
Composite Finite Elements and Multi-Grid

Part I: Convergence Theory in 1-d
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Abstract

We will study the convergence of multi-grid methods for solving linear sys-
tems as they arise from finite element discretisations of elliptic boundary value
problems on complicated domains. Composite finite elements are employed
for the construction of the sequence of coarse-level discretisations, where the
minimal dimension of the coarsest linear system is very small, independent of
the number and size of geometric details in the domain. The convergence of
the corresponding multi-grid method is proved in the framework of geometric
multi-grid methods while the emphasis is on the robustness with respect to the
geometric details in the domain.

Introduction

In this paper, we will present a multi-grid algorithm which is based on a discretisa-
tion with so-called composite finite elements. Composite finite elements have been
developed for coarse level discretisations of partial differential equations (PDEs) on
complicated domains (see [HS97c], [HS96], [HS97a], [HS97b]). They can be con-
sidered as a bridge between purely algebraic multi-level methods (see, e.g. [RS87],
[Bra95]), where only the given system of linear equations is required as an input,
and purely geometric multi-grid methods [Hac85], which are based on a hierarchy
of nested finite element meshes of the domain. This new multi-grid method requires
as an input
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2 1 MODEL PROBLEM & DISCRETISATION

• the underlying boundary value problem,

• the algebraic system of linear equations corresponding to a finite element dis-
cretisation, and

• the link between this discretisation and the geometry of the domain, e.g., the
meaning of the unknowns.

In [FHSW01], the algorithmic aspects of this new multi-grid method have been
presented. Here, its convergence is proved in the framework of geometric multi-
grid method, i.e., by employing the so-called smoothing and approximation prop-
erty. Various other approaches for applying multi-level methods to elliptic boundary
value problems on complicated domains exist in the literature (cf. [BX96], [Xu96],
[KY94]). They are formulated in the setting of multi-level methods (cf. [Xu92]).
For a comparison of these methods, we refer to [BHW98].

As a model problem we consider, as a prototype of an elliptic boundary value
problem with smooth coefficients, the operator Lu = −∆u+u with mixed boundary
conditions . We assume that the discretisation, i.e., the finite element mesh and the
system of equations, is given while a hierarchy of coarse scale discretisations is not
at hand. Composite finite elements in the context of multi-grid methods have been
introduced in [FHSW01] and we focus here on the convergence analysis. We will
prove for a one-dimensional model problem that the multi-grid method converges
robustly with respect to some parameter describing the geometry of the domain and
the finite element meshes.

The paper is organised as follows. In Section 1, we will introduce the model
problem and the corresponding finite element discretisation. The multi-grid method
based on composite finite elements is presented in Section 2, while its convergence
is analysed in Section 3.

1 Model Problem & Discretisation

Let Ω ⊂
� 2 be a bounded polygonal Lipschitz domain with possibly many geomet-

rical details. The boundary of Ω is denoted by Γ := ∂Ω. The usual Sobolev space
is denoted by Hk(Ω) and we put V := H1(Ω). The weak formulation of the model
problem is given by seeking, for given f ∈ L2(Ω), the function u ∈ V such that

a(u, v) =

∫

Ω

fv dx ∀ v ∈ V , (1)
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where the bilinear form a : V × V →
�

is defined by

a(u, v) :=

∫

Ω

〈∇u,∇v〉 + uv dx .

The discretisation is based on a conforming finite element mesh

G = {τ1, τ2, . . . , τN}

in the sense of Ciarlet [Cia78]. Let S denote the space of continuous, piecewise affine
finite elements

S := {u ∈ V | ∀τ ∈ G : u|τ is affine} .

The finite element discretisation of problem (1) is given by finding uS ∈ S with

a(uS , v) =

∫

Ω

fv dx ∀ v ∈ S .

The set of nodal points - all vertices of triangles in G - is denoted by Θ and the
corresponding local nodal basis by ϕx, x ∈ Θ. The link between a finite element
function and its coefficient vector is given by the prolongation operator

P :
� Θ → S, P [u](x) =

∑

z∈Θ

u(z)ϕz(x) .

Thus, the coefficient vector u is the solution of

ASuS = fS (2)

with
AS(x, y) := a(ϕx, ϕy)

fS(x) :=
∫

Ω fϕx dx

}

∀x, y ∈ Θ .

Typically, the linear system (2) is very large and sparse so that multi-grid solvers
should be applied for its solution. The efficiency of multi-grid methods strongly
relies on a given hierarchy of coarse-level discretisations. However, in the case of very
complicated domains such a hierarchy is not available in an obvious way. We will
apply composite finite elements for constructing appropriate coarse-level systems.
In the following, we will prove that the convergence rate of the resulting multi-grid
method is independent of the number and sizes of the geometric details. Here, we
will restrict to a one-dimensional model problem while further research is devoted
to the multi-dimensional case.
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2 Multi-Grid Algorithm

A multi-grid algorithm is based on a multi-scale discretisation of the boundary value
problem. It combines an iterative solver (called smoother) on each discretisation
level with a recursive coarse grid correction. The parameter ` ∈ � with 0 ≤ ` ≤
L describes the discretisation level, where L corresponds to the finest level. The
number of levels L + 1 is not known a priori. For ease of notation we rewrite (2) as

ALuL = fL .

Analogously, the finite element space S is denoted, from now on, by SL and its basis
by ϕL,x.

2.1 Abstract Multi-Grid Algorithm

The definition of a sequence of coarse grid finite element spaces {S`}0≤`≤L−1 and of
appropriate discrete inter-grid transfer operators

p`,`−1 :
� Θ`−1 →

� Θ`

plays the key rôle for a multi-grid algorithm (The explicite definitions will be given in
section 2.3.). The transposed operator of p`,`−1 defines the restriction r`−1,` :

� Θ` →
� Θ`−1 . Given the prolongation p`,`−1, the coarse grid matrices A`, for ` < L, are
defined recursively via the Galerkin product

A` := r`,`+1A`+1p`+1,` .

In order to define the multi-grid algorithm one has to specify an iterative solver on
each level. Here, we restrict to linear solvers of the form

u
(i+1)
` := u

(i)
` −M`

(

A`u
(i)
` − f`

)

. (3)

The ν-fold application of this solver defines the mapping S
(ν)
`

(

u
(i)
` , f`

)

:= u
(i+ν)
` .

The multi-grid algorithm is a recursive procedure which requires as an input param-
eter ν ∈ � specifying the number of smoothing steps and a parameter γ ∈ {1, 2}
controlling whether a V- or W-cycle is applied (for details refer to [Hac85]).

For the realisation of the multi-grid algorithm, the definition of a hierarchy of
coarse scale discretisations is essential.
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2.2 Generation of a Coarse Grid Hierarchy

This subsection is devoted to the construction of a hierarchy of coarse scale grids
(G`)

L−1
`=0 from a given fine grid GL. These grids G` will be nested for 0 ≤ ` ≤ L−1 but,

possibly, do not resolve the geometric details of the domain Ω. However, the con-
struction guarantees that the grid GL−1 has a similar (slightly coarser) distribution
of mesh cells as GL. Let Ω0 denote a bounding box of Ω and G0 = {τ0, τ1, . . . , τn0

} a
minimal conforming finite element grid of Ω0 (in the sense of Ciarlet [Cia78]). Finer
meshes G` are generated by recursively refining the initial mesh G0. The refinement
process is controlled by the distribution of mesh cells in GL. A mesh cell τ ∈ G` is
marked for refinement, if more than three distinct elements of GL are contained in τ .
Since we apply conforming subdivisions of elements as, e.g., connecting midpoints
of edges, either t ⊂ τ or (int t) ∩ (int τ) = ∅ holds for any τ ∈ G` and t ∈ G`+1,
` + 1 < L. To avoid hanging nodes the green-closure algorithm (cf.[BS81]) is ap-
plied. The refinement stops if all mesh cells contain at most three triangles of the
given grid. Triangles having no intersection with the domain are removed from these
grids. For a detailed description of the algorithm and numerical experiments, we
refer to [FHSW01].

The domain covered by the grid G` is denoted by Ω` and Θ` denotes the set of
vertices of triangles in G`. The definition of auxiliary grids (G`)

L−1
`=0 implies for all

` < L

Ω`+1 ⊂ Ω` and Θ`+1 ⊂ Ω` .

Remark 2.1 The algorithm adapts the auxiliary grids to GL even if the given grid
is not quasi-uniform.

Remark 2.2 The algorithm can be generalised to three-dimensional problems in a
straightforward manner.

2.3 Composite Finite Elements

In this section, the sequence of coarse grid finite element spaces and the appropriate
transfer operators for the multi-grid algorithm will be defined. The auxiliary meshes
G` do not necessarily resolve the geometry of Ω for ` < L and, hence, standard finite
elements cannot be applied. Therefore, we will introduce composite finite element
spaces based on an iterated prolongation.

Let ϕ`,x denote the standard continuous, piecewise affine Lagrange basis on G`.
For any grid function u ∈

� Θ` , we associate a finite element function on the over-
lapping domain Ω` by

P`[u](x) :=
∑

z∈ � Θ`

u(z)ϕ`,z(x) .
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Due to Θ`+1 ⊂ Ω`, the function P`[u] can be evaluated at the grid points Θ`+1 of
the finer mesh. In this light, the inter-grid prolongation p`+1,` :

� Θ` →
� Θ`+1 is

defined by

p`+1,`[u](x) := P`[u](x) , x ∈ Θ`+1 ,

and the matrix representation is

p`+1,` ∈
� Θ`+1×Θ` : p`+1,`(x, y) = P`[ϕ`,y](x)

for all x ∈ Θ`+1 and y ∈ Θ`. The restriction is the transposed of p`+1,`, i.e.,

r`,`+1 ∈
� Θ`×Θ`+1 : r`,`+1(x, y) = p`+1,`(y, x) .

Due to the nestedness of the auxiliary grids the composite mapping

pL,` := pL,L−1pL−1,L−2 . . .p`+1,`

has the representation

pL,` :
� Θ` →

� ΘL , pL,`[u](x) = P`[u](x) ∀x ∈ ΘL .

For any coarse grid vector u ∈
� Θ` , the associated composite finite element function

is given by

u = PL,`[u] := PL [pL,`[u]] =
∑

z∈ � ΘL

(P`[u](z)) ϕL,z .

Since the finest grid resolves the domain, i.e., ΩL = Ω, any composite finite element
function is a function on the physical domain Ω and contained in the corresponding
standard finite element space S. We emphasise that the overlapping domains Ω`

have only auxiliary character.

Definition 2.3 The space of Composite Finite Elements is the range of PL,`

SL,` := rangePL,` := PL,`

( � Θ`
)

.

The definition of composite finite elements by using inter-grid prolongations has
geometric and algebraic character. The construction of the auxiliary grids is based
on geometric properties while these grids are only used for setting up purely algebraic
prolongation operators.
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2.4 Multi-Grid Algorithm

Our aim is to solve the given system of linear equations ALuL = fL via a multi-grid
algorithm. For 0 ≤ ` ≤ L, consider the problem

A`u` = f` .

In a first phase, a few steps of an iterative solver (smoothing iteration) of the form
(3) are applied yielding an approximation ũ` of u`. Denote the error by e` := ũ`−u`

and observe

A`e` = A`ũ` − f` =: d` . (4)

The principle of multi-grid methods is to exploit the smoothness of the error e` and
solve (4) on a coarser grid. Put d`−1 := r`−1,`d` and define e`−1 as the solution of

A`−1e`−1 = d`−1 . (5)

An approximate solution of (4) is given by p`,`−1e`−1 and is used to correct to
approximation ũ`

ũ` 7→ ũ` − p`,`−1e`−1.

A two-grid algorithm is the combination of such a coarse grid correction and the
smoothing iteration. The multi-grid method is the recursive application of the two-
grid algorithm to the defect equation (5) on coarser levels and can be written in the
following form (cf. [Hac93]):

procedure MGM(u`, f`, ν);

if ` = 0 then u0 := A−1
0 f0 else

begin for i := 1 to ν do u` := S` (u`, f`);

d`−1 := r`−1,` (A`u` − f`);

e
(0)
`−1 := 0;

for i := 1 to γ do e
(i)
`−1 := MGM(e

(i−1)
`−1 ,d`−1, ν);

u` := u` − p`,`−1e
(γ)
`−1;

end;

The choice γ = 1 results in the so-called V-cycle multi-grid method while γ = 2
corresponds to the W-cycle (cf. [Hac85]). The two-grid iteration matrix KTGM

`,`−1 is
given by

KTGM
`,`−1 :=

(

A−1
` − p`,`−1A

−1
`−1r`−1,`

)

A`K
ν
` (6)

with the iteration matrix K` := I−M` A` of the smoother.
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3 Convergence Analysis

The main objective of this paper is the investigation of the convergence of the
multi-grid method based on non-nested grids. The idea is to adapt the general
multi-grid convergence theory of [Hac85] to our specific situation and to prove the
so-called smoothing and the approximation property. The proof of these properties
differs for composite finite element discretisations on overlapping and non-nested
grids significantly from the situation considered in [Hac85] for the following reasons.

1. The prolongation which was introduced in Section 2.3 is the canonical finite
element prolongation on the levels 0 . . . L − 1. The prolongation from the
finest auxiliary level to the given discretisation is defined on the non-nested
grids GL−1, GL and some of the assumptions in [Hac85] are violated. Hence,
for the investigation of the effect of the prolongation on non-nested grids it
suffices to consider a two-grid method (GL−1 → GL).

2. Triangles at the boundary, possibly, have only small overlap with the domain
Ω. As a consequence the matrix entries which correspond to nodes lying
(essentially) outside the domain have very different scaling compared to those
entries corresponding to interior nodes. The stability of the method has to be
investigated with respect to these boundary effects.

We recall the basic ingredients of the convergence theory and develop the neces-
sary modifications.

3.1 Convergence of a Two-Grid Algorithm

The two-grid iteration converges if and only if the spectral radius %(KTGM
`,`−1 ) of the

two-grid iteration-matrix is smaller than 1.
Let 〈·, ·〉U be a scalar product on

� Θ` and denote the corresponding norm by

‖u‖2
U := 〈u,u〉U ∀u ∈

� Θ` .

Put U :=
( � Θ` , ‖ · ‖ U

)

. The spectral radius %(KTGM
`,`−1 ) is defined as the maximal

eigenvalue of KTGM
`,`−1 and can be estimated by

%(KTGM
`,`−1 ) ≤ ‖KTGM

`,`−1 (ν)‖
U←U

.

The convergence proof is based on a multiplicative splitting of the two-grid iteration
matrix

‖KTGM
`,`−1 (ν)‖

U←U
= ‖A−1

` − p`,`−1A
−1
`−1r`−1,`‖U←U ‖A`K

ν
` ‖U←U .
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The approximation property holds if there is a constant CA > 0 and a number α ∈
�

such that
‖A−1

` − p`,`−1A
−1
`−1r`−1,`‖U←U ≤ CA hα

` ∀ ` ≥ 1. (7)

Kν
` is said to possess the smoothing property if there exist numbers 0 < ν ≤ ν and

0 < β < 1 such that

‖A`K
ν
` ‖U←U ≤

β

CAhα
`

∀ ν ≤ ν ≤ ν , ` ≥ 1 ,

with α and CA as in (7).
Note that the definition of the approximation and smoothing property slightly

differs from that in [Hac85]. It will be appropriate to prove the convergence of
the presented multi-grid method with respect to a certain parameter related to the
geometry of Ω.

3.2 The Effect of the Small Overlap of Triangles with the Domain

Near the Boundary

In [FHSW01], it was proved that, for quasi-uniform and shape-regular meshes, the
multi-grid method converges although the prolongation from the finest auxiliary
level to the given discretisation is defined on non-nested grids provided the mesh
GL−1 has a similar but slightly coarser structure compared to the given mesh. For
the details, we refer to [FHSW01].

Here, we will study the effect that, on coarse levels, large triangles might have
an arbitrary small overlap with the domain and the degrees of freedom lying (es-
sentially) outside of the domain lead to a very different scaling of the corresponding
matrix entries compared to the interior unknowns. We will study the influence of this
scaling effect on the convergence rate of a multi-grid algorithm for a one-dimensional
model problem.

3.2.1 One-Dimensional Model Problem

Let Ω = (0, 1) and set V := {u ∈ H1(Ω) : u(1) = 0}. Consider the problem to find,
for given f ∈ L2 (Ω), a function u ∈ V so that

a(u, v) =

∫

Ω

fv dx , ∀ v ∈ V with a(u, v) :=

∫

Ω

u′v′ dx .

Let (G`)0≤`≤L denote a sequence of overlapping grids. The grid points are num-
bered from left to right and we assume

x`,0 < 0 < x`,1 < x`,2 < · · · < x`,n`
= 1 .
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x`,0 0 ε x`,2 x`,3 x`,n`

Figure 1: Overlapping grid and corresponding basis functions. The two left-most
basis functions are the restrictions of standard basis functions on the overlapping
grid to the domain.

The intervals are denoted by τ`,i := (x`,i−1, x`,i) and their lengths by h`,i := x`,i −
x`,i−1. The maximal step size is h` := max1≤i≤n`

h`,i. We assume that the grids are
quasi-uniform, i.e., there exists a moderate constant Cu such that, for all 0 ≤ ` ≤ L
and all 1 ≤ i ≤ n`, the estimate h` ≤ Cuh`,i holds. Furthermore, we assume that the
grids are generated from an initial grid G0 by introducing midpoints to the intervals
of coarser triangulations. More precisely, for all 0 ≤ ` ≤ L−1, we assume (cf. Figure
1)

x`+1,2i =
x`,i+1 + x`,i

2
and x`+1,2i+1 = x`,i+1 ∀ 0 ≤ i ≤ 2`−1(n0 − 1) .

A direct consequence is that x`,1 =: ε, for all 0 ≤ ` ≤ L. We shall regard the (small)
overlap ε of the first interval τ`,1 with the domain as a parameter and investigate
the behaviour of the multi-grid convergence as ε → 0. More precisely, we assume

0 < ε < αh`+1,1 < 1 ∀ 0 ≤ ` ≤ L − 1 , (8)

with 0 < α < 1 fixed, and therefore,

0 < ε < αhL,1 < 1 .

As a consequence the overlap of coarse intervals τ`,0 with the domain might be
arbitrary small.

We use the notation A
�

B if there is a constant C depending only on α and
Cu such that A ≤ CB. Similarly, A � B if B

�
A and A ∼ B if A

�
B and B

�
A.

We will prove that the multi-grid algorithm converges uniformly with respect to L,
`, h` and ε.

For our model problem, the composite finite element space S` is simply the
restriction of the standard finite element space on the overlapping grid G` to (0, 1)

S` =
{

u ∈ C0
(

Ω
)

| ∀ τ ∈ G` : u|τ is affine
}

∩ V .
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The finite element discretisation is given by seeking u` ∈ S` such that

a(u`, v`) =

∫

Ω

fv` dx , ∀ v` ∈ S` .

Due to the Dirichlet boundary conditions, the degrees of freedom are associated with
the set of grid points Θ` := {x`,i : 0 ≤ i ≤ n` − 1}. As a basis of S` we choose the

usual nodal basis {ϕ`,i}
n`−1
i=0 (hat functions) of the overlapping grid, where the two

left-most basis functions are restricted to the domain Ω (cf. Figure 1). Applying
the basis representation of u` and testing with the basis function lead to the system
of linear equations

A`u` = F` ,

with

(A`)i,j := a (ϕ`,i, ϕ`,j) , (F`)i :=

∫

Ω

fϕ`,i dx ∀ 0 ≤ i, j ≤ n` − 1 .

For simplicity, we restrict to the damped Jacobi iteration with damping factor ω ∈
(0, 1) as a smoother. Let D` denote the diagonal part of A`. Then, the iteration
matrix is given by K` := I− ωD−1

` A` and the iteration can be written in the form

x(i+1) = x(i) − ωD−1
`

(

A`x
(i) −F`

)

.

3.2.2 The Convergence Rate of a Two-Grid Method

First, we analyse the convergence of a two-grid algorithm with respect to the levels
`, ` − 1. As the inter-grid transfer operator we use the canonical finite element
prolongation (cf. [Hac85, Sec. 3.6]) p`,`−1 :

� Θ`−1 →
� Θ` and, as the restriction

r`−1,`, its transposed. The two-grid iteration matrix with ν (pre-)smoothing steps
is given by

KTGM
`,`−1 :=

(

A−1
` − p`,`−1A

−1
`−1r`−1,`

)

A`K
ν
` .

Our aim is to prove the two-grid convergence by investigating the smoothing
and the approximation property with respect to appropriate norms. Numerical
results show, that the Euklidean norm is not appropriate because
‖KTGM

`,`−1 ‖0,`←0,`
diverges as ε → 0, while the spectral radius is bounded away from 1

independent of ε. Below, we will prove the robust convergence as ε → 0 in a weighted
norm, where the left-most unknown (lying essentially outside Ω) is damped. For
s ∈

�
, let

Ns,` := h` diag [q3−s
` , 1, 1, . . . , 1] ,
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with q` := q`(ε) := ε/h`,1. The appropriate scalar product and norm on
� Θ` are

given by

〈u,v〉0,s,` = u � Ns,`v and ‖u‖0,s,` := 〈u,u〉
1/2
0,s,` .

The indices 0, s characterise the correspondence of the norm ‖ · ‖0,s,` to a weighted

L2-norm.

Remark 3.1 It can be shown that the norms ‖PL,` (·)‖L2(Ω) and ‖·‖0,0,` are equiv-
alent.

For any vector u ∈
� m , the usual Euklidean norm is denoted by ‖u‖2

0 :=
∑m

i=1 |ui|
2 and the associated matrix norm by ‖·‖0←0.

Explicit calculations yield that the system matrix A` has the following represen-
tation

A` =







0 . . . 0
... Ã`

0






+

q`

h`,1





1 −1 0
(K`)21 0 (K`)23

0

0 0



 ,

where Ã` denotes the finite element discretisation of a reduced Poisson problem

−u′′ = f in (ε, 1) , (9)

u′(ε) = u(1) = 0

on the sub-mesh G̃` := {τ ∈ G` : τ ⊂ (ε, 1)}.

Lemma 3.2 For all γ ∈ (0, 1) there exist 0 < ω < ω < 1, 1 < ν < ν, and q > 0
depending only on α, Cu (cf. (8)) and γ such that

‖A`K
ν
` ‖0,1←0,1 ≤ γh` ∀ q ∈ ]0, q] , ν ∈ [ν, ν] , ω ∈ [ω, ω] .

Proof. To simplify the notation we skip the index ` in the proof of this lemma.
From the definition of the norm ‖ · ‖0,s it follows

‖AKν‖0,1←0,1 = ‖N
1/2
1 AKνN

−1/2
1 ‖0←0 .

The ansatz is to use an appropriate multiplicative splitting of this matrix

N
1/2
1 AKνN

−1/2
1 = N

1/2
1 A

(

I− ωD−1A
)ν

N
−1/2
1

= N
1/2
1 D1/2X (I− ωX)ν

D1/2N
−1/2
1

= N
1/2
1 D1/2N−k

1 W (I− ωW)ν
Nk

1D
1/2N

−1/2
1
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with X := D−1/2A D−1/2 and W := Nk
1X N−k

1 . Therefore,

‖AKν‖0,1←0,1 ≤ ‖N
1/2
1 D1/2N−k

1 ‖0←0 · ‖W (I− ωW)ν ‖0←0

· ‖Nk
1D

1/2N
−1/2
1 ‖0←0 .

Explicit calculations for the first and the last factor yield

‖AKν‖0,1←0,1 ≤ C0h‖W (I− ωW)ν ‖0←0 , (10)

for k = 1/4 while C0 is independent of ` and q.

It remains to estimate ‖W (I− ωW)ν ‖0←0, with W = N
1/4
1 XN

−1/4
1 . We have

W =







0 . . . 0
... D̃−1/2ÃD̃−1/2

0






+









1 W12 0
W21 0 W23

0 W32 0
0

0 0









with |W12| ∼ |W23| ∼ |W32| ∼ q and |W21| ∼ 1. Let ei denote the ith canonical unit
vector in

� n−1 . We apply the splitting

W =

[

1 0

W21e1 W̃

]

+









0 W12 0
0 0 W23

0 W32 0
0

0 0









=: WI + WII (11)

with W̃ := D̃−1/2ÃD̃−1/2. This leads to

W (I− ωW)ν = WI (I− ωWI + ωWII)
ν + WII (I− ωW)ν .

The first term on the right-hand side above can be rewritten as a sum of terms of
the form

WI

t
∏

i=1

(I− ωWI)
αi (ωWII)

βi (12)

with αi, βi ∈ � 0 and |α| + |β| = ν. Here, |µ| :=
∑t

i=1 µi. To avoid the identity
matrix in between of the factors in (12) we may assume, w.l.o.g.,

αi+1, βi > 0 ∀ 1 ≤ i ≤ t − 1 .

There exists only one summand with |β| = 0, namely

WI (I− ωWI)
ν .
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This leads to the estimate

‖W (I− ωW)ν‖0←0 ≤ ‖WI (I− ωWI)
ν‖0←0 (13)

+

ν−1
∑

j=0

(

ν

j

)

‖I− ωWI‖
j
0←0 ‖ωWII‖

ν−j
0←0

+ ‖WII‖0←0 ‖I− ωW‖ν
0←0

and the single factors and sums on the right-hand side in (13) will be considered
below.

We begin with the estimate of WI (I− ωWI)
j and (I− ωWI)

j . Explicit calcu-
lations yield

(I− ωWI)
j = (1 − ω)j

[

1 0

c(j) B̃j

]

and

WI (I− ωWI)
j = (1 − ω)j

[

1 0

b(j) W̃B̃j

]

, (14)

with B̃ := (1 − ω)−1
(

I− ωW̃
)

and

b(j) := W21e1 −
ωW21

1 − ω
W̃

j−1
∑

m=0

B̃me1 , c(j) := −
ω

1 − ω
W21

j−1
∑

i=0

B̃ie1 .

Since the matrix W̃ is symmetric its spectral radius equals ‖W̃‖0←0. The quasi-
uniformity of the reduced grid G̃ implies that the L2-norm of W̃ is bounded by
C

W̃
∼ 1.

It is well known that Ã is positive definite implying that W̃ = D̃−1/2ÃD̃−1/2 is
positive definite as well. The eigenvectors of B̃ coincide with those of W̃ and the

eigenvalues of B̃ are of the form (1 − ωλ)/(1 − ω) with λ ∈ spec
(

W̃
)

. Thus, the

L2-norm of B̃ is bounded by (1 − ω)−1 for all 0 < ω ≤ ω̄ ≤ 1/C
W̃

.
From [Hac85, Lemma 1.3.5 ], we conclude that for any 0 < ω ≤ ω̄ and ω ∈ [ω, ω̄],

‖W̃B̃j‖0←0 =

∥

∥

∥

∥

W̃
1

(1 − ω)j
(I− ωW̃)j

∥

∥

∥

∥

0←0

≤
1

(1 − ω)j
max{fj(λ) = λ(1 − ωλ)j : λ ∈ spec(W̃)} .

The maximum above is bounded by

max{fj(λ) : λ ∈ spec(W̃)} ≤
1

ω (1 + j)
,
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i.e.,

‖W̃B̃j‖0←0 ≤
1

ω (1 − ω)j (j + 1)
.

Next, the L2-norm of the vector b(j) in (14) is estimated. Let (µi)
n−1
i=1 denote the

(orthonormal) eigenvectors of W̃ and expand e1 according to

e1 =

n−1
∑

i=1

αiµi .

Thus,

b(j) = W21e1 −
ωW21

1 − ω

n−1
∑

i=1

j−1
∑

m=0

αiλi

(

1 − ωλi

1 − ω

)m

µi

and, for the L2-norm, one gets

‖b(j)‖2
0

�
‖e1‖

2
0 +

∥

∥

∥

∥

∥

ω

1 − ω

n−1
∑

i=1

j−1
∑

m=0

αi

(1 − ω)m |fm(λi)|µi

∥

∥

∥

∥

∥

2

0

= 1 +

(

ω

1 − ω

)2 n−1
∑

i=1

α2
i

(

j−1
∑

m=0

|fm(λi)|

(1 − ω)m

)2

�
1 +

(

ω

1 − ω

)2 n−1
∑

i=1

α2
i

(

j−1
∑

m=0

1

ω (1 + m) (1 − ω)m

)2

.

Straightforward analysis yields

j−1
∑

m=0

(1 − ω)j−m j + 1

m + 1
≤

1

ω

j−1
∑

m=0

(1 − ω)j−m (1 + ω)j−m ≤
1 − ω2

ω3
.

Using this estimate and
∑

α2
i = 1, the norm of b(j) is bounded by

‖b(j)‖0

� 1

ω3 (j + 1) (1 − ω)j
,

where the constant of equivalence is independent of ω and j. In a similar fashion,
one proves

‖c(j)‖0

� 1

(1 − ω)j
.
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It follows that

∥

∥

∥
WI (I− ωWI)

j
∥

∥

∥

�
(1 − ω)j

(

1 +
∥

∥

∥
b(j)

∥

∥

∥
+
∥

∥

∥
W̃B̃j

∥

∥

∥

) � 1

ω3 (j + 1)
,

∥

∥

∥
(I− ωWI)

j
∥

∥

∥

�
1 and

∥

∥

∥
W

j
II

∥

∥

∥
≤ (CIIq)

j . (15)

It remains to estimate the norm ‖I− ωW‖ν
0←0 in (13). We obtain

‖W‖0←0 ≤ ‖WI‖0←0 + ‖WII‖0←0 ≤ C
(

1 +
∥

∥

∥
W̃

∥

∥

∥

0←0
+ q
)

=: CW ,

where CW > 0 only depends on α and Cu (cf. (8)). Thus,

ω := min

{

2

CW

, C−1

W̃

}

(16)

leads to

‖I− ωW‖ν
0←0 ≤ 1 .

Combining this estimate and (15) with (13) results in

‖W (I− ωW)ν‖0←0 ≤ C1

(

1
ω3(ν+1)

+
∑ν−1

j=0

(ν
j

)

(CIIωq)ν−j + q
)

≤ C1

(

1
ω3(ν+1)

+ ((1 + CIIωq)ν − 1) + q
)

, (17)

where C1 only depends on α and Cu. Next, we have to determine the ranges of ω,
ν and q such that every term in (17) is bounded by γ/3 for any 0 < γ < 1.

Fix 0 < ω < ω and 0 < γ < 1. Put ν := 3C1

(

ω2γ
)−1

− 1 and fix 1 ∼ ν ≥ ν.
Then,

‖W (I− ωW)ν‖0←0 ≤ γ ∀ q ∈ ]0, q] , ν ∈ [ν, ν] , ω ∈ [ω, ω] ,

with

q := min

{

γ

3C1
,

1

CIIω

(

(

1 +
γ

3C1

)1/ν

− 1

)}

∼ 1 .

By replacing γ by γ/C0 with C0 as in (10) yields the proof.
�

Lemma 3.3 The approximation property holds with respect to the ‖ · ‖0,1,`-norm

‖A−1
` − p`,`−1A

−1
`−1p

T

`,`−1‖0,1,`←0,1,` ≤ CAh` ,

where the constant CA is independent of ` and q`.
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Proof. We again apply the splitting

A` =







0 . . . 0
... Ã`

0






+

q`

h`,1





1 −1
−1 1

0

0 0



 .

Let e`,i denote the ith canonical unit vector in
� n`−1. It is easy to check that

A−1
` =





h`,1

q`
+
(

Ã−1
`

)

11

(

Ã−1
` e`,1

)

�

Ã−1
` e`,1 Ã−1

`



 .

Next, we compute the matrix V` := A−1
` − p`,`−1A

−1
`−1 p � `,`−1. We apply

p`,`−1 =







1
2

1
2 0 . . . 0

0 p̃`,`−1






,

with the (canonical) prolongation p̃`,`−1 corresponding to the reduced grids G̃`−1,
G̃`. Explicit calculations result in

V` =





h`,1

q`
+
(

Ã−1
`

)

11

(

Ã−1
` e`,1

)

�

Ã−1
` e`,1 Ã−1

`



−





h`−1,1

q`−1
+
(

Ã−1
`−1

)

11

(

Ã−1
`−1e`−1,1

)

�
p̃ �̀

,`−1

p̃`,`−1Ã
−1
`−1e`−1,1 p̃`,`−1Ã

−1p̃ �̀
,`−1



 .

Observe that
h`,1

q`
=

h2
`,1

ε
=

h2
`−1,1

4ε
=

h`−1,1

4q`−1

and, hence, we obtain

V` =





(

Ã−1
`

)

11
−
(

Ã−1
`−1

)

11

(

Ã−1
` e1

)

� −
(

Ã−1
`−1e`−1,1

)

�
p̃ �̀

,`−1

Ã−1
` e`,1 − p̃`,`−1Ã

−1
`−1e`−1,1 Ã−1

` − p̃`,`−1Ã
−1p̃ �̀

,`−1



 .

Put Ṽ` := Ã−1
` − p̃`,`−1Ã

−1
`−1p̃ �̀

,`−1 and note that e`−1,1 = p̃ �̀
,`−1e`,1. Thus,

V` =





(

Ṽ`

)

11

(

Ṽ`e`,1

)

�

Ṽ`e`,1 Ṽ`



 .
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We have to estimate ‖V`‖0,1,`←0,1,`, i.e., the Euklidean norm of





(

Ṽ`

)

11
q`

(

Ṽ`e`,1

)

�

q−1
` Ṽ`e`,1 Ṽ`



 .

Since Ṽ` is independent of q` we have to prove Ṽ`e`,1 = 0.
Let us first compute the vector Ã−1

` e`,1. Define the 2 × 2-matrix

m :=
(

(ϕ`,i, ϕ`,j)L2(x`,1,x`,2)

)

1≤i,j≤2

and compute explicitly β := m−1(1, 0) � = 2/h`,2(2,−1) � . Thus, the function f ∈
L2(ε, 1)

f(x) :=

{

β1ϕ`,1 + β2ϕ`,2 = 2(2x`,2 − 3x + ε) in (x`,1, x`,2) ,
0 otherwise

(18)

satisfies
(

∫ 1
ε fϕ`,i dx

)n`−1

i=1
= e`,1. Define u as the solution of (9) with f as in (18)

u(x) :=

1
∫

x

t
∫

ε

f(s) ds dt=

{

(x−ε)2(x−x`,2−h`,2)

h2
`,2

+ 1 − ε ε ≤ x ≤ x`,2 ,

1 − x x`,2 ≤ x ≤ 1 .
(19)

It is well known that the finite element solution for the reduced Poisson problem (9)
is the nodal interpolant of the exact solution. Thus,

Ã−1
` e`,1 = (u(x`,i))

n`−1
i=1 = (1 − x`,i)

n`−1
i=1 .

Next, we compute p̃`,`−1Ã
−1
`−1e`−1,1. From (19) we conclude

Ã−1
`−1e`−1,1 = (1 − x`,i)

n`−1
i=1

and by applying the definition of the grid points and the canonical finite element
prolongation p̃`,`−1 we get

p̃`,`−1Ã
−1
`−1e`−1,1 = Ã−1

` e`,1 .

Thus, Ṽ`e`,1 = 0 and the assertion follows from the well-known approximation
property for the reduced Poisson problem.

�

A combination of Lemma 3.2 and 3.3 yields the convergence of the two-grid
method with respect to the ‖·‖0,1,`-norm uniform with respect to the overlap q` ∈
]0, q] with q ∼ 1.
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3.2.3 Multi-Grid Convergence for grids containing triangles with small

overlap

From the convergence of the two-level method, we easily derive the convergence of
the W -cycle multi-grid method.

Lemma 3.4 There exist 0 < ω < ω < 1, 1 < ν < ν, and q > 0 depending only on
α and Cu such that

∥

∥KMGM
`

∥

∥

0,1,`←0,1,`
≤ 1/2 ∀ q ∈ ]0, q] , ν ∈ [ν, ν] , ω ∈ [ω, ω] ,

where KMGM
` denotes the W-cycle multi-grid iteration matrix with ν steps of the

damped Jacobi method as the smoothing iteration.
For q < q < 1, we have

∥

∥KMGM
`

∥

∥

0←0

�
(ν + 1)−1

for all ν ∈ � .

Proof. We adopt the theory and notations of [Hac85, Sec 7.1] and consider first
the case of a small overlap 0 < q ≤ q. We begin with the estimate of the ν-fold
application of the smoothing operator, i.e., ‖Kν

` ‖0,1,`←0,1,`. Similarly as in the proof
of the smoothing property in Lemma 3.2 we derive the splitting

Kν
` = D

−1/2
` N

−1/4
1,` (I` − ωW`)

ν
N

1/4
1,` D

1/2
` ,

with W` := N
1/4
1,` D

−1/2
` A`D

−1/2
` N

−1/4
1,` , which leads to

‖Kν
` ‖0,1,`←0,1,` ≤

∥

∥

∥
N

1/2
1,` D

−1/2
` N

−1/4
1,`

∥

∥

∥

0←0
‖(I` − ωW`)

ν‖0←0

∥

∥

∥
N

1/4
1,` D

1/2
` N

−1/2
1,`

∥

∥

∥

0←0�
‖I` − ωW`‖

ν
0←0 .

The assumption 0 < ω ≤ ω ≤ 2/CW (cf. 16)) leads to

‖Kν
` ‖0,1←0,1

�
1

and the constant CS in [Hac85, (7.1.1)] satisfies CS ∼ 1. In order to estimate the
constants Cp and Cp in [Hac85, (7.1.2)] we have to investigate the eigenvalues of the
symmetric matrix

N
−1/2
1,`−1p �̀

,`−1N1,`p`,`−1N
−1/2
1,`−1 =



















1
4

1
4q 0 · · · 0

1
4q 1

4q2 + 5
4

1
4

. . .
...

0 1
4

3
2

. . . 0
...

. . .
. . .

. . . 1
4

0 · · · 0 1
4

3
2



















.
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By restricting to q ≤ 1/2, Gerschgorin’s theorem implies that the eigenvalues of this
matrix are bounded from below by 1/8 and from above by 2. Hence, C p, Cp ∼ 1

and C? := 1 + CpCp (1 + CS) ∼ 1 (cf. [Hac85, (7.1.6)]). Let KMGM
` denote the

iteration matrix of the W -cycle multi-grid method and KTGM
` the iteration matrix

of the two-grid method (cf. (6)). Then, according to [Hac85, (7.1.5c)] the recursion

∥

∥KMGM
`

∥

∥

0,1,`←0,1,`
≤
∥

∥KTGM
`

∥

∥

0,1,`←0,1,`
+ C?

∥

∥KMGM
`−1

∥

∥

2

0,1,`←0,1,`

holds. Choose γ in Lemma 3.2 as

γ := (4C?CA)−1

and the bounds ν, ν, ω, ω, q ∼ 1 accordingly. Then, [Hac85, Lemma 7.1.6] implies
that

∥

∥KMGM
`

∥

∥

0,1,`←0,1,`
≤

1

2C?
≤ 1/2

yielding the multi-grid convergence with respect to the ‖·‖0,1,`-norm.
Let us now consider the case q ∈ [q, 1]. Since q ∼ 1, the standard multi-grid

theory, e.g., [Hac85, Lemma 6.2.1, Prop. 6.2.14, Lemma 6.3.13,] with respect to
the ‖·‖0-norm can be applied yielding the asserted estimate. The constant in the
estimate only depends on q ∼ 1.

�

Summarising we have proved for a one-dimensional model problem that the
multi-grid convergence is robust with respect to a small overlap of elements with the
domain by using a weighted L2-norm. Numerical examples show that this is not the
case with respect to the usual L2-norm. Our analysis shows that this fact is related to
the convergence of unknowns corresponding to grid points lying (essentially) outside
the domain. However, this is not considered as a drawback of the proposed method
since these unknowns either are not interesting (since they are lying outside of the
domain) or can be corrected easily in a post-processing step via extrapolation from
the interior.

We emphasise that, although the analysis of the proposed multi-grid method is
somewhat technical, the method itself is rather simple and its convergence is robust
with respect to some characteristic parameters describing the geometry and finite
element meshes. Numerical computations on realistic geometries (cf. [FHSW01])
show that the multi-grid algorithm is efficient also in two space dimensions. Further
research activities are directed towards the proof of the convergence in the multi-
dimensional case.
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