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edges) until it almost resolves γ yielding the grid GL−1. Finally, GL is the
subdivision of GL−1 such that γ is resolved.

The construction of the composite finite element basis functions is hier-
archical and starts from the finest grid of the hierarchy. By Assumption 5.1,
GL resolves γ. Thus, we set

SCFE
L := SL =

{

v ∈ C(Ω) : ∀T ∈ GL : v|T ∈ P1

}

.

If we assume that SCFE
l+1 is already defined we can, analogously to (9), make

the ansatz for the coarser basis functions for each element T l ∈ Gl:

ψl
x|T l =

∑

y∈Θl+1∩T l

αxy ψ
l+1
y |T l . (15)

We will construct these finite elements such that the following properties
hold:

a. On the elements T ∈ Gl, they solve the local homogeneous equation
related to the bilinear form b(·, ·) as in (1).

b. They form a Lagrange basis.

c. They have a local support suppψl
x ⊂

⋃
{

T : T ∈ Gl with x ∈ T
}

.

The coefficients αxy are determined in three steps:

1. Setting up local problems (security zones and boundary condition),

2. Solving these local problems,

3. Composing the local solutions to globally continuous basis functions.

5.1.1 Setting up local problems (Step 1)

In one dimension, the boundary values (values at the interval endpoints) of
the local problems on the elements are canonically given by the Lagrange
property of the finite elements. In the two-dimensional case, we have to
impose artificial boundary values at the interior of the element edges. Since
these artificial boundary conditions, in general, do not reflect the possibly
oscillating behavior of the solutions, we reduce their influence by imposing
them at the boundary of the security zones at a proper distance from T .

For ω ⊂ Ω, let
Gω,0

l := {ω}

and, for all k ∈ N, we define “triangle layers” about ω by (see Figure 3)

Gω,k
l :=

{

T ∈ Gl : ∃S ∈ Gω,k−1
l : T ∩ S 6= ∅

}

⊂ Gl .
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GT,1
l

GT,2
l

T

Figure 3: The subgrids GT,1
l and GT,2

l for T ∈ Gl

Finally, we denote the domain of Gω,k
l by

dom(Gω,k
l ) := int

(

⋃

{

T : T ∈ Gω,k
l

}

)

.

The construction of the finite elements is recursive starting on the finest
grid. We assume that the basis

{

ψl+1
x

}

x∈Θl+1
is defined. In the following,

we will construct the basis
{

ψl
x

}

x∈Θl
. The interpolation ICFE

l+1 onto SCFE
l+1 is

given by

ICFE
l+1 : C(Ω) → SCFE

l+1 ; u 7→
∑

x∈Θl+1

u(x)ψl+1
x . (16)

Let k ∈ N0. For the security zone of the element T ∈ Gl, we use

UT := dom(GT,k
l ) . (17)

In order to obtain three linearly independent shape functions on each el-
ement T , we choose three linearly independent functions on ∂UT . For a
vertex x of T , let pl

x,T ∈ P1 be the (unique) affine extension of the standard

shape function ϕl
x|T to a function on R

2 and

gl
x,T :=

(

ICFE
l+1 p

l
x,T

)
∣

∣

UT
(18)

the interpolation in SCFE
l+1 |UT

. In particular, gl
x,T interpolates pl

x,T in the
vertices of T .

This leads to the following local boundary value problem. For each vertex
x of T , find ul

x,T ∈ SCFE
l+1 ∩H1

0 (UT ) such that

b(ul
x,T , v) = −b(gl

x,T , v) (19)
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holds for all v ∈ SCFE
l+1 ∩H1

0 (UT ).

5.1.2 Solving (Step 2)

Let θT denote the set of vertices of a triangle T . The problem (19) has
a unique solution ul

x,T ∈ SCFE
l+1 ∩ H1

0 (UT ) for all x ∈ θT . Therefore, the
functions

ξl
x,T := ul

x,T + gl
x,T ∈ SCFE

l+1 |UT
(20)

solve the homogeneous equations associated with the bilinear form b and
have the boundary values ξl

x,T = gl
x,T on ∂UT .

However, these solutions, in general, are not a Lagrange basis on T , i. e.,
they do not interpolate (δxy)y∈θT

with the Kronecker delta δxy. Because the
boundary values gl

x,T |∂UT
are linearly independent, the Lagrange property

can be satisfied by a simple normalization: There exists coefficients βl
xy ∈ R

for the vertices x, y ∈ θT such that the functions

ζ l
x,T :=

∑

y∈θT

βl
xy ξ

l
y,T ∈ SCFE

l+1 |UT
(21)

fulfill the equations ζ l
x,T (y) = δxy for all x, y ∈ θT . Thus,

(

ζ l
x,T |T

)

x∈θT
is a

local Lagrange basis on T .

5.1.3 Composing (Step 3)

In this last step, we restrict the functions ζ l
x,T to the elements T and compose

the global basis functions. In general, however, the functions on neighboring
elements do not coincide along common edges such that

∑

T∈G
x,1
l

ζ l
x,T |T

does not give a continuous basis function for x ∈ Θl. In order to obtain
conforming finite element functions we average the functions on the element
edges. More precisely, the values of the coarsened finite element function ψl

x,
at the fine grid nodes y will be linear combinations of the (discontinuous)
values of the functions ζ l

x,T in these nodes and we employ the general ansatz

ψl
x (y) =

∑

T∈G
y,1
l

αl
x,T,yζx,T (y) .

Once, the coefficients ψl
x (y) have been fixed, the composite finite element

basis functions are determined by formula (15) with the choice αxy := ψl
x (y).

In the following, we will define the averaging coefficients αl
x,T,y.

13



γ

x

dom(Gx,1
l−1)

: nodes in θx
l

Figure 4: The set θx
l

The internal boundary γ is part of the Lipschitz boundaries of the in-
clusions Ωi, i ∈ N , and, by Assumption 5.1, part of the edges of GL. Hence,
there exists a piecewise constant, oriented normal vector field

ν : γ → S
1 ⊂ R

2

almost everywhere on γ. For all T ∈ Gl and its vertices x, we define the
weights

[

αl
x,T

]

by the jumps which are averaged over a triangle according

[

αl
x,T

]

:=
∣

∣

∣

∫

γ∩T
[a]

[

∂νζ
l
x,T

]

dσ
∣

∣

∣
. (22)

At the end of this section, we motivate the choice of the weights in
the case of laminar interfaces. The factor [a] excludes “artificial” interfaces
where the coefficient a crosses continuously.

For all 0 ≤ l < L and all x ∈ Θl, set (see Figure 4)

θx
l+1 := {x} ∪

(

(Θl+1 \ Θl) ∩ dom(Gx,1
l )

)

.

We define the basis functions ψl
x at y ∈ θx

l+1 by the weighted averages of

the functions ζ l
x,T of the elements T ∈ Gy,1

l . In case of
[

αl
x,T

]

= 0 (which
happens, e. g., for a constant coefficient a), we return to unweighted averages
which is reflected in the definition

αl
x,T,y :=

{

1 for
∣

∣

∣

∑

T∈G
y,1
l

[

αl
x,T

]

∣

∣

∣
< tol ,

[

αl
x,T

]

otherwise,

14



for x ∈ Θl, y ∈ θx
l+1 and some tolerance tol > 0 to avoid numerical instabil-

ities. With this, we set the coefficients

ψl
x(y) :=

(

∑

T∈G
y,1
l

αl
x,T,y

)−1 ∑

T∈G
y,1
l

αl
x,T,y ζx,T (y) . (23)

This determines the coefficients in (15) and, finally, we arrive at (with the
coefficients ψl

x(y) as in (23))

ψl
x :=

∑

y∈θx
l+1

ψl
x(y)ψl+1

y . (24)

5.2 Properties of composite finite elements

The construction of the previous sections lead to the definition of the com-
posite finite element spaces for problems with jumping coefficients.

Definition 5.2. Let Assumption 5.1 be satisfied.

• l = L: On the finest grid GL, the linear finite element Lagrange basis
is given by

{

ψL
x

}

x∈ΘL
and the corresponding composite finite element

space equals the standard one

SCFE
L := SL ⊂ H1(Ω) .

• l = L− 1, L− 2, . . .

The basis functions
{

ψl
x

}

x∈Θl
are given as in (23), (24) and the space

of composite finite elements SCFE
l is given by

SCFE
l := span{ψl

x : x ∈ Θl} ⊂ H1(Ω) .

Next, we rewrite the steps for computing the finite element basis func-
tions

{

ψl
x

}

x∈Θl
for 0 ≤ l ≤ L in an algorithmic way.

Algorithm 5.3. Let Assumption 5.1 be satisfied and let
{

ψL
x

}

x∈ΘL
:=

{

ϕL
x

}

x∈ΘL
and SCFE

L := SL. Let k ∈ N0. For l = L− 1, . . . , 0 do

1. for all T ∈ Gl with vertices θT compute for all x ∈ θT

(a) i. the boundary values gl
x,T by (18),

ii. the solutions ul
x,T ∈ SCFE

l+1 ∩H1
0 (UT ) of (19) and

iii. the functions ξl
x,T := ul

x,T + gl
x,T in UT ,

(b) the functions ζ l
x,T by (21) and

(c) the weights
[

αl
x,T

]

by (22),

15



2. for all x ∈ Θl, compute ψl
x by (24).

Remark 5.4. For the assembling of the linear system, step (2) in Algorithm
5.3 is not required but only the weights

[

αl
x,T

]

have to be computed. Such
constructions via “mask coefficients” are quite common in wavelet methods.

With (24), it holds ψl
x ∈ SCFE

l+1 for all x ∈ Θl leading to the nestedness
of the spaces:

SCFE
l ⊂ SCFE

l+1 .

Lemma 5.5. Let Assumption 5.1 be satisfied and let 0 ≤ l ≤ L.

1.
{

ψl
x

}

x∈Θl
forms a Lagrange basis.

2. For all x ∈ Θl, it holds suppψl
x ⊂ suppϕl

x.

Proof. Both assertions hold for linear finite elements, thus, for the composite
finite elements

{

ψL
x

}

x∈ΘL
on the finest grid GL. Let 0 ≤ l < L and assume

that the assertions hold for l+ 1. Let x ∈ Θl. 1. Inductively, we know that
{

ψl+1
x

}

x∈Θl+1
is a Lagrange basis and conclude ψl+1

z (y) = 0 for all y ∈ Θl

and for all z ∈ Θl+1 \ Θl. Therefore, from

θx
l+1 ⊂ {x} ∪ (Θl+1 \ Θl)

and (24), it follows for the coefficient ψl
x(y) that

ψl
x(y) =

∑

z∈θx
l+1

ψl
x(z)ψl+1

z (y) = ψl
x(x)ψl+1

x (y) = 0

for all x 6= y ∈ Θl. Since ζx,T (x) = 1, we obtain

ψl
x(x) =

∑

y∈θx
l+1

(

∑

T∈G
y,1
l

αl
x,T,y

)−1 ∑

T∈G
y,1
l

αl
x,T,y ζx,T (y)ψl+1

y (x)

=
(

∑

T∈G
x,1
l

αl
x,T,x

)−1 ∑

T∈G
x,1
l

αl
x,T,x ζx,T (x) = 1 .

2. The induction assumption and Assumption 5.1 imply

suppψl+1
y ⊂ suppϕl+1

y ⊂ suppϕl
x

for all y ∈ θx
l+1 and, consequently,

suppψl
x ⊂

⋃

y∈θx
l+1

suppψl+1
y ⊂ suppϕl

x .

Lemma 5.6. Let Assumption 5.1 be satisfied and let the coefficient a be
constant, i. e., a(x) = a0 ∈ R>0 for all x ∈ Ω.

Then, it holds ψl
x = ϕl

x for 0 ≤ l ≤ L and x ∈ Θl.

The proof is elementary and, hence, skipped.
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x1 x2

x3 x4

y

γ

T1

T2

a = 1 a = a0

Figure 5: The domain Ω with the interface γ and the elements T1 and T2

5.3 Laminar Interfaces

The choice of the weights
[

αl
x,T

]

in (22) can be motivated for laminar inter-
faces, e. g., a(η1, η2) = ã(η1). In this case, tensorized finite elements which
consist of linear elements tangential to the internal boundary γ and the
one-dimensional composite finite elements (as in Section 4) in normal direc-
tion to γ are well suited for discretizations. Therefore, the two-dimensional
composite finite elements with the weights

[

αl
x,T

]

should approximate these
tensorized finite elements.

Let Ω := (0, 1)2 and let x1 := (0, 0), x2 := (1, 0), x3 := (0, 1), x4 := (1, 1)
the nodes of Ω (see Figure 5). Let T1 be the element with vertices x1, x2, x3

and T2 the one with x2, x4, x3. For a0 ∈ R>0 and for x = (η1, η2) ∈ R
2, we

consider

a(x) :=

{

1 for η1 ≤ 1
2 ,

a0 for η1 >
1
2 .

Let u ∈ H1(Ω) with a ∂1u, ∂2u ∈ H1(Ω) such that u(x1) = u(x3) = 1 and
u(x2) = u(x4) = 0. The interpolation of u by the described tensorized finite
elements is given by

ICFE
⊗ u(x) = ICFE

⊗ u(η1, η2) =

{

− 2a0

1+a0
η1 + 1 for η1 ∈ [0, 1

2 ] ,

− 2
1+a0

η1 + 2
1+a0

for η1 ∈ (1
2 , 1] ,

which, for y = (1
2 ,

1
2 ), implies

ICFE
⊗ u(y) =

1

1 + a0
−→ 0 for a0 → ∞ . (25)
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The functions ζx3,Ti
, 1 ≤ i ≤ 2, as in (21) are discontinuous across x2x3.

Easy calculations yield
ζx3,T1

(x) = η2

for x ∈ T 1, and, for x ∈ T 2,

ζx3,T2
(x) = ICFE

⊗ u(x) .

A basis function ψ̃x3
computed by an average of these two functions in y

with weights 1
2 from both sides satisfies

ψ̃x3
(y) =

1

2

(1

2
+

1

1 + a0

)

−→
1

4
for a0 → ∞ .

This differs from the limit in (25). Thus, we require a weighted average that
rates ζx3,T2

prior to ζx3,T1
. Since [∂νζx3,T1

] = [∂1ζx3,T1
] = 0, it follows

[

αx3,T1

]

=
∣

∣

∣

∫

γ∩T1

[a]
[

∂νζx3,T1

]

dσ
∣

∣

∣
= 0 ,

and
[

αx3,T2

]

6= 0. Let ICFE be the interpolation as in (16). Then, the weights
[

αx,T

]

preserve the requested limiting behavior. The weighted average in
(23) gives

ICFEu(y) = ψx3
(y) =

[

αx3,T2

]−1[
αx3,T2

] 1

1 + a0
= ICFE

⊗ u(y) .

5.4 Efficient realization

Analogously to (4), we define the prolongation via the composite finite el-
ements. The restriction is given by the transposed of the prolongation.
Although the composite finite elements have a complicated structure on the
coarser grids, the prolongation is a local operation and can be realized by
local, purely algebraic transformations. Thus, one multigrid iteration has a
complexity of order O(#ΘL).

We compute these matrices in an initialization step before the multigrid
algorithm is performed. The complexity of this initialization step is of order
O(#ΘL) as well.

For all 0 ≤ l ≤ L, we introduce the set of inner grid points

Θ0
l := Θl ∩ Ω

which are associated to the degrees of freedom. Then,
{

ψl
x

}

x∈Θ0
l

is a basis

of SCFE
l ∩H1

0 (Ω). We identify this space with the space R
Θ0

l via this basis.
In analogy to (4) respectively (5), we define the prolongation P l+1

l by

P l+1
l : R

Θ0
l → R

Θ0
l+1;

(

P l+1
l U

)

x
:=

∑

y∈Θ0
l

ψl
y(x)Uy for all x ∈ Θ0

l+1
(26)
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and the restriction Rl
l+1 by

Rl
l+1 :=

(

P l+1
l

)T
: R

Θ0
l+1 → R

Θ0
l ;

(

Rl
l+1U

)

x
:=

∑

y∈Θ0
l+1

ψl
x(y)Uy for all x ∈ Θ0

l .
(27)

Let b be the bilinear form as in (1). Then, the system matrices Al,
0 ≤ l ≤ L, are given by

(Al)x,y := b(ψl
y, ψ

l
x) (28)

for all x, y ∈ Θ0
l . Equivalently, the matrices on the coarser grids Gl, 0 ≤ l <

L, can be represented by the Galerkin products

Al := Rl
l+1Al+1 P

l+1
l (29)

which is more appropriate for the actual computation of these matrices than
(28).

The matrix Al+1 can conveniently be used for the computation of the
finite elements

{

ψl
x

}

x∈Θ0
l

, i. e., the computation of the prolongation P l+1
l .

Therefore, we link the computation of the prolongation with the products
from (29).

The following integrals are used for the computation of the weights
[

αl
x,T

]

. For x ∈ Θl and the edges e of the grids Gl, set

I l
x,e :=

∫

e
[a]

[

∂νψ
l
x

]

dσ (30)

and, for T ∈ Gl, set

I l
x,T :=

∫

γ∩T
[a]

[

∂νψ
l
x

]

dσ . (31)

Let Assumption 5.1 be satisfied. Then, the composite finite elements
{

ψL
x

}

x∈Θ0
L

on the finest grid GL are linear finite elements. Thus, the system

matrix AL as well as the integrals in (30) and (31) can easily be computed.
Let 0 ≤ l < L and assume that the system matrix Al+1 and the integrals

I l+1
x,e and I l+1

x,T for x ∈ Θl+1, T ∈ Gl+1 and the edges e of the grid Gl+1 are

given. Furthermore, we require the values (Al+1)x,y = b(ψl+1
y , ψl+1

x ) for all
x, y ∈ Θl+1 because these additional values in the nodes Θl+1 \Θ0

l+1 on the

boundary ∂Ω are needed for the computation of the functions ξl
x,T in (20).

Let T ∈ Gl, x ∈ Θl ∩T and let ET be the set of (open) edges of Gl+1 that
lie in T . Then, the initialization consists of the following steps:

1. Let gl
x,T be as in (18). Then,

{

ξl
x,T (y)

}

y∈Θl+1∩UT
(32)
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is the solution of a system of linear equations with coefficients Al+1,zy =
b(ψl+1

y , ψl+1
z ) with z ∈ Θl+1 ∩ UT . Note that, for all y ∈ Θl+1 ∩ ∂UT ,

the values ξl
x,T (y) are prescribed by gl

x,T (y).

2. The weights
[

αl
x,T

]

are given by

[

αl
x,T

]

=

∣

∣

∣

∣

∑

y∈Θl+1∩T

ζ l
x,T (y)

(

∑

S∈sons(T )

I l+1
y,S +

∑

e∈ET

I l+1
y,e

)∣

∣

∣

∣

. (33)

3. Let e be an edge of the grid Gl and let Ee be the set of edges of Gl+1

such that
⋃

e′∈Ee

e′ = e .

Then, it holds

I l
x,e =

∑

z∈Θl+1∩dom(Gx,1
l

)

ψl
x(z)

∑

el+1∈Ee

I l+1
z,el+1

(34)

as well as

I l
x,T =

∑

z∈Θl+1∩dom(Gx,1
l

)

ψl
x(z)

(

∑

S∈sons(T )

I l+1
z,S +

∑

e∈ET

I l+1
z,e

)

. (35)

The different steps of this initialization are summarized below.

Algorithm 5.7. Let Assumption 5.1 be satisfied.

1. Compute AL as in (28).

2. For x ∈ ΘL and the edges e of the grid GL, compute the integrals IL
x,e

as in (30) and set IL
x,T = 0 for all T ∈ GL.

3. For l = L− 1, . . . , 0, compute

(a) for x ∈ Θl and y ∈ Θl+1 the values ψl
x(y) (cf. (24)) (with the

auxiliary functions ξl
x,T from (20) and ζ l

x,T from (21) and with

the weights
[

αl
x,T

]

from (22)),

(b) the prolongation P l+1
l and the restriction Rl

l+1 (cf. (26)) respec-
tively (27) including their local versions,

(c) the system matrix Al = Rl
l+1Al+1 P

l+1
l , and

(d) the integrals I l
x,e and I l

x,T as in (34) respectively (35) for x ∈ Θl,
the edges e of the grid Gl and T ∈ Gl.

4. restrict all matrices to Θ0
l ⊂ Θl.
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Note that all steps in 3. can be realized by local operators and all arising
matrices are sparse.

In order to estimate the computational work of this initialization, we
have to restrict the number of successor and neighbors of the elements.

Assumption 5.8. There exists a number δ ∈ N such that, for all 0 ≤ l < L
and all T ∈ Gl, it holds

# sons(T ) < δ .

For all 0 ≤ l ≤ L and all x ∈ Θl, it holds

#Gx,1
l ≤ δ . (36)

There exists a constant η ∈ (0, 1) such that, for all 0 ≤ l < L,

#Θl ≤ η #Θl+1 .

This assumption guarantees that the number of elements in the zones
UT is bounded independently of the refinement level l of Gl. Of course,
the complexity depends strongly on the number of “layers” k which are
employed for determining the size of the security zones. More precisely, it
holds #GT,k

l = O(δk) by Assumption 5.8 with δ from (36). This implies that
the dimension of the linear systems in (32) is also bounded independently of
l. In general, it is not very large as we choose k ∈ {1, 2, 3}. Therefore, these
systems can be solved by LU-factorization or, in the case of our symmetric
model problem, by the Cholesky factorization.

The product Rl
l+1Al+1 P

l+1
l can be computed efficiently by the multipli-

cation with unit vectors. In an implementation of this algorithm, we require
therefore “local” versions of the matrix-vector-multiplications for the three
matrices.

Lemma 5.9. Let Assumptions 5.1 and 5.8 be satisfied and let k ∈ N0 be the
number of “layers” in the security zones (cf. (17)).

Then, the complexity of the initialization in Algorithm 5.7 is of order
O

(

δ3k+3 η
1−η #ΘL

)

.

Proof. The following numbering corresponds to the numbering of Algorithm
5.7. 1. and 2. The computation of AL and the integrals IL

x,e has a complexity
of order O(δ#ΘL). 3. Let 0 ≤ l < L. a) There are three linear systems
to solve for each element T ∈ Gl to obtain the values ξl

x,T (y) in (32). The

dimension of these systems is of order O(δk+1). Using LU- or Cholesky
factorization, this has a complexity of order O

(

δ3k+3
)

. Summarizing, the
complexity is of order O

(

δ3k+3 #Θl

)

. The complexity to compute the sums
in (33) is of order O(δ2 #Θl). Finally, the coefficients ψl

x(y) are computed by
(24) which sums up to a complexity of order O(δk+1 #Θl). c) We compute
the columns of Al by evaluating the product Rl

l+1Al+1 P
l+1
l for all unit
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vectors Ψl
x. By (26), there are O(δ2) components of the vector P l+1

l Ψl
x that

do not vanish. In each row of Al+1, there are at most δ+ 1 components not
vanishing and in each row of Rl

l+1, there are three by (27) and by Lemma
5.5 (2). Thus, the complexity to compute Al is of order O(δ2 #Θl). d) The
computation of the integrals I l

x,e and I l
x,T in (34) respectively (35) has a

complexity of order O(δ2 #Θl). For fixed l, the complexity of Step 3 is of

order O
(

δ3k+3 #Θl

)

. Since #Θl ≤ η #Θl+1, it follows #Θl ≤ ηL−l #ΘL.
This implies

L−1
∑

l=0

#Θl ≤ #ΘL

L−1
∑

l=0

ηL−l ≤ #ΘL

∞
∑

l=1

ηl = #ΘL
η

1 − η
.

Typically, we choose k ∈ {1, 2, 3}. If #G0 is of order O(1) and congruent
refinement is used recursively for the refinement of the grids then δ is of
order O(1) and η is about 1

4 . Hence, the complexity of the initialization is
of order O(#ΘL).

6 Numerical results

We have implemented the CFE–MG from Section 5 for Problem 2.1 in two
dimensions. This implementation allows us to study the dependence of the
multigrid method on the coefficient a. We consider an example with periodic
coefficients which allows to perform various parameter tests. However, the
periodic structure is not at all required for the composite finite elements and
is just for the purpose of systematic parameter studies.

In this section, we consider the domain Ω := (0, 1)2 and the right hand
side f = 1. We employ the following hierarchy of grids on this domain. The
coarsest grid G0 consists of the two triangles with vertices (0, 0), (1, 0), (0, 1)
respectively (1, 0), (1, 1), (0, 1) (see Figure 6). For l ∈ N, the grids Gl are
given by recursive congruent refinement of the grid G0. Then, it holds hl =
21/2−l.

We set

ω := int
(

conv
{

(1
4 ,

3
4 ), (1

4 ,
1
2 ), (1

2 ,
1
4), (3

4 ,
1
4), (3

4 ,
1
2), (1

2 ,
3
4)

})

(see Figure 7). For a0 > 0 and x ∈ [0, 1]2, set

a(x) :=

{

a0 for x ∈ ω ,

1 otherwise

and extend a(·) periodically with period 1 onto R
2. For ε ∈ (0, 1] and for

x ∈ R
2, set

aε(x) := a(x/ε) .
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(0, 0) (1, 0)

(0, 1) (1, 1)

Ω

Figure 6: The grids G0 and G1 on the domain Ω = (0, 1)2

(0, 0) (1, 0)

(0, 1) (1, 1)

ω1

Figure 7: The unit cell with the domain ω
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Figure 8: The basis functions ψ3
x and ψ2

x on the grid G6 with a0 = 50 and
ε = 1

8

We always use the security zones UT = dom(GT,2
l ), i. e., two “layers” of

elements. Let uε
l ∈ SCFE

l ∩H1
0 (Ω) be the solution of the discrete Problem

2.2 corresponding to the coefficient aε. For i ∈ N0, let εi := 2−i. Then, the
coefficient aεi is resolved by the grid Gl for l ≥ i+ 2.

In Figure 8, two basis functions at the node x = (1
2 ,

1
2) are displayed on

different grids. We have chosen a0 = 50 and ε = 1
8 . The left function is ψ3

x

on G6 and the right one is the function ψ2
x. Figure 9 shows the solution uε

6

of the associated problems on the grid G6. Again, we have chosen ε = 1
8 .

The left solution corresponds to a0 = 1
50 and the right one to a0 = 50.

In the following, we study the dependence of the multigrid convergence
rate on the coefficient a. For the iteration, we use the initial function uεi,0

l =
0. We denote the resulting function after n iteration steps by uεi,n

l . Then,
the convergence rate ri,l,a0

is given by the mean value of the quotients

‖Alu
εi,n
l − f‖L2(Ω)

‖Alu
εi,n−1
l − f‖L2(Ω)

. (37)

All computations are done with two pre- and two post-smoothing steps
with the symmetric Gauß-Seidel iteration and with the V-cycle. The itera-
tion is stopped if the L2-norm of the residuum ‖Alu

εi,n
p,l − f‖L2(Ω) is smaller

than 10−10.
In Tables 1 – 4, the convergence rates ri,l,a0

of the multigrid method are
given with l = i+ q, 2 ≤ q ≤ 5, for different a0 each. In order to study the
dependence on ε, the tables are ordered by εi respectively 1/εi = 2i. The
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Figure 9: The solutions uε
6 on the grid G6 with a0 = 1

50 respectively a0 = 50,
with ε = 1

8 each

grid level l can be determined by

l = i+ q = q − log2(εi) .

In Table 1, the values, for instance, correspond to the grid levels l = 3, . . . , 9.
The computations show that the convergence rates are larger than for

the Poisson problem (a0 = 1), but, more importantly, they are still small
and show clearly that they are bounded by approximately 0.3 for all test
cases independently of the various parameters, in particular independent of
ε.

The computations are done on a SunFire 6800 with 16 CPUs (Ultra-
Sparc III with 900MHz) and 16GByte shared memory. The given run times
are always “user” times, i. e., the total run time of all CPUs. The main part
of the initialization step consists of the solution of local problems leading to
small linear systems. In order to solve them, we use the Cholesky factor-
ization of Lapack. The systems are independent of each other and can be
solved in parallel.

The complexity of both the initialization step (cf. Subsection 5.4) as well
as the multigrid method is linear in the degrees of freedom on the finest grid.
The run times of our program are given in Table 5 (“user” times in seconds)
on different grids Gl. There, T Init

l refers to the run time of the initialization
step, TMGM

l corresponds to the run time of ten multigrid iterations and TAll
l

is the total run time of the program. The computations are done with the
parameters l = i + 2 and a0 = 1 which have no influence on the run times
per iteration step.
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1/εir1,i,i+2,a0 2 4 8 16 32 64 128

1 0.07 0.09 0.09 0.10 0.10 0.10 0.10
10−3 0.08 0.12 0.14 0.15 0.16 0.16 0.16

a0 10−6 0.08 0.12 0.14 0.15 0.16 0.16 0.16
103 0.18 0.17 0.15 0.13 0.13 0.13 0.13
106 0.19 0.18 0.16 0.13 0.13 0.13 0.13

Table 1: Convergence rates for grid levels l = 2 − log2(εi) = 3, . . . , 9

1/εir1,i,i+3,a0 2 4 8 16 32 64 128

1 0.09 0.09 0.09 0.10 0.10 0.10 0.10
10−3 0.13 0.16 0.19 0.20 0.21 0.21 0.21

a0 10−6 0.13 0.16 0.19 0.20 0.21 0.21 0.21
103 0.26 0.24 0.21 0.19 0.18 0.17 0.17
106 0.26 0.25 0.23 0.19 0.18 0.17 0.17

Table 2: Convergence rates for grid levels l = 3 − log2(εi) = 4, . . . , 10

1/εir1,i,i+4,a0 2 4 8 16 32 64 128

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
10−3 0.16 0.18 0.21 0.22 0.23 0.23 0.23

a0 10−6 0.16 0.18 0.21 0.22 0.23 0.23 0.23
103 0.28 0.26 0.23 0.21 0.19 0.19 0.20
106 0.29 0.28 0.26 0.22 0.20 0.20 0.20

Table 3: Convergence rates for grid levels l = 4 − log2(εi) = 5, . . . , 11

The quotients of the run times match the quotients of the degrees of
freedom very well. This shows that the complexity of our implementation
confirms the theoretically predicted linear complexity.

The quite large quotients for the multigrid method for middle-sized grids
might issue from data outgrowing the cache. The quotients for the larger
grids are again consistent with the linear complexity.

Acknowledgment. The second author was partially supported by the Eu-
ropean Research Training Network “Homogenization and Multiple Scales”
(HMS2000).

26



1/εir1,i,i+5,a0 2 4 8 16 32 64 128

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10
10−3 0.17 0.19 0.22 0.23 0.23 0.24 0.24

a0 10−6 0.17 0.19 0.22 0.23 0.23 0.24 0.24
103 0.29 0.26 0.24 0.21 0.21 0.21 0.21
106 0.31 0.29 0.25 0.22 0.22 0.22 0.22

Table 4: Convergence rates for grid levels l = 5 − log2(εi) = 6, . . . , 12

Level l DoFl
DoFl

DoFl−1
T Init

l /s
T Init

l

T Init
l−1

TMGM
l /s

T MGM
l

T MGM
l−1

TAll
l /s

T All
l

T All
l−1

4 225 – 1.47 – 0.01 – 1.49 –

5 961 4.27 2.74 1.86 0.04 4.00 2.80 1.88

6 3969 4.13 9.87 3.60 0.16 4.00 10.19 3.64

7 16129 4.06 42.98 4.35 0.92 5.75 44.63 4.38

8 65025 4.03 168.85 3.93 8.67 9.42 180.94 4.05

9 261121 4.02 679.70 4.03 46.03 5.31 740.22 4.09

10 1046529 4.01 2756.36 4.06 219.37 4.77 3033.97 4.10

11 4190209 4.00 11071.75 4.02 866.82 3.95 12172.24 4.01

Table 5: Run times (in seconds) of the program on different grids Gl
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