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A!"#$%&#. The Kirchhoff-Love plate model is a widely used in the
analysis of thin elastic plates. It is well known that Kirchhoff-Love so-
lutions can be viewed as certain limits of displacements and stresses for
elastic plates where the thickness tends to zero. In this paper, we con-
sider the problem from a different point of view and derive computable
upper bounds of the difference between the exact three-dimensional so-
lution and a solution computed by using the Kirchhoff-Love hypothe-
ses. This estimate is valid for any value of the thickness parameter.
In combination with a posteriori error estimates for approximation er-
rors, this estimate allows the direct measurement of both, approxima-
tion and modeling errors, encompassed in a numerical solution of the
Kirchhoff-Love model. We prove that the upper bound possess neces-
sary asymptotic properties and, therefore, does not deteriorate as the
thickness tends to zero.
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1. I!"#$%&'"($!

In many practically important cases, an approximation of the solution
u(d) of a d-dimensional problem (we call it Problem P(d) and assume that
ud belongs to a Banach space V ) is found by solving some simplified problem
P(d−k) (where k is a positive integer number). A solution of this problem we
denote by u(d−k). An approximation of u(d−k) is usually obtained by pro-
jecting P(d−k) onto a finite dimensional space and solving the corresponding

discrete problem P(d−k)
τ , where τ is a small parameter related to the respec-

tive mesh Tτ . Thus, instead of u(d) we compute u
(d−k)
τ (see Fig. 1).

The general purpose of u
(d−k)
τ is to present a reliable information on u(d).

It should be outlined that the functions u(d), u(d−k) and u
(d−k)
τ belong to

different spaces, so that to compare these functions we need a dimension
reconstruction operator R : V (d−k) → V that forms d-dimensional images of
(d−k)-dimensional solutions. One can construct such an operator by differ-
ent methods, but obviously it must satisfy two conditions: computational
simplicity and boundedness. Additionally, we assume that R satisfies the

Key words and phrases. Kirchhoff-Love plate model; dimension reduction models; mod-
eling error.
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F()&#* 1. Dimension reduction and reconstruction

Lipshitz condition

‖Rw1 −Rw2‖V ≤ CR ‖w1 −w2‖V (d−k) ∀w1, w2 ∈ V (d−k),(1.1)

where CR > 0 does not depend on w1 and w2.
Usually, the modeling error Emod :=

∥∥u(d) −Ru(d−k)
∥∥
V

is assumed to be

much smaller than the approximation error Eapp := ‖u(d−k) − u
(d−k)
τ ‖V (d−k) .

However, in reliable computations this assumption must be verified.
In practice, we are interested to know how large is the difference between

u(d) and the function Ru
(d−k)
τ . By (1.1), we find that

‖ud −Ru(d−k)
τ ‖V ≤ ‖ud −Rud−k‖V + ‖Rud−k −Rud−k

τ ‖V
≤ ‖ud −Rud−k‖V +CR ‖ud−k − u(d−k)

τ ‖V (d−k) .(1.2)

Hence

(1.3) ‖ud −Ru(d−k)
τ ‖V ≤ Emod +CR Eapp.

This additive splitting into a modelling error term and an error term related
to the numerical discretization gives insights how these two parts of the
overall error are balanced.

Historically, the subject of error estimation in dimension reduction mod-
els was mainly focused on a priori asymptotic error estimates that evaluate
the difference between original and reduced models in terms of small (geo-
metric) parameters. In this context, models in the elasticity theory have
been studied by different authors (see e.g., [1, 5, 6, 19] and the references
therein). Among these models, the Kirchhoff-Love (KL) plate model (orig-
inally based on the heuristic “direct normal” hypothesis [8]) is one of the
most known. KL solutions can be viewed as certain limits of 3D solutions
of elastic plate-type bodies if the thickness parameter h tends to zero.

In this paper, we present computable estimates of Emod associated with
the KL plate model. The paper is organized as follows. In Sect.2, we
outline some basic facts related to KL model of thin plates. In Sect. 3 we
discuss estimates of the deviation from exact solutions for linear elasticity
problems. Theorem 3.3 presents a new estimate, which provides guaranteed
and fully computable upper bounds of modeling errors adapted to thin (plate
type) elastic bodies. We emphasize that the estimate presented in Theorem
3.3 does not involve 3D constants (as the constant in the Korn’s inequaliy
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associated with mixed boundary conditions) and instead contains only 2D
constant in the Friedrichs inequality (on the middle surface), which is easy to
estimate from above. This estimate is used in Sect. 4, where we consider the
case of isotropic elasticity. We present error estimates for solutions obtained
with the help of KL model (Theorems 4.1 and 5.1) and show that they are
asymptotically equivalent to the modeling error.

2. S"+"*,*!" $- ".* /#$01*,

We consider a bounded three-dimensional elastic body occupying the do-
main

Ω :=
{
(x1, x2) ∈ ω, x3 ∈

]
−

h

2
,
h

2

[}
,

where ω is a bounded open domain in the x1, x2—plane with Lipschitz contin-
uous boundary ∂ω and h is a positive constant (see Fig. 2). We assume that
h is small with respect to the size of ω. This requirement can be formalized
as follows: there exists a point O ∈ ω such that

h ≤ inf
O′∈∂ω

|O′O|.

We define the middle surface by

S0 := {x ∈ Ω | x3 = 0} .

Let x := (x1, x2, x3) denotes the 3D coordinate vector and x̂ := (x1, x2)
stands for the vector associated with the plane part.

We define the lower and upper faces of the plate as follows:

S$ :=
{
x ∈ R

3 | x =
(
x̂,−h

2

)
, x̂ ∈ ω

}
,

S⊕ :=
{
x ∈ R

3 | x =
(
x̂,+

h

2

)
, x̂ ∈ ω

}
,

and the lateral surface

Γ :=
{
x ∈ R

3 | x = (x̂, x3) , x̂ ∈ ∂ω, x3 ∈
(
−h

2
,
h

2

)}
.

Henceforth, S := S$ ∪ S⊕, ‖ . ‖Ω and ‖ . ‖S denote L2-norms of a function
(vector-function) associated with Ω and S, respectively.

On Γ, we impose the Dirichlet boundary condition

(2.1) u (x) = 0

for the displacement vector u = (u1, u2, u3) (here and later, on vectors and
tensors are denoted by bold letters). It is worth noting, that we consider
homogeneous Dirichlet boundary conditions only for the sake of simplicity.
Our analysis is applicable to nonhomogeneous Dirichlet and mixed boundary
conditions.

On the upper and lower faces, we impose the Neumann type boundary
conditions

(2.2) σ ·n$ = 0 on S$ and σ · n⊕ = F on S⊕,
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F()&#* 2. Plate type elastic body.

where F = (0, 0, F̂ ). By n⊕(x̂) and n$(x̂) we denote the unit normal
vectors. The body is subject to the action of a volume and surface loads f =(
0, 0, f̂ (x̂)

)
and F̂ , respectively. We assume that f̂ and F̂ belong to L2(ω).

The exact solution of the 3D elasticity problem in question is presented by
the displacement vector u and the stress tensor σ (x) = (σij (x))

3
i,j=1 that

satisfy the equilibrium equation

(2.3) Divσ + f = 0 in Ω,

where the strain and stress fields are coupled linearly via Hooke’s law

(2.4) σ = Lε (u) in Ω

with the tensor L = (Lijkl) of elastic constants. The strain tensor ε (u) is
given by the relation (within the framework of small strains theory)

(2.5) ε (u) =
1

2
(∇u+ (∇u)ᵀ) .

In the important case of isotropic media

(2.6) σ = 2µε+ λ (trε) I =
E

1 + ν
ε+

νE

(1 + ν)(1− 2ν)
(trε) I,

and

(2.7) ε =
1 + ν

E
σ −

ν

E
(trσ) I,

where λ and µ are the Lamé constants, E and ν are the Young modulus
and the Poisson coefficient respectively, tr (·) stands for the first invariant
of a tensor and I is the unit tensor. In general, L must be subject to the
conditions

(2.8) c21|ε|2 ≤ Lε : ε ≤ c22|ε|2, ∀ε ∈ M
3×3
sym,
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where M3×3
sym is the space of symmetric real valued 3× 3 tensors with square

summable coefficients.
Also, we assume that the coefficients of the elasticity tensor are bounded

and possess natural symmetry, i.e.,

Lijkm = Ljikm = Lkmij, i, j, k,m = 1, . . . , d,(2.9)

Lijkm ∈ L∞(Ω).(2.10)

A function u ∈ V0 := {w ∈ H1(Ω,R3) | w = 0 on Γ} is a generalized
solution of (2.1)—(2.4) if it satisfies the variational relation

(2.11)

∫

Ω

L ε (u) : ε (w) dx =

∫

Ω

f̂w3 (x) dx+

∫

ω

F̂w3

(
x̂,

h

2

)
dx̂

for all w ∈ V0. The corresponding stress tensor σ = Lε(u) belongs to the
space

Σ := L2
(
Ω,M3×3

sym

)
.

The existence and uniqueness of u follow from the Korn’s inequality which
allows us to establish the coercivity of the energy norm

||| ε(w) |||2:=
∫

Ω

Lε(w) : ε(w)dx

on the space V0. By ||| . |||∗ we denote the energy norm associated with L
−1,

i.e.,

||| τ |||2∗:=
∫

Ω

L
−1

τ : τ dx.

In the classical theory of Kirchhoff-Love plates, the above-described 3D
model is replaced by a simplified one, in which displacements and stresses are
found in accordance with the Kirchhoff-Love hypothesis. The first hypoth-
esis states that the unit normal to the middle surface remains unstretched
during the deformation of the plate. It means that the displacement vector
is sought in the form

(2.12) u1 (x) = −x3ŵ,1; u2 (x) = −x3ŵ,2; u3 (x) = ŵ (x̂) ,

where ŵ is a scalar-valued function that represents deflections of S0.
Another (static) hypothesis is that the components σi3, i = 1, 2, 3, are

negligibly small compared to σ11, σ12, and σ22 so that they are set to zero.
Thus, only the plane part of the stress tensor is considered. For the case of
isotropic media, it is defined by the relations

σ11 = − Ex3
1− ν2

(ŵ,11 + νŵ,22) = − 2µx3
1− ν

(ŵ,11 + νŵ,22) ,(2.13)

σ22 = −
Ex3
1− ν2

(νŵ,11 + ŵ,22) = −
2µx3
1− ν

(νŵ,11 + ŵ,22) ,(2.14)

σ12 = −
Ex3
1 + ν

ŵ,12 = −2µx3ŵ,12.(2.15)
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In order to deduce the equation for ŵ, we use (2.11) and accordingly de-
fine the test functions w in the form w =

(
−x3ϕ̂,1;−x3ϕ̂,2; ϕ̂ (x̂)

)
, where

ϕ̂ ∈ H2(ω) is an arbitrary function vanishing on ∂ω together with its first
derivatives. In view of the static hypothesis, the left-hand side of (2.11)
contains only plane components and can be rewritten as follows:

∫

Ω
σ11(u)ε11(v)dx =

=

∫

Ω

Ex23
1− ν2

(ŵ,11 + νŵ,22)ϕ̂,11dx̂ =

∫

ω
D(ŵ,11 + νŵ,22)ϕ̂,11dx̂,

where D := Eh3

12(1−ν2) =
µh3

6(1−ν) . Analogously,
∫

Ω
σ22(u)ε22(v)dx =

∫

ω
D(νŵ,11 + νŵ,22)ϕ̂,22dx̂

and

2

∫

Ω
σ12(u)ε12(v)dx = 2(1− ν)

∫

ω
Dŵ,12ϕ̂,12dx̂.

Hence, we arrive at the following problem.
Find ŵ ∈ V00(ω) :=

{
η̂ ∈ H2(ω) | η̂ = η̂,n = 0 on ∂ω

}
such that

∫

ω
D
(
(ŵ,11 + νŵ,22)ϕ̂,11 + (νŵ,11 + νŵ,22)ϕ̂,22 + 2(1− ν)ŵ,12ϕ̂,12

)
dx̂

=

∫

ω
ĝϕ̂ dx̂ ∀ϕ̂ ∈ V00(ω),(2.16)

where ĝ(x̂) = hf̂ + F̂ .
If ŵ is sufficiently regular, then (2.16) implies the classical plate equation

(see, e.g.,[7])

ŵ,1111 + 2ŵ,1122 + ŵ,2222 =
ĝ

D
,

a weak form of which is∫

ω

D∆̂ ŵ ∆̂ ϕ̂ dx̂ =

∫

ω

f̂ ϕ̂ dx̂ ϕ̂ ∈ V00 (ω) .

This simplified 2D model is often used for numerical analysis of plate-type
elastic bodies (see, e.g., [2]).

Finally, we note that in general ŵ depends on h (so that it would be right
to denote it by ŵh). To exclude this dependence, we scale the external forces

and set f̂ = h2f̂0 and F̂ = h3F̂0. In this case,

ĝ0 :=
ĝ

D
=

6(1− ν)

µ

(
f̂0 + F̂0

)

so that ŵ satisfies the equation

(2.17) ŵ,1111 + 2ŵ,1122 + ŵ,2222 = ĝ0

and does not depend on h.
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3. E##$#2 $- 2(,/1(-(*% ,$%*12 (! 1(!*+# *1+2"('("3

Let v ∈ V0 denote an approximation of the exact solution u of (2.11)
obtained by some suitable reconstruction of a plate model. In this section,
we present different estimates of the modeling error generated by v. For the
sake of convenience, we hereafter use an additional notation, namely

ri(τ ) := div {τ ij}3j=1 = τ i1,1 + τ i2,2 + τ i3,3, i = 1, 2, 3.

3.1. Prager-Synge estimate. Prager-Synge estimate [11] is the first math-
ematical tool that can be used to derive computable estimates of modeling
errors generated by dimension reduction models in linear elasticity. In the
context of our problem, it yields the following result

Theorem 3.1. For any v ∈ V0,

||| ε(u− v) ||| + ||| σ − τ |||∗≤ M1(v, τ ) :=||| τ − Lε(v) |||∗,(3.1)

where τ is an arbitrary tensor valued function in the set

Qf :=
{
τ ∈ Σ | r1(τ ) = r2(τ ) = 0, r3(τ ) + h2f̂0 = 0,

τ13 = τ23 = 0 on S, τ33 = h3F̂0 on S⊕, τ33 = 0, on S$

}
.

It is easy to see that for τ = σ the upper bound coincides with the true
error. To obtain a sharp upper bound of the error we need τ ∈ Qf to be a
good approximation of σ. On the other hand, the functions in the set Qf

of admissible stresses must exactly satisfy the three differential equations
appearing in the definition of this set. This is numerically a complicated
task. In the following, we will modify the majorant so that the auxiliary
stress τ can be chosen from an essentially larger space.

3.2. Functional type a posteriori estimate for linear elasticity prob-

lem. Define the sets

ΣDiv :=
{
τ ∈ Σ | Divτ ∈ L2(Ω,R3)

}

and

Σ+ :=
{
τ ∈ Σ | τ ·n$ ∈ L2(S$,R

3), τ ·n⊕ ∈ L2(S⊕,R
3)
}
.

Theorem 3.2. For any τ ∈ ΣDiv ∩ Σ+, the following estimate holds:

| || ε(u− v) |||≤ M2(v, τ ) :=||| τ −Lε(v) |||∗ +

+CΩ

(
‖r1(τ )‖2Ω + ‖r2(τ )‖Ω + ‖r3(τ ) + h2f̂0‖2Ω +

+
2∑

s,t=1

(∥∥∥τ st

(
x̂,

h

2

)∥∥∥
2

ω
+
∥∥∥τ st

(
x̂,−h

2

)∥∥∥
2

ω

)
+

+‖τ33(x̂,−
h

2
)‖2ω + ‖τ 33(x̂,

h

2
)− F̂‖ω

)1/2
,(3.2)
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where

CΩ := sup
v∈V0(Ω)

√
‖v‖2Ω + ‖v‖2S#

+ ‖v‖2S⊕

||| ε(v) |||Ω
.

This estimate is a particular form of the general a posteriori estimate for
linear elasticity problem (see [12, 13, 14]). Obviously, it is valid for a much
wider set of stress tensors τ .

It is easy to show that an upper bound of CΩ can be expressed through-
out the Friedrichs’ constant CFω for ω and the constant CKΩ in the Korn’s
inequality for Ω. However, the computation (or sharp estimates) of the
constant CKΩ for 3D elasticity problem with mixed boundary conditions is
far from trivial, especially for complicated domains. The estimate derived
below presents a certain compromise between M1 and M2. It depends only
on CFω (instead of constants associated with three-dimensional problems)
and reduces the number of terms in the majorant by imposing suitable con-
ditions on τ . In our subsequent analysis, we show that the latter conditions
can indeed be satisfied.

3.3. Error bound for plate type elastic bodies. Now, our goal is to
derive estimates that do not contain CKΩ and are valid for a much wider
set of stresses than the set Qf .

Theorem 3.3. Assume that

r3(τ ) + h2f̂0 = 0 a.e. in Ω(3.3)

and

τ33

(
x̂,

h

2

)
= h3F̂ , τ13

(
x̂,

h

2

)
= τ23

(
x̂,

h

2

)
= 0, τ i3

(
x̂,−h

2

)
= 0(3.4)

for i = 1, 2, 3. Then,

||| ε(u− v) |||2≤ M3(v,τ ) := (1 + β) ||| Lε(v)− τ |||2% +

+
1+ β

c21β
2C2

ω

(
‖r1(τ )‖2Ω + ‖r2(τ )‖2Ω

)
,(3.5)

where β > 0 and Cω is a constant in the Friedrichs inequality related to the
plain domain ω.

Proof. We rewrite (2.11) in the form
∫

Ω

L ε(u− v) : ε(w) dx =

∫

Ω

(f +Divτ ) ·w dx+

∫

Ω

τ : ε(w)dx+

+

∫

S#

(τ · n$) ·wdx̂+

∫

S⊕

(τ · n⊕ −F) ·wdx̂−
∫

Ω

L ε(u) : ε(w) dx(3.6)



MODELING ERROR GENERATED BY KIRCHHOFFLOV EMODEL 9

which holds for any w ∈ V0. In view of (3.3) the integrals related to upper
and lower faces vanish. Using (3.2), we find that

∫

Ω

(f +Divτ ) ·wdx =

h/2∫

−h/2

(I1(x3) + I2(x3))dx3,

where

Ik(x3) =

∫

ω

(rk(τ )(x̂, x3)wk(x̂, x3)dx̂, k = 1, 2.

To estimate this integral, we first assume that w is a smooth function (the
result for functions in V0 then follows by density arguments).

Consider wk(x̂, x3) as a function of x̂. For any x3 ∈
(
−h

2 ,+
h
2

)
, we have

the estimate

‖wk(·, x3)‖ω ≤ Cω‖∇̂wk(·, x3)‖ω,

which follows from 2D Friedrichs’ inequality. For this reason,

h/2∫

−h/2

Ik(x3)dx3 ≤ Cω

h/2∫

−h/2



‖rk(·, x3)‖ω




∫

ω

(
w2
k,1 +w2

k,2

)
dx̂




1/2


 dx3

≤ Cω





h/2∫

−h/2

‖rk(·, x3)‖2ω dx3





1/2



h/2∫

−h/2

∫

ω

(
w2
k,1 +w2

k,2

)
dx̂dx3





1/2

and

h/2∫

−h/2

(I1(x3) + I2(x3))dx3 ≤

≤ Cω

(
‖r1(τ )‖2Ω + ‖r2(τ )‖2Ω

)1/2




h/2∫

−h/2

∫

ω

(
w2
1,1 +w2

1,2 +w2
2,1 +w2

2,2

)
dx̂dx3





1/2

.

Since
∫

ω

(w2
1,2 +w2

2,1)dx̂ =

∫

ω

((w1,2 +w2,1)
2 − 2w1,2w2,1)dx̂ =

=

∫

ω

((w1,2 +w2,1)
2 − 2w1,1w2,2)dx̂ ≤

∫

ω

((w1,2 +w2,1)
2 +w2

1,1 +w2
2,2)dx̂
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we find that
(3.7)

h/2∫

−h/2

(I1(x3) + I2(x3))dx3 ≤
√
2
Cω

c1

(
‖r1(τ )‖2Ω + ‖r2(τ )‖2Ω

)1/2 ||| ε(w) |||Ω .

Finally, we note that

(3.8)

∫

Ω

(τ − Lε(v)) : ε(w)dx ≤||| τ − Lε(v) |||∗||| ε(w) ||| .

By (3.6) and (3.7), and (3.8) we conclude that
∫

Ω

Lε(u− v) : ε(w) dx ≤

≤
(
||| Lε(v)− τ |||∗ +

√
2
Cω

c1

(
‖r1(τ )‖2Ω + ‖r2(τ )‖2Ω

)1/2
)

||| ε(w) |||Ω .(3.9)

Now, we use density of smooth functions in V0 and obtain the same in-
equality for w ∈ V0.

Set w = v− u ∈ V0. We obtain

||| ε(u− v) |||≤||| Lε(v)− τ |||∗ +
√
2
Cω

c1

(
‖r1(τ )‖2Ω + ‖r2(τ )‖2Ω

)1/2
(3.10)

and (3.4) follows by Young’s inequality. !

Remark 3.4. It is easy to see that there exists τ such that

Ms(v,τ ) =||| ε(u− v) |||, s = 1, 2, 3.

Indeed, let τ = σ := Lε(u). In this case, the equilibrium equations and the
boundary conditions on S$,⊕ are satisfied. Since

||| Lε(v)− τ |||∗=||| Lε(v)− Lε(u) |||∗=||| ε(u− v) ||| .

we see that all the estimates show the value of the modeling error provided
that τ is properly selected.

In the next section, we will use the majorant M3 in order to evaluate the
accuracy of KL model.

4. E##$# 0$&!% -$# KL ,$%*1

Let ŵ = ŵ (x1, x2) be a solution of the Kirchhoff-Love problem (for the
sake of simplicity we consider the case where the plate is under the action
of only volume forces and F̂ = 0). To measure the corresponding modeling
error we need to reconstruct 3D displacements and stresses. For this pur-
pose, we define reconstruction operators Rv (for displacements) and Rτ (for
stresses).
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4.1. Reconstruction of 3D displacements. In the simplest case, the
first two components of the reconstructed displacement vector are first order
polynomials with respect to x3 and the third one does not depend on x3 (cf.
(2.12)). Henceforth, we call it (110)- reconstruction and write

(4.1) v110 := R110
v (ŵ) = (−x3ŵ,1,−x3ŵ,2, ŵ)

ᵀ .

Then, the corresponding strain tensor has the form

ε(v110) := x3




−ŵ,11 −ŵ,12 0
−ŵ,12 −ŵ,22 0

0 0 0



(4.2)

with only plane nonzero components.
In a more advanced (112)-reconstruction (see [1, 9, 3, 4, 18]), we set

(4.3) v112 := R112
v (ŵ) =

(
−x3ŵ,1,−x3ŵ,2, ŵ + x23Ŵ (x̂)

)
ᵀ

,

where Ŵ (x̂) ∈ H1
0 (ω) is a specially selected function. (112)-reconstruction

generates the strain tensor

(4.4) ε(v112) := x3




−ŵ,11 −ŵ,12

1
2x3Ŵ,1

−ŵ,12 −ŵ,22
1
2x3Ŵ,2

1
2x3Ŵ,1

1
2x3Ŵ,2 2Ŵ



 ∈ Σ.

It is easy to see that trε(v112) = x3(2Ŵ − ∆̂ŵ).

4.2. Reconstruction of 3D stresses. In our analysis, we use two recon-
structions of 3D stresses based on ŵ. The first one reconstructs stresses in
accordance with 3D elasticity relations, i.e.,

RL
τ
(v) = Lε(v) = 2µε(v) +

2µν

1− 2ν
tr ε(v)I.

Here, instead of τ 110 := RL
τ
(v110(ŵ)) (which may not provide a sufficiently

good approximation of σ), we consider the stress tensor generated by (112)
model:

τ
112 := RL

τ
(v112(ŵ)) = 2µ




−x3ŵ,11 −x3ŵ,12

1
2x

2
3Ŵ,1

−x3ŵ,12 −x3ŵ,22
1
2x

2
3Ŵ,2

1
2x

2
3Ŵ,1

1
2x

2
3Ŵ,2 2x3Ŵ



+

+
2µν

1− 2ν
x3(2Ŵ − ∆̂ŵ)I.

Another possible reconstruction of the stress tensor uses the KL relations
(2.13)—(2.15) for the components τ sk s, k = 1, 2, while the components τ i3

i = 1, 2, 3 are not zero (as in the classical KL theory) and are defined with
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the help of correction functions θ, q̂, and ψ. This improved reconstruction
has the form

τ
im
KL

:=





−2µx3
(
ŵ,11 +

ν
1−ν ∆̂ŵ

)
−2µx3ŵ,12 θ(x3)q̂1

−2µx3ŵ,12 −2µx3
(
ŵ,22 +

ν
1−ν ∆̂ŵ

)
θ(x3)q̂2

θ(x3)q̂1 θ(x3)q̂2 ψ(x3)h2f̂0



 .

We choose θ(x3), q̂1, q̂2, and ψ(x3) in such a way that (3.3) and (3.4) are
satisfied. For this purpose, we require that θ and ψ are continuous functions
vanishing at x3 = ±h

2 . Besides, we assume that

q̂ ∈ Qcf̂0
:=
{
q̂(x̂) ∈ H(ω,div) | divq̂ + c f̂0 = 0, for a.e. x̂ ∈ ω

}
,

where c is a constant, which we define in (4.6) . Now (3.3) leads to

(4.5) h2ψ′ + h2 = c θ, for a.e. x3 ∈
[
−

h

2
,
h

2

]
,

where

(4.6) c = h3





h/2∫

−h/2

θdx3





−1

.

From (4.5), the form of ψ follows:

(4.7) ψ (x3) =
c

h2

x3∫

−h/2

θdx3 − x3 −
1

2
h.

Now, it is easy to see that on upper and lower faces we have

τ
im
KL

·n |
±h

2
= 0.

Since

r3(τ
im
KL

) + h2f̂0 = τ im
31,1 + τ im

32,2 + τ im
33,3 = θ (q1,1 + q2,2) + (h2ψ′ + h2)f̂0 = 0

we also see that the conditions of Theorem 3.3 are satisfied.

4.3. Error estimate. We apply (3.5) and find that

| || ε(u− v112) |||2≤

≤ (1 + β) ||| κ |||2∗ +
1 + β

c21β
2C2

ω

(
‖r1(τ im

KL
)‖2Ω + ‖r2(τ im

KL
)‖2Ω
)
,(4.8)

where κ := τ
112 − τ

im
KL

.
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4.3.1. The quantity ||| κ |||2∗. We have

κ11 = κ22 =
2µν

1− 2ν
x3ρ(ŵ, Ŵ ), κ12 = 0,

κ13 = µx23Ŵ,1 − θq̂1, κ23 = µx23Ŵ,2 − θq̂2,

κ33 = 4µx3Ŵ +
2µν

1− 2ν
x3(2Ŵ − ∆̂ŵ)− ψh2f̂0 =

2µx3(1− ν)

1− 2ν
ρ(ŵ, Ŵ )− ψh2f̂0,

where

ρ(ŵ, Ŵ ) := 2Ŵ − ν

1− ν
∆̂ŵ.

Since

trκ =
2µx3(1 + ν)

1− 2ν
ρ(ŵ, Ŵ )− ψh2f̂0

we find that

|||κ|||2∗ =

∫

Ω

(
1

2µ
κ : κ−

ν

2µ(1 + ν)
(trκ)2

)
dx

=
1

2µ

∫

Ω

2
(
|µx23Ŵ,1 − θq̂1|2 + |µx23Ŵ,2 − θq̂2|2

)
dx

+
4ν2µ

(1− 2ν)2

∫

Ω

x23ρ
2(ŵ, Ŵ )dx

+

∫

Ω

1

2µ

(
2µx3(1− ν)

1− 2ν
ρ(ŵ, Ŵ )− ψh2f̂0

)2

−
∫

Ω

ν

2µ(1 + ν)

(
2µx3(1 + ν)

1− 2ν
ρ(ŵ, Ŵ )− ψh2f̂0

)2

dx

=
1

2µ

∫

Ω

2
(
|µx23Ŵ,1 − θq̂1|2 + |µx23Ŵ,2 − θq̂2|2

)
dx

+

∫

Ω

2µ(1− ν)

1− 2ν
x23ρ

2(ŵ, Ŵ )dx

−2

∫

Ω

x3ρ(ŵ, Ŵ )ψh2f̂0 +
1

2µ(1 + ν)
ψ2h4f̂2

0dx.(4.9)
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Define the following quantities

ι1 =

h/2∫

−h/2

x23θ(x3)dx3, ι2 =

h/2∫

−h/2

θ2(x3)dx3,(4.10)

ι3 =

h/2∫

−h/2

x3ψ(x3)dx3, ι4 =

h/2∫

−h/2

ψ2(x3)dx3.(4.11)

Then

||| κ |||2∗ =

∫

ω

(
µh5

80
|∇̂Ŵ |2 − 2ι1(Ŵ,1q̂1 + Ŵ,2q̂2) +

ι2
µ
|q̂|2

)
dx̂+

+

∫

ω

(
µ(1−ν)h3

6(1− 2ν)
ρ2(ŵ, Ŵ )−2ι3ρ(ŵ, Ŵ )h2f̂0 +

ι4h4f̂2
0

2µ(1 + ν)

)
dx̂.(4.12)

Henceforth, we assume that ∆̂ŵ possesses square summable generalized
derivatives (this assumption holds true, e.g., for domains with smooth bound-
aries or for convex polygonal domains). Also, we now choose the simplest
quadratic form of the function θ, namely

θ(x3) =
1

2

(
x3 −

h

2

)(
x3 +

h

2

)
.(4.13)

It is worth noting that this choice leads to the form of τ im
KL

suggested by
Morgenstern in [9].

In this case, the constant c in (4.6) is equal to −12,

ψ = −
4x3
h2

θ(x3), ι1 = −
h5

240
, ι2 = −2ι1, ι3 =

h3

60
, ι4 =

h3

210
,

r1 and r2 can be explicitly defined as follows:

r1(τ
im
KL

) = τ im
11,1 + τ im

12,2 + τ im
13,3 = −2µx3

(
ŵ,111 +

ν

1− ν
∆̂ŵ,1

)
− 2µx3ŵ,122 + x3q̂1

= x3

(
− 2µ

1− ν
∆̂ŵ,1 + q̂1

)
,

r2(τ
im
KL

) = τ im
21,1 + τ im

22,2 + τ im
23,3 = x3

(
−

2µ

1− ν
∆̂ŵ,2 + q̂2

)

and we have

(4.14)

∫

Ω

r2s
(
τ
im
KL

)
dx =

h3

12

∫

ω

∣∣∣∣q̂s −
2µ

1− ν
∆̂ŵ,s

∣∣∣∣
2

dx̂ s = 1, 2.

By (4.8), (4.12)—(4.14) we arrive at the following result.
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Theorem 4.1. Let θ, ψ(x3), and c be defined in accordance with (4.13),

(4.6), and (4.7), respectively. Then, for any Ŵ ∈ H1
0 (Ω) and q̂ ∈ Qcf̂0

(ω)
we have

||| ε(u− v112) |||2≤ M4(ŵ, Ŵ , q̂) := (1 + β)(M1(Ŵ , q̂) +

+M2(ŵ, Ŵ )) +
1 + β

β
M3(ŵ, q̂),(4.15)

where

M1(Ŵ , q̂) := 2

∫

ω

(
µh5

160
|∇̂Ŵ |2−ι1(Ŵ,1q̂1+Ŵ,2q̂2) +

ι2
2µ

|q̂|2
)
dx̂,

M2(ŵ, Ŵ ) :=

∫

ω

(
µ(1− ν)h3

6(1− 2ν)
ρ2(ŵ, Ŵ )− 2ι3ρ(ŵ, Ŵ )h2f̂0 +

ι4h4f̂2
0

2µ(1 + ν)

)
dx̂,

M3(ŵ, q̂) :=
C2
ωh

3

6c21

∫

ω

(
|q̂1 −

2µ

1− ν
∆̂ŵ,1|2 + |q̂2 −

2µ

1− ν
∆̂ŵ,2|2

)
dx̂,

and ιk for k = 1, 2, 3, 4 are defined by (4.11) and (4.10).

Corollary 4.2. Let ω ∈ Π, where Π is a rectangle with sides a and b. Then

Cω ≤ CΠ =
1

π

ab√
a2 + b2

.

Thus, M4

(
ŵ, Ŵ , q̂

)
contains only known functions and constants. If ŵ is

known, then the majorant is directly computable. By selecting q̂ and Ŵ , we
can minimize the value of the majorant. For this purpose, we can represent q̂
and Ŵ as series (using some trial functions) and minimize the majorant by
a direct minimization method. The number obtained presents a guaranteed
upper bound of the modeling error encompassed in ŵ. From Theorem 4.1 it
follows that the sharpest error bound is given by the estimate

|||ε(u−v112) |||≤ inf
Ŵ ∈ H1

0 (ω)
q ∈ Qcf̂0

(ω)

{(
M1(Ŵ , q̂) +M2(ŵ, Ŵ )

)1/2
+M1/2

3 (ŵ, q̂)

}
.

5. A23,/"$"(' 0*.+4($# $- ".* *##$# ,+5$#+!"

First, we use Hölder inequality and find that

|ι1| =
h/2∫

−h/2

x32θ(x3)dx3 ≤
(
h5

80

)1/2

ι
1/2
2 , |ι3| =

h/2∫

−h/2

x3ψ(x3)dx3 ≤
(
h3

12

)1/2

ι
1/2
4 .
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Now, we represent the estimate in a simpler form by noting that
∣∣∣∣∣∣

∫

ω

(ι1(Ŵ,1q̂1+Ŵ,2q̂2))dx̂

∣∣∣∣∣∣
≤ |ι1|‖∇Ŵ‖ω‖q̂‖ω ≤

(
h5

80

)1/2

ι
1/2
2 ‖∇Ŵ‖ω‖q̂‖ω ≤

≤ µγ
h5

160
‖∇Ŵ‖2ω +

ι2
2µγ

‖q̂‖2ω

and

2

∣∣∣∣∣∣
ι3

∫

ω

ρf̂dx̂

∣∣∣∣∣∣
≤ 2

(
h3

12

)1/2

ι
1/2
4 ‖ρ‖ω‖f̂‖ω ≤ λµ(1− ν)

(1− 2ν)

h3

12
‖ρ‖2ω+

ι4(1− 2ν)

λµ(1− ν)
h4‖f̂0‖2ω.

In view of these relations,

M1(Ŵ , q̂) ≤ m11h
5‖∇̂Ŵ‖2ω +m12ι2‖q̂‖2ω,

M2(ŵ, Ŵ ) ≤ m21h
3‖ρ(ŵ, Ŵ )‖2ω +m22ι4h

4‖f̂0‖2ω,
where the coefficients mij depend on material parameters and positive num-
bers λ and γ. They are defined by the relations

m11 =
µ(1+γ)

80 , m12 =
1 + γ

µγ
,

m21 =
µ(1−ν)(1+λ)

6(1−2ν) , m22 =
1

µ

(
1

2(1 + ν)
+

(1− 2ν)

λ(1− ν)

)
.

and we have derived the following form of the error bound.

Theorem 5.1. Let the conditions of Theorem 4.1 be satisfied. Then

||| ε(u− v112) |||2 ≤ M5

(
ŵ, Ŵ , q̂

)
:=

= (1 + β)
(
m11h

5‖∇̂Ŵ‖2ω +m21h
3‖ρ(ŵ, Ŵ )‖2ω +

+m12ι2‖q̂‖2ω +m22ι4h
4‖f̂0‖2ω +

1

β
M3(ŵ, q̂)

)
,(5.1)

where the coefficients m depend only on elasticity coefficients and arbitrary
positive numbers γ and λ.

We note that the M5(ŵ, Ŵ , q̂) suggests a suitable form of the correction

function Ŵ . Indeed, it is natural to define Ŵ such that the value of M5 be
minimal, what leads to a singularly perturbed variational problem

(5.2) inf
Ŵ∈H1

0 (ω)

{
h2‖∇̂Ŵ‖2ω +

m21

m11
‖ρ(ŵ, Ŵ )‖2ω

}
,

where m21
m11

= 40(1−ν)
3(1−2ν)

1+λ
1+γ .

Remark 5.2. If we set λ = 1 + 2γ, then (5.2) has the form

inf
Ŵ∈H1

0 (ω)

{
h2‖∇̂Ŵ‖2ω +

80(1− ν)

3(1− 2ν)
‖ρ(ŵ, Ŵ )‖2ω

}
,(5.3)



MODELING ERROR GENERATED BY KIRCHHOFFLOV EMODEL 17

which was used in [3]. Hence, our analysis shows that this singularly per-
turbed problem follows from the functional a posteriori estimate if we define
the correction function Ŵ as the function that minimizes the majorant and
select γ and λ in a special form. We note that other values of γ and λ lead
to the same asymptotic rate (with respect to h), so that from the viewpoint of
qualitative analysis the choice of γ and λ is not important. However, if the
problem is considered in the quantitative context and it is necessary to find
a sharp upper bound of the modeling error related to a concrete plate type
body, then γ and λ should be selected such that the value of the majorant be
minimal.

Let us select q̂ in a special form, namely

q̂1 =
2µ

1− ν
∆̂ŵ,1, q̂2 =

2µ

1− ν
∆̂ŵ,2.

Now q̂ depends on ŵ. To outline this fact we henceforth write q̂(ŵ). It is
easy to see that (cf. 2.17)

divq̂(ŵ) =
2µ

1− ν
∆̂∆̂ŵ = f̂0

6(1− ν)

µ

2µ

1− ν
= 12f̂0.

Since we have set c = −12, the above relation means that

q̂(ŵ) ∈ Qcf̂0
.

Hence, we note that

‖q̂(ŵ)‖2ω =
4µ2

(1− ν)2

∫

ω
|∇̂∆̂ŵ|2dx̂,

apply Theorem 5.1, and obtain

Theorem 5.3. Let the conditions of Theorem 4.1 be satisfied. Then

||| ε(u− v112) |||2 ≤ M6(ŵ, Ŵ , q̂(ŵ)) :=

= m11h
5‖∇̂Ŵ‖2ω +m21h

3‖ρ(ŵ, Ŵ )‖2ω + h5R(ŵ, f̂0),(5.4)

where γ, and λ are arbitrary positive numbers and

R(ŵ, f̂0) = m12
µ2

30(1− ν)2
‖∇̂∆̂ŵ‖2ω +m22

h2

210
‖f̂0‖2ω.

From (4.4) it follows that

||| ε(v112) |||2≥ c21‖ε(v112)‖2Ω ≥
c21h

3

12
‖H(ŵ)‖2ω,(5.5)

where H(ŵ) is the 2×2 matrix of second derivatives of ŵ (which is indepen-
dent of h). In other words, the energy norm of the solution to (112)-model
decreases not faster than h3/2. Our goal is to show that majorant decreases
with a faster rate. Our analysis of asymptotic properties is based upon the
following result (see [1, 3]).
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Lemma 5.4. Let φ ∈ H1(ω) and Ŵ∗ be a minimizer of the functional

inf
Ŵ∈H1(ω)

{
h2‖∇̂Ŵ‖2ω + ‖Ŵ − φ‖2ω

}
,(5.6)

where h is a small positive number. Then

h2‖∇̂Ŵ∗‖2ω + ‖Ŵ∗ − φ‖2ω ≤ C̃
(
h‖φ‖∂ω + h2‖φ‖1,ω

)
.(5.7)

By this Lemma and trace theorems, we derive (cf. [3])

h‖∇̂Ŵ∗‖ω + ‖ρ(ŵ, Ŵ∗)‖ω ≤ Ch1/2‖∆̂ŵ‖ω.

Therefore,

(5.8) M6(ŵ, Ŵ∗, q̂(ŵ)) ≤ Ch4 (m11 +m21) ‖∆̂ŵ‖2ω + h5R(ŵ, f̂0).

Now, we use (5.5) and Young’s inequality and find that

||| ε(u) |||2 ≥ 1

2
||| ε(v112) |||2 −M6(ŵ, Ŵ∗, q̂(ŵ)) ≥

≥ h3c21
24

‖H(ŵ)‖2ω −Ch4 (m11 +m21) ‖∆̂ŵ‖2ω − h5R(ŵ, f̂0).(5.9)

By combining (5.8) and (5.5) for the first and (5.9) for the second estimate
below we end up with

(5.10)
M6(ŵ, Ŵ∗, q̂(ŵ))

||| ε(v112) |||2
≤ ch and

M6(ŵ, Ŵ∗, q̂(ŵ))

||| ε(u) |||2
≤ ch.

Remark 5.5. Typically, the solution ŵ of KL problem is known only approx-
imately. However, using (1.3) we can estimate the distance to u provided
that the reconstruction operator satisfies (1.1).

It is not difficult to show that R110
v satisfies this condition.

‖R110
v ŵ1 −R110

v ŵ2‖V0 ≤ C110(ω)
h3/2

12
‖ŵ1 − ŵ2‖H2(ω),

which means that (1.1) holds.

Remark 5.6. In [3], generalizations of Lemma 5.4 have been established.
They are related to cases where φ has lower regularity. In particular, if
φ ∈ Hs(ω), 0 < s < 1/2, then we have the estimate

h2‖∇̂Ŵ∗‖2ω + ‖Ŵ∗ − φ‖2ω ≤ C(s, ω)h2s‖φ‖s,ω,(5.11)

which can be used if ∆ŵ does not belong to H1(ω). It is easy to see that
(5.11) yields convergence of the quotients in (5.10) but with a rate lesser
than 1.
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