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MARKUS BRODMANN

Abstract. Let R = ⊕n≥0Rn be a homogeneous Noetherian ring, let X = Proj(R)
and let F be a coherent sheaf of OX -modules. We present a few results about the
behaviour of the finitely generated R0-modules Hi (X,F(n)) if i is fixed and n tends
to −∞. We notably consider

a) The minimal number of generators of Hi (X,F(n)) at the “top level”, thus for
the highest value of i for which these modules are not vanishing for all n, provided
that the base ring R0 is local.

b) The relations between the support of the R0-module Hi (X,F(n)) and the fibre
dimensions of F under the natural morphism X → X0 = Spec(R0).

c) The Tameness Problem, hence the vanishing and non-vanishing of the modules
Hi (X,F(n)) if i is fixed and n tends to −∞.

d) The behaviour of the support Supp
(
Hi(X,F(n)

)
of Hi (X,F(n)) if i is fixed and

n tends to −∞.

e) The behaviour of the set Ass
(
Hi(X,F(n))

)
of associated primes of Hi (X,F(n))

if i is fixed and n tends to −∞.

We make use of the Serre-Grothendieck Correspondence for Cohomology and present
our results in terms of graded components of local cohomology of graded modules.

1. Introduction

Let R = ⊕n≥0Rn be a homogeneous Noetherian ring, so that R0 is a Noetherian ring, R is
a N0-graded R0-algebra and R = R0[�0, · · · , �r] with finitely many elements �0, · · · , �r ∈
R1. Let X := Proj(R) be the projective scheme induced by R.

For a sheaf of OX -modules F let F(n) := F ⊗OX
OX(n) denote the n-th twist of F .

Moreover, for i ∈ N0 let H i (X,F(n)) denote the i-th Serre cohomology group of X
with coefficients in F(n). Keep in mind that H i (X,F(n)) carries a natural structure of
R0-module. If F is in addition coherent, we can say (cf [21])
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1.1 a) For all i ∈ N0 and all n ∈ Z the R0-module H i (X,F(n)) is finitely
generated.

b) For all i ∈ N and all n � 0 we have H i (X,F(n)) = 0.

In view of these two statements it is natural to fix a coherent sheaf of OX -modules F , an
integer i ∈ N and to ask about the asymptotic behaviour of the R0-module H i (X,F(n))
if n tends to −∞.

The aim of this paper is to prove and to review various results concerning this asymptotic
behaviour. We prefer to do this primarily in a purely algebraic context - more precisely
in the language of local cohomology. To do so, let R+ := ⊕n>0Rn denote the irrelevant
graded ideal of R, let M be a finitely generated graded R-module, let i ∈ N0 and let
H i

R+
(M) denote the i-th local cohomology module of M with support in R+. Keep in

mind that the R-modules H i
R+

(M) carry a natural grading (cf [13, Chapter 12]). If

n ∈ Z and i ∈ N0, we use H i
R+

(M)n to denote the n-th graded component of H i
R+

(M).
Now, according to [13, 15.1.15] we can say

1.2 a) The R0-module H i
R+

(M)n is finitely generated for all i ∈ N0 and all n ∈ Z.

b) For all i ∈ N0 and all n � 0 we have H i
R+

(M)n = 0.

The apparent similarity between the statements in 1.1 on the one hand and in 1.2 on
the other hand is explained by the Serre-Grothendieck correspondence (cf [13, Chapter
20]). Namely, assume that F = M̃ is the coherent sheaf of OX -modules induced by M .
Then, for all i ∈ N and all n ∈ Z there are exact sequences respectively isomorphisms
of R0-modules

1.3 a) 0 → H0
R+

(M)n → Mn → H0 (X,F(n)) → H1
R+

(M)n → 0;

b) H i (X,F(n)) ∼= H i+1
R+

(M)n.

So, in the present paper we study the asymptotic behaviour of the R0-module H i
R+

(M)n

if n tends to −∞.

In [10] and [11] (and also in [3]) we have extensively studied the behaviour of certain
numerical invariants – mainly multiplicities – of the R0-module H i

R+
(M)n if n tends to

−∞.

In the present paper we study numerical invariants of the module H i
R+

(M)n uniquely in
section 2, where we prove a result on the growth of the minimal number of generators
of H i

R+
(M)n “at the top level” in the case where R0 is local (cf Theorem 2.3 and Corol-

lary 2.4). What we prove there is actually not of purely “asymptotic nature”, as we get
a general estimate for the growth of the above-mentioned number of generators if n is
replaced by n − 1.

In section 3, we apply this estimate in order to get a first sample of results on the
supports of the R0-modules H i

R+
(M)n, for those values of i which occur as dimensions
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of M along the fibres of the natural morphism Spec(R) → Spec(R0) (cf Theorem 3.6).
We apply this at the “top level” and thus get a refinement of a statement recently shown
in [33] (cf Corollaries 3.7 - 3.10).

In section 4 we consider the most fundamental question related to the asymptotic be-
haviour of cohomology: the Tameness Problem, that is the problem whether for fixed
i ∈ N0 either H i

R+
(M)n �= 0 for all n 	 0 or H i

R+
(M)n = 0 for all n 	 0 (cf Prob-

lem 4.3). This problem is still open in general and we decided to present the state of the
art in this subject by collecting a list of cases, in which tameness has been shown to hold
(cf Theorems 4.5, 4.8). We also recall the relation between the above tameness question
and the nature of the so called cohomological pattern of a coherent sheaf of OX -modules
F (cf Reminder 4.9).

To this predominantly expository fourth section, we add a fairly technical consideration.
Namely, in section 5 we study tameness at “almost top levels”. We prove two results
which show that under certain hypotheses tameness at “high levels” holds (cf Proposi-
tions 5.1, 5.3 and Theorem 5.2). Applying this to the special case where the base ring
R0 has dimension ≤ 2 we get a generalization of a result recently shown in [30] and [33],
(cf Corollary 5.4, Comments and Problems 5.5).

Section 6 is devoted to the problem of Asymptotic Stability of Supports (cf Problem 6.1),
that is to the question whether for fixed i ∈ N0 the support Supp

(
H i

R+
(M)n

)
of the

R0-module H i
R+

(M)n becomes ultimately constant if n tends to −∞. We prove that
under certain assumptions on R0 and M we have “Asymptotic stability of Supports in
Codimension ≤ 2” (cf Theorem 6.8). We apply this to the case where dim(R0) ≤ 2 (cf
Corollary 6.10) and finally show that we have asymptotic stability of supports if R0 is
a domain of dimension ≤ 2 and essentially of finite type over a field and if the graded
R-module M is R0-torsion-free (cf Corollary 6.11).

In the final section 7 we discuss the problem of Asymptotic Stability of Associated Primes
(cf Problem 7.1), that is the question whether for fixed i ∈ N0 the set of associated primes
Ass

(
H i

R+
(M)n

)
of the R0-module H i

R+
(M)n becomes ultimately constant if n tends to

−∞. This problem has some relation to another, fairly prominent question of local
cohomology theory, namely: the question whether a local cohomology module has finitely
many associated primes (cf Remark 7.2). There are strikingly simple examples which
show that both of these questions need not have an affirmative answer in general. We list
some of these examples which concern the problem of asymptotic stability of associated
primes (cf Examples 7.3 - 7.5). In Theorem 7.7 we also present a list of cases in which
asymptotic stability of associated primes holds. Finally we prove that under certain
conditions one has “Asymptotic Stability of Associated Primes in Codimension ≤ 2”
(cf Proposition 7.9) and apply this to the case where dim(R0) ≤ 2 to show that under
certain conditions one has asymptotic stability of associated primes (cf Corollary 7.10).

The present paper has a strong expository component, as it includes a survey of the state
of the art in the subject it treats. We feel the need for such a survey, as a synopsis on the
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considerable number of partial results and striking examples which have been published
in the last years at different places, may help the reader to get an overall impression of
the whole subject. At the end of each section we add a few comments and present open
problems with the hope that this will stimulate further research. Also, with the aim of
being expository we offer a proof for the description of cohomological dimensions in terms
of fibre dimensions which uses only local cohomology (cf Theorem 2.3 a), Proposition 3.4
a)). As basic references we recommend [16], [19], [20], [21].

Acknowledgment: We thank the editor for having accepted this contribution in spite of
the considerable delay of our submission. We thank the referee for this quick and careful
refereeing and his valuable hints.

2. Numbers of Generators at the Top Level

All known pathologies concerning the asymptotic behaviour of local cohomology have
been found in top local cohomology modules. On the other hand top local cohomology
modules also have some particularly nice asymptotic properties. So, in [33] it has been
shown that the minimal number of generators of the n-th graded component of the top
local cohomology module is antipolynomial in n, if the base ring R0 is local. In the
present section we take up this theme and prove an additional result on the mentioned
minimal number of generators. Throughout we keep the notation of the introduction.

2.1. Notation. A) If M is a finitely generated graded R-module, we use cd(M) do
denote the cohomological dimension of M with respect to R+, thus

cd(M) := sup{i ∈ N0

⏐⏐H i
R+

(M) �= 0},
with the convention that sup is taken in Z ∪ {±∞} and sup ∅ = −∞.

B) If (R0, m0) is local and T is a finitely generated R0-module, we use µ(T ) to denote
the minimal number of generators of T , thus

µ(T ) = dimR0/m0
(T/m0T ). •

If M is a finitely generated graded R-module, H
cd(M)
R+

(M) is called the top local coho-
mology module of M with respect to R+. We now consider the top local cohomology
module of M if the base ring R0 is local with maximal ideal m0. We fix an m0-primary
ideal q0 and consider the function Z → N0 given by

n → lengthR0

(
R0/q0 ⊗R0 H

cd(M)
R+

(M)n

)
.

In the main result of this section we restate a few facts on this function which have been
established in [11]. We also prove that this function increases by at least cd(M) − 1 if
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n is replaced by n − 1 and if its value is �= 0 at n. To prove this, we need the following
auxiliary result.

2.2. Proposition. Let (R0, m0) be local such that k := R0/m0 is an algebraically closed
field. Let P and Q be two R0-modules such that Q �= 0. Let r ∈ N0 and let �0, · · · , �r :
P → Q be homomorphisms of R0-modules. Assume that there is a set W ⊆ Rr+1

0 which
is mapped onto kr+1\{0} under the canonical map Rr+1

0 → kr+1 and such that the map∑r
i=0 βi�i : P → Q is surjective for all (β0, · · · , βr) ∈ W. Then

lengthR0
(P ) ≥ lengthR0

(Q) + r · s,
where

s := min{v ∈ N
⏐⏐mv

0Q = 0}.

Proof: If lengthR0
(P ) = ∞, our claim is obvious. So, let lengthR0

(P ) < ∞. Then,
there is some t ∈ N such that mt

0P = 0. As there is an epimorphism P � Q, we
have t ≥ s. Let R0 := R0/m

t
0 and m0 := m0/m

t
0. Then (R0, m0) is a local Artinian

ring and R0/m0 := k ∼= k is algebraically closed. Moreover P and Q carry a natural
structure of R0-module. Finally, let U ⊆ R0 be the image of W under the canonical map

Rr+1
0 → R

r+1

0 . Then U is mapped onto k
r+1\{0} under the canonical map R

r+1

0 → k
r+1

and the map
∑r

i=0 αi�i : P → Q is surjective for all (α0, · · · , αr) ∈ U . So, by [8,
Proposition 3.9] we obtain

lengthR0
(P ) ≥ lengthR0

(Q) + r · s,
where s := min{w ∈ N|mw

0 Q = 0}. This proves our claim. �

Now, we are ready to prove the main result of this section.

2.3. Theorem. Assume that (R0, m0) is local. Let M �= 0 be a finitely generated graded
R-module, let q0 ⊆ R0 be an m0-primary ideal and let d := dim(M/m0M). Then:

a) cd(M) = d ≥ 0.

b) The graded R-module Hd
R+

(M)/q0H
d
R+

(M) is Artinian.

c) There is a polynomial Q ∈ Q[x] of degree δ < d such that

lengthR0
(R0/q0 ⊗R0 Hd

R+
(M)n) = Q(n) for all n 	 0;

moreover δ is independent of q0.

d) If d > 0 and Hd
R+

(M)n �= 0 for some n ∈ Z, then

lengthR0

(
R0/q0 ⊗R0 Hd

R+
(M)n−1

)
≥ lengthR0

(
R0/q0 ⊗R0 Hd

R+
(M)n

)
+ (d − 1)s(n),

where s(n) := min{v ∈ N
⏐⏐mv

0H
d
R+

(M)n ⊆ q0H
d
R+

(M)n}.
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Proof: “a)”: This follows by [4, Lemma 3.4] and the well-known relations between ideal
transforms and local cohomology (cf [13, Theorem 2.2.4]). For the reader’s convenience
we also offer a direct proof of this frequently used statement. We proceed by induction
on d.

If d = 0 we have Mn/m0Mn = (M/m0M)n = 0 for all n � 0. So, by Nakayama Mn = 0
for all n � 0. Hence M is R+-torsion so that H0

R+
(M) ∼= M �= 0 and H i

R+
(M) = 0 for

all i > 0. This proves the case d = 0.

So, let d > 0. Let x be an indeterminate and let R′
0 := R0[x]m0R0[x]. Then R′

0 is a
local Noetherian flat extension ring of R0 with maximal ideal m′

0 = m0R
′
0 and residue

field R′
0/m

′
0 = (R0/m0)(x). Consider the homogeneous Noetherian ring R′ := R′

0 ⊗R0

R and the finitely generated graded R′-module M ′ = R′
0 ⊗R0 M . Then, the natural

isomorphism of R′-modules M ′/m′
0M

′ ∼= R′
0/m

′
0 ⊗R0 M/m0M yields dim(M ′/m′

0M
′) =

dim(M/m0M) = d.

Moreover, by the graded flat base change property of local cohomology we have natural
isomorphisms of R′-modules H i

R′
+
(M ′) ∼= R′

0 ⊗R0 H i
R+

(M) for all i ∈ N0 and these show

that cd(M ′) = cd(M). This allows us to replace R and M respectively by R′ and M ′

and hence to assume that k := R0/m0 is infinite.

Now, let M := M/ΓR+(M). Then, there is a short exact sequence of graded R-modules

0 →
(
ΓR+(M) + m0M

)
/m0M → M/m0M → M/m0M → 0.

The R-module
(
ΓR+(M) + m0M

)
/m0M is concentrated in finitely many degrees and an-

nihilated by m0, and hence is of dimension ≤ 0. Therefore dim(M/m0M) = dim(M/m0M)
= d.

As d > 0, M is not concentrated in finitely many degrees so that M �= 0 and hence
cd(M) ≥ 0. As H0

R+
(M) = 0 and in view of the natural isomorphisms H i

R+
(M) ∼=

H i
R+

(M) for all i > 0 we thus get cd(M) = cd(M).

So, we may replace M by M and hence assume that ΓR+(M) = 0, so that R1 �⊆ p
for each p ∈ AssR(M). As d > 0 we also have R1 �⊆ s for each s ∈ MinR(M/m0M).
As k is infinite, we thus find some x ∈ R1 which avoids all members of AssR(M) and
MinR(M/m0M). In particular we have x ∈ NZDR(M) and dim (M/m0M)/x(M/m0M))
= d − 1.

So, we end up with a short exact sequence of graded R-modules

0 → M(−1)
x−→ M → M/xM → 0

in which (by induction) cd(M/xM) = d − 1. Now, let i > d. Then H i−1
R+

(M/xM) = 0

and the above sequence yields a monomorphism x : H i
R+

(M)(−1) � H i
R+

(M). As

x ∈ R+ it follows H i
R+

(M) = 0. Therefore cd(M) ≤ d.
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It remains to show that Hd
R+

(M) �= 0. To do so, we apply cohomology to the graded
short exact sequence 0 → m0M → M → M/m0M → 0 and get an exact sequence of
graded R-modules

Hd
R+

(M) → Hd
R+

(M/m0M) → Hd+1
R+

(m0M).

As dim (m0M/m0(m0M)) = dim (m0M/m2
0M) ≤ dim(M/m2

0M) = dim(M/m0M) = d
we may apply what we have shown above to the R-module m0M and get Hd+1

R+
(m0M) =

0. It thus remains to show that Hd
R+

(M/m0M) �= 0.

Let m := m0 + R+ be the homogeneous maximal ideal of R. By the base ring indepen-
dence property of local cohomology we have an isomorphism of R-modules Hd

R+
(M/m0M)

∼= Hd
m(M/m0M). It hence suffices to show that Hd

m(M/m0M) �= 0. As M/m0M is a
graded R-module, dim ((M/m0M)m) = dim(M/m0M) = d so that Hd

mRm
((M/m0M)m) �=

0 (cf [13, Theorem 6.1.4]). It follows Hd
m(M/m0M) �= 0.

“b)”: See [11, Theorem 2.10], or [33, Theorem 2.1] for the special case where q0 = m0.

“c)”: For the existence of Q see [11, Theorem 2.10] or [33, Corollary 2.4]. According to
[11, Theorem 2.10], the degree of Q is independent of q0 and < d.

“d)”: There is a Noetherian flat local extension ring (R′
0, m

′
0) such that m′

0 = m0R
′
0 and

such that R′
0/m

′
0 is an algebraically closed field (cf [8, Proposition 2.2]). Consider the

m′
0-primary ideal q′0 = q0R

′
0 ⊆ R′

0, the homogeneous Noetherian ring R′ := R′
0 ⊗R0 R

and the finitely generated graded R′-module M ′ := R′
0 ⊗R0 M . Then, for each i ∈ N0

and each n ∈ Z the graded flat base change property of local cohomology yields an
isomorphism of R′

0-modules

H i
R+

(M ′)n
∼= R′

0 ⊗R0 H i
R+

(M)n.

This first shows that cd(M ′) = d. Choosing i = d and keeping in mind that m′
0 = m0R

′
0

and that R′
0 is R0-flat, we thus get

lengthR′
0

(
R′

0/q
′
0 ⊗R′

0
Hd

R′
+
(M ′)n

)
= lengthR0

(
R0/q0 ⊗R0 Hd

R+
(M)n

)
for all n ∈ Z. This allows us to replace q0, R and M respectively by q′0, R

′ and M ′. So,
we may assume that k := R0/m0 is algebraically closed.

Now, let

P := {p ∈ AssR(M)
⏐⏐ dim (R/(m0R + p)) < d}

and let

a :=
⋂
p∈P

p.

Then a ⊆ R is a graded ideal (which equals R if P = ∅) and the a-torsion submodule
Γa(M) of M is graded and satisfies

AssR (Γa(M)) = P and Ass (M/Γa(M)) = AssR(M)\P.
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This first shows that dim (Γa(M)/m0Γa(M)) < d and hence, by statement a), that
cd (Γa(M)) < d. By the exact sequence 0 → Γa(M) → M → M/Γa(M) → 0 we thus
get isomorphisms of R0-modules

Hd
R+

(M/Γa(M))n
∼= Hd

R+
(M)n

for all n ∈ Z. These show in particular, that cd (M/Γa(M)) ≥ d. On on use of statement
a) we also get

cd (M/Γa(M)) = dim ((M/Γa(M)) /m0(M/Γa(M)) = dim
(
M/(m0M + Γa(M))

)
≤ d

and hence cd (M/Γa(M)) = d. But now, the above isomorphisms allow us to replace M
by M/Γa(M) and hence to assume that

dim (R/(m0R + p)) ≥ d for all p ∈ AssR(M).

Now, consider the non-empty finite set of graded primes

Q := {p ∈ MinR(M/m0M)
⏐⏐ dim(R/p) = d}.

Then for all p ∈ AssR(M)∪Q we have dim (R/(m0R + p)) ≥ d. But this means that the
first graded component (R/(m0R + p))1

∼= R1/(m0R1 + p1) of R/(m0R + p) is a k-vector
space of dimension ≥ d, hence that the k-vector subspace (m0R1+p1)/m0R1 ⊆ R1/m0R1

is of codimension ≥ d for all such p. As AssR(M) ∪ Q is finite and as k is infinite, we
thus find a k-vector space V ⊆ R1/m0R1 of dimension d such that

(∗) V ∩ ((m0R1 + p1)/m0R1) = 0 for all p ∈ AssR(M) ∪ Q.

Now, let h1, · · · , hd ∈ R1 be such that the classes hi + m0R1 ∈ R1/m0R1 (i = 1, · · · , d)
form a k-basis of V . Then, for each

(β1, · · · , βd) ∈ Rd
0\md

0 =: W

we have
(∑d

i=1 βihi

)
+ m0R1 ∈ V \{0}. In view of (∗) this means that

∑d
i=1 βihi avoids

all p ∈ AssR(M) ∪ Q for all (β1, · · · , βd) ∈ W. Hence, for all such (β1, · · · , βd) we have

d∑
i=1

βihi ∈ NZDR(M) and dim

(
(M/

d∑
i=1

βihiM)
/

m0(M/

d∑
i=1

βihiM)

)
< d.

So, for all (β1, · · · , βd) ∈ W there is an exact sequence

0 ��M(−1)

∑d
i=1 βihi ��M ��M/

∑d
i=0 βihiM ��0

and we have cd(M/
∑d

i=1 βihiM) < d, (cf statement a) ). Hence, for all (β1, · · · , βd) ∈ W
we get an epimorphism

Hd
R+

(M)n−1

∑d
i=1 βihi ��Hd

R+
(M)n

��0.

Now, let

�i = 1 ⊗R0 hi : R0/q0 ⊗R0 Hd
R+

(M)n−1 → R0/q0 ⊗R0 Hd
R+

(M)n
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denote the homomorphism of R0/q0-modules induced by the multiplication map hi :
Hd

R+
(M)n−1 → Hd

R+
(M)n. Then for each (β1, · · · , βd) ∈ W we get an epimorphism of

R0-modules
d∑

i=1

βi�i : R0/q0 ⊗R0 Hd
R+

(M)n−1 � R0/q0 ⊗R0 Hd
R+

(M)n.

By Nakayama, the right hand side module does not vanish. Now Proposition 2.2 gives
our claim. �

As an application, we now may draw the following conclusion on the minimal number
of generators of the graded components of the top local cohomology module.

2.4. Corollary. Assume that (R0, m0) is local and let M be a finitely generated graded
R-module such that d := cd(M) > 0. Then:

a) (Cf [33, Corollary 2.4]) There is a polynomial Q ∈ Q[x] of degree < d such that
µ
(
Hd

R+
(M)n

)
= Q(n) for all n 	 0.

b) If µ
(
Hd

R+
(M)n

)
�= 0 for some n ∈ Z, then

µ
(
Hd

R+
(M)n−1

)
≥ µ

(
Hd

R+
(M)n

)
+ d − 1.

Proof: Apply Theorem 2.3 c), d) with q0 = m0. �

2.5. Comments and Problems. A) Keep the above hypotheses and notations. It
follows immediately by Corollary 2.4:

a) If d = 1, then Q is a non-zero constant.

b) If d = 2, then Q = ex + c with e ∈ N and c ∈ Z.

B) Assume that dim(R0) = 0. Then d = dim(M) and there is a polynomial P ∈ Q[x]
of degree d − 1 such that lengthR0

(
Hd

R+
(M)n

)
= P (n) for all n 	 0, (cf [13, Exercise

17.1.10]). As

µ
(
Hd

R+
(M)n

)
≤ lengthR0

(
Hd

R+
(M)n

)
≤ length(R0)µ

(
Hd

R+
(M)n

)
for all n ∈ Z it follows Q(n) ≤ P (n) ≤ length(R0)Q(n) for all n 	 0. In particular we
have deg(Q) = d − 1.

C) In the cases considered in parts A) and B) we have deg(Q) = d − 1. This raises the
question, whether in general we have deg(Q) = cd(M) − 1.

D) We do not know of an example such that for an arbitrary i ∈ N0 the function given
by n → µ

(
H i

R+
(M)n

)
is not antipolynomial, that is, not presented by a polynomial

for n 	 0. If dim(R0) ≤ 1 this function is indeed antipolynomial (cf [3, Theorem
(3.5) a)]). This is an immediate consequence of the fact that the graded R-module
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R0/q0 ⊗R0 H i
R+

(M) is Artinian whenever dim(R0) ≤ 1 and q0 ⊆ R0 is an m0-primary
ideal (cf [3, Corollary 2.6 a)]).

On the other hand this latter statement fails in general, namely: (cf [3, Example 4.1]) if k
is a field, x, y, t are indeterminates, R0 := k[x, y](x,y), m0 := (x, y)R0 and if R := R0[m0t]
is the Rees ring of m0, then the R-module R0/m0 ⊗R0 H1

R+
(R) is not Artinian. So,

the main ingredient of all known proofs of the antipolynomiality of the function n →
µ
(
H i

R+
(M)n

)
is lacking in general: the fact that the R-module R0/m0 ⊗R0 H i

R+
(M)n is

Artinian. •

3. Conclusions on the Supports

In [27] and [33] the supports of top local cohomology modules have been studied exten-
sively. In this section we take up this theme. We keep the previous notation.

If p0 ∈ Spec(R0), we write κ(p0) for the function field R0p0/p0R0p0 of Spec(R0) at p0.

3.1. Proposition. Let M �= 0 be a finitely generated graded R-module and let p0 ∈
Spec(R0) such that i := dimR (κ(p0) ⊗R0 M) > 0. Then, there is an integer n0 such that
p0 ∈ Supp

(
H i

R+
(M)n

)
if and only if n ≤ n0.

Proof: By the graded flat base change theorem for local cohomology there are isomor-
phisms of (R0)p0-modules

H i
(Rp0 )+

(Mp0)n
∼=
(
H i

R+
(M)n

)
p0

which allow to replace R and M respectively by Rp0 and Mp0 , and hence to assume
that R0 is local with maximal ideal p0. As H i

R+
(M)n = 0 for all n � 0 and as i =

dim(M/p0M) = cd(M) (cf Theorem 2.3 a) )) we get our claim by Corollary 2.4 b). �

3.2. Definition. A) Let M be a finitely generated graded R-module and let i ∈ Z. We
set

U i(M) := {p0 ∈ Spec(R0)
⏐⏐ dimR (κ(p0) ⊗R0 M) ≤ i}.

B) Let M and i be as in part A). We define the i-th fibre skeleton of M as the set

F i(M) :={p0 ∈ Spec(R0)
⏐⏐ dimR (κ(p0) ⊗R0 M) = i}

=U i(M)\U i−1(M).

•
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3.3. Proposition. Let M �= 0 be a finitely generated graded R0-module and let i ∈ Z.
Then:

a) (Semicontinuity of fibre dimensions) The set U i(M) is open in Spec(R0).

b) The sets U i(M) and F i(M) depend only on SuppR(M).

Proof: “a)”: See [33, Proposition 3.4] for example.

“b)”: Let a := 0 :
R

M . It suffices to show that U i(M) and F i(M) are determined by
√

a. Let p0 ∈ Spec(R0). Then

dimR (κ(R0/p0) ⊗R0 M) = dimR(Mp0/p0Mp0) =

= dim(Rp0

/√
0 :

Rp0

Mp0/p0Mp0) = dim(Rp0

/(√
0 :

R
M/p0M

)
p0

).

As
√

0 : M/p0M =
√

(0 :
R

M) + p0R =
√√

a + p0R, we get our claim. �

3.4. Proposition. Let M �= 0 be a finitely generated graded R-module. Then:

a) cd(M) = sup{i ∈ Z
⏐⏐F i(M) �= ∅} = sup{dim(M/m0M)|m0 ∈ Max(R0)}.

b) (Cf [33, 1.2])
⋃

n∈Z
Supp

(
H

cd(M)
R+

(M)n

)
= F cd(M)(M).

Proof: “a)”: In view of Proposition 3.3 a) it suffices to prove the first equality. We
have to show that

cd(M) = sup{dimR (κ(p0) ⊗ M)
⏐⏐p0 ∈ Spec(R0)}.

But this is immediate by Theorem 2.3 a) and the graded flat base change property of
local cohomology.

“b)”: This is again clear by Theorem 2.3 a) and the graded flat base change property of
local cohomology. �

3.5. Corollary. Let M �= 0 be a finitely generated graded R-module and let N be a
graded subquotient of M . Then cd(N) ≤ cd(M).

Proof: According to Proposition 3.4 a) and Proposition 3.3 b) the invariants cd(N) and
cd(M) are determined by the sets Supp(N) resp. Supp(M). As Supp(N) ⊆ Supp(M)
our claim follows easily. �

Now we shall prove the main result of the present section.

3.6. Theorem. Let M �= 0 be a finitely generated graded R-module and let i ∈ N0.
Then:
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a) For each n ∈ Z we have

Supp
(
H i

R+
(M)n

)
∩ F i(M) ⊆ Supp

(
H i

R+
(M)n−1

)
∩ F i(M).

b) There is an integer n0 such that

F i(M) ⊆ Supp
(
H i

R+
(M)n

)
for all n ≤ n0.

Proof: “a)”: This follows immediately from Proposition 3.1.

“b)”: For each n ∈ Z, the set Wn := Supp
(
H i

R+
(M)n

)
∩ F i(M) is a relatively closed

subset of F i(M). According to Proposition 3.3 a) the set U i(M) is open in Spec(R0),
whereas Spec(R0)\U i−1(M) is of the form Var(a0) with some ideal a0 ⊆ R0. If q1, · · · , qr

are the different minimal primes of a0 which belong to U i(M) and if • denotes the
formation of topological closures in U i(M), we thus have

F i(M) = U i(M)\U i−1(M) = {q1} ∪ · · · ∪ {qr}.
By statement a) we have Wn ⊆ Wn−1 for all n ∈ Z and by Proposition 3.1 we have
∪n∈ZWn = F i(M). So, there is an integer n0 such that q1, · · · , qr ∈ Wn0. By the
closedness of Wn0 in F i(M) it follows Wn0 = F i(M). �

If we apply the previous result to the top local cohomology module we get the following
refinement of [33, Theorem 1]:

3.7. Corollary. Let M be a finitely generated graded R-module such that c = cd(M) > 0.
Then:

a) For each n ∈ Z we have

Supp
(
Hc

R+
(M)n

)
⊆ Supp

(
Hc

R+
(M)n−1

)
.

b) There is an integer n0 ∈ Z such that

Supp
(
Hc

R+
(M)n

)
= F c(M) for all n ≤ n0.

Proof: This is immediate by Proposition 3.4 b) and Theorem 3.6. �

Now, we get back easily the finiteness statement shown in [33, Theorem 1]:

3.8. Lemma. Let M be a finitely generated graded R-module and let i ∈ N0. Then

AssR

(
H i

R+
(M)

)
= {p0 + R+

⏐⏐p0 ∈
⋃
n∈Z

AssR0

(
H i

R+
(M)n

)
}.

Proof: See [4, Remark 5.5 (A)]. �

3.9. Corollary. (Cf [33, Theorem 1(1)]) Let M be a finitely generated graded R-module.

Then H
cd(M)
R+

(M) has only finitely many minimal associated primes.
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Proof: This is immediate from Corollary 3.7 and Lemma 3.8. �

Let us notice, that on the top level we have the following rigidity result for the supports:

3.10. Corollary. Let M �= 0 be a finitely generated graded R-module. Then:

a) For all sufficiently small values of n, the set Supp
(
H

cd(M)
R+

(M)n

)
depends only

on SuppR(M).

b) The (finite) set of minimal primes of H
cd(M)
R+

(M) depends only on SuppR(M).

Proof: This is immediate by Proposition 3.3 b), Corollary 3.7 and Lemma 3.8. �

The results of this section apply for those i ∈ N0 for which F i(M) �= ∅. As for the set
of these values of i we have

3.11. Proposition. Let M �= 0 be a finitely generated graded R-module. Set

Φ(M) :={i ∈ N0

⏐⏐F i(M) �= ∅} and

Ψ(M) :={height
(
p/(0 :

R
M)
)⏐⏐p ∈ min

(
(0 :

R
M) + R+

)
}.

Then Ψ(M) = {height
(
(p0 + R+)/(0 :

R
M)
)⏐⏐p0 ∈ min(0 :

R0

M)} and

a) Ψ(M) ⊆ Φ(M).

b) min Φ(M) = min Ψ(M).

c) max Φ(M) = cd(M).

Proof: “a)”: Let p0 ∈ min(0 :
R0

M). Then p0 + R+ ∈ min
(
(0 :

R
M) + R+

)
. More-

over, each q ∈ Var(0 :
R

M) with q ⊆ p0 + R+ satisfies q ∩ R0 = p0. Therefore

height
(
(p0 + R+)/(0 :

R
M)
)

= dimR (κ(p0) ⊗R0 M) ∈ Φ(M).

“b)”: In view of statement a) it suffices to show that n := min Φ(M) ∈ Ψ(M). So,
let q0 ∈ F n(M) and let p0 ∈ min(0 :

R0

M) with p0 ⊆ q0. As q0 ∈ Un(M), Propo-

sition 3.3 a) yields p0 ∈ Un(M) and the last equality in the proof of part a) implies

height
(
(p0 + R+)/(0 :

R
M)
)

= dimR (κ(p0) ⊗R0 M) ≤ n. By the minimality of n we

must have equality on the right hand side, and this proves our claim.

“c)”: This is clear from Proposition 3.4 a). �
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3.12. Comments and Problems. A) Let i ∈ N0. According to Theorem 3.6 b) we
have

F i(M) ⊆ Supp
(
H i

R+
(M)n

)
for all n 	 0.

As may be seen in the case dim(R0) = 0 it may occur that F i(M) = ∅ whereas
H i

R+
(M)n �= 0 for all n 	 0. So, Theorem 3.6 is far away from furnishing precise

information on the sets Supp
(
H i

R+
(M)n

)
in general.

B) It seems rather natural to expect that there must be a closer relation between the
sets F i(R) and Supp

(
H i

R+
(R)n

)
than stated in Theorem 3.6 b) in the case where R =

R0(a0) = R0[a0t] is the Rees algebra of an ideal a0 ⊆ R0. •

4. Tameness

In this section we discuss the most fundamental concept related to the asymptotic be-
haviour of cohomology: the concept of tameness. We keep the previous notation and
hypotheses.

4.1. Definition. Let T = ⊕n∈ZTn be a graded R-module. We say that T is tame or
asymptotically gap free (cf [4, 4.1]) if

either Tn �= 0 for all n 	 0 or else Tn = 0 for all n 	 0.

•

4.2. Remark. It is easy to see that a graded Artinian R-module T = ⊕n∈Z is tame.
(Hint: As R is homogeneous, Tn0 = 0 implies that T≤n0 = ⊕n≤n0Tn is an R-submodule
of T .) •

Now, we can formulate the most fundamental question concerning the asymptotic be-
haviour of cohomology.

4.3. Problem. (Tameness Problem) Let i ∈ N0 and let M be a finitely generated graded
R-module. Is the graded R-module H i

R+
(M) tame? •

Although the tameness of H i
R+

(M) has been shown in many special cases (see Theo-
rem 4.5 and Theorem 4.8), the Tameness Problem is still open in general.
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4.4. Remark. A) Let M be a finitely generated graded R-module and let i ∈ N0. In
various cases, the tameness of H i

R+
(M) is a consequence of a stronger property, namely

the asymptotic stability of supports or even the asymptotic stability of associated primes.

Let us recall these notions in a precise way. Given a sequence (Sn)n∈Z of sets Sn ⊆
Spec(R0) we say that Sn is asymptotically stable for n → −∞ if there is some n0 ∈ Z
such that Sn = Sn0 for all n ≤ n0.

In this terminology we clearly have the following implications:

AssR0

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞ =⇒

SuppR0

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞ =⇒

H i
R+

(M) is tame.

B) Let M and i be as in part A). Then, according to Theorem 3.6 b) we can say:

If F i(M) �= ∅, then H i
R+

(M) is tame. •

In the following result we review the state of the art in the Tameness Problem for the
cases where the base ring R0 has dimension ≤ 2.

4.5. Theorem. Let M �= 0 be a finitely generated graded R-module. Then, the graded
R-module H i

R+
(M) is tame for all i ∈ N0 in each of the following cases:

Case dim(R0) Conditions on R0 Conditions on M

a) 0

b) 1 semilocal

c) 1 finite integral extension

of a domain

d) 1 essentially of finite

type over a field

e) 1 Cohen-Macaulay

f) 2 semilocal

g) 2 domain, essentially of torsion-free over R0

finite type over a field

h) 2 Cohen-Macaulay
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Proof and Comments: “a)”: If dim(R0) = 0, the R-modules H i
R+

(M) are Artinian (cf
[13, Theorem 17.1.9]) and so we may conclude by Remark 4.2.

“b)”: See [4, Lemma 4.2].

“c), d)”: Let i ∈ N0. If R0 is of dimension ≤ 1 and either a finite integral extension of
a domain or essentially of finite type over a field, the set AssR0

(
H i

R+
(M)n

)
is asymp-

totically stable for n → −∞ (cf [2, Corollary (3.10) b)]). Now, we may conclude by
Remark 4.4 A).

“e), h)”: See [30] or [33, Theorem 5.6]. For further information also consult [28] and
[29].

“f)”: See [2, Theorem 4.7 a)].

“g)”: Let i ∈ N0. As we shall see later (cf Corollary 6.11) the set Supp
(
H i

R+
(M)n

)
is asymptotically stable for n → −∞ under the imposed conditions. Now, we may
conclude by Remark 4.4 A). �

In addition tameness holds for H i
R+

(M) without restriction on the base ring R0 but for
certain specific levels i. In order to formulate the corresponding result, let us recall two
cohomological invariants of a finitely generated graded R-module M .

4.6. Definition. A) Let M be a finitely generated graded R-module. The finiteness
dimension of M (with respect to R+) is defined as (cf [13, 9.1.3])

f(M) := inf{i ∈ N
⏐⏐H i

R+
(M) is not finitely generated }.

B) Let M be as above. Then, the finite length dimension of M is defined as (cf [11,
(3.1)])

g(M) := inf{i ∈ N
⏐⏐lengthR0

(
H i

R+
(M)n

)
= ∞ for infinitely many n}.

•

4.7. Remark. Let M be a finitely generated graded R-module. Then, the R0-modules
H i

R+
(M)n are all finitely generated and vanish for all n � 0. Therefore

f(M) := inf{i ∈ N
⏐⏐H i

R+
(M)n �= 0 for infinitely many n}

and hence
f(M) ≤ g(M).

•

4.8. Theorem. Let M �= 0 be a finitely generated and graded R-module. Let i ∈ N0.
Then, the R-module H i

R+
(M) is tame in the following cases:
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a) i ≤ 1

b) i ≤ f(M).

c) R0 is semilocal and i ≤ g(M).

d) i ∈ Ψ(M), where Ψ(M) is defined as in Proposition 3.11.

e) i = cd(M).

Proof and Comment: “a)”: The case i = 0 is obvious as H0
R+

(M) is finitely generated.
The case i = 1 is a special case of b).

“b)”: If i < f(M) we conclude by Remark 4.7. If i = f(M), the set AssR0

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞ (cf [4, Proposition 5.6]). So we conclude by
Remark 4.4 A).

“c)”: By the flat base change property it suffices to treat the local case. But if (R0, m0)
is local and i < g(M), there is a polynomial P ∈ Q[x] such that lengthR0

(
H i

R+
(M)n

)
=

P (n) for all n 	 0 (cf [11, Theorem 3.6 a)]). So H i
R+(M) is tame in this case.

If i = g(M), the set AssR0

(
H i

R+
(M)n

)
is again asymptotically stable for n → −∞ (cf

[11, Theorem (4.10) a)]) and hence H i
R+

(M) is tame.

“d), e)”: Are clear by Theorem 3.6, Remark 4.4 A), B) and Corollary 3.7 b). �

The Tameness Problem arose in the geometric context which we shall recall now briefly.

4.9. Reminder. (cf [4]) A) Let X = Proj(R) and let F be a coherent sheaf of OX -
modules. The set

P(F) := {(i, n) ∈ N0 × Z
⏐⏐H i (X,F(n)) �= 0}

is called the cohomological pattern of F . The cohomological dimension of F is defined
by

cd(F) := sup{i ∈ N0

⏐⏐∃n : (i, n) ∈ P(F)}.
If F �= 0 is induced by the finitely generated graded R-module M , the Serre-Gothendieck
correspondence yields (cf (1.3) )

P(F) =

{
{(i, n) ∈ N × Z

⏐⏐H i+1
R+

(M)n �= 0}∪
{(0, n)

⏐⏐n ∈ Z : H1
R+

(M)n �= 0 or ΓR+(M)n �= Mn}.

B) A set P ⊆ N0 × Z is called a combinatorial pattern of width w if

(1) ∃m, n ∈ Z : (0, m), (w, n) ∈ P ;

(2) (i, n) ∈ P =⇒ i ≤ w;

(3) (i, n) ∈ P =⇒ ∃j ≤ i : (j, n + i − j + 1) ∈ P ;

(4) (i, n) ∈ P =⇒ ∃k ≥ i : (k, n + i − k − 1) ∈ P ;
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(5) i > 0 =⇒ ∀n � 0 : (i, n) /∈ P .

The combinatorial pattern P is called tame, if for each i > 0 we have

(6) (∀n 	 0 : (i, n) ∈ P ) or (∀n 	 0 : (i, n) /∈ P ).

C) According to [4, Proposition 3.5] we have:

If F �= 0, then P(F) is a combinatorial pattern of width cd(F).

Moreover (cf [4, Corollary 4.7]):

If X = Pr
R0

= Proj(R0[x0, · · · , xr]), then each tame combinatorial pattern of
width ≤ r is the cohomological pattern of a coherent sheaf of OX-modules.

D) We do not know of any example of a non-tame cohomological pattern of a coherent
sheaf of OX-modules. This raises the question, whether the cohomological pattern of a
coherent sheaf of OX -modules is always tame. According to the observations made in
part A) this question is equivalent to the Tameness Problem 4.3. •

4.10. Comments and Problems. A) To our best knowledge, the Tameness Problem
is still open in the particular case, where R = M and R = R(a0) := R0[a0t] is the
Rees-ring of an ideal a0 ⊆ R0.

Similarly, one could ask about the Tameness-Problem in the case where R = M and
R = Gr(a0) := R(a0)/a0R(a0) is the associated graded ring of an ideal a0 ⊆ R0.

B) Another open case concerns the level i = 2:

Is H2
R+

(M) tame for each finitely generated graded R-module M?

If x ∈ R1 is a non-zero divisor on M we have an exact sequence of graded R-modules

DR+(M) → DR+(M/xM) → H2
R+

(M)(−1)
x−→ H2

R+
(M)

in which DR+ denotes the functor of taking R+-transforms (cf [13, Theorem 2.2.4 (i),
Exercise 12.4.5 (iii)]). So, in this case it would be sufficient to show that the cokernel of
the natural map DR+(M) → DR+(M/xM) is tame.

One could be tempted to show this latter statement by proving that graded quotients
of the R+-transform of a finitely generated graded R-module are tame. Unfortunately
this is not true in general, as illustrated by the following example:

Let R0 := k[x, y](x,y), m0 := (x, y)R0 and R := R0[m0t] = R(m0) where k is a field and
x, y, t are indeterminates. Then DR+(R)n = R0t

n for all n ≤ 0 (cf [3, Example 4.1]) so
that R1 · DR+(R)n = m0DR+(R)n+1 for all n < 0. Consequently the graded R-module

DR+(R)/
∑
n∈Z

R
(
DR+(R)2n

)
=: Q
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satisfies Q2n = 0 and Q2n+1
∼= R0/m0 for all n < 0 and hence is not tame. •

5. Tameness at almost Top Levels

In Theorem 4.8 statements a) - d) tameness at “low” levels is given, whereas statement
e) concerns the top level. Nothing is said there on tameness at levels “near the top”. In
the present section we shall prove a few results which concern tameness at “almost top
levels”.

Our first result concerns the case where the base ring R0 is local. It is only of interest
in those cases, where the depth of the R0-module Mn is 0 for all n � 0. It is mean-
ingful as the cohomological dimension does not increase if one passes to quotients (cf
Corollary 3.5).

5.1. Proposition. Let (R0, m0) be local, let q0 ⊆ R0 be an m0-primary ideal, let M be a
finitely generated graded R-module and set c := cd (M/Γm0(M)). Then:

a) For each i > c, the R-module H i
R+

(M) is Artinian.

b) If c ≥ 0, the R-module Hc
R+

(M)/q0H
c
R+

(M) is Artinian.

c) For each i ≥ c, the R-module H i
R+

(M) is tame.

Proof: “a)”: Let M := M/Γm0(M) and consider the exact sequences of graded R-
modules

H i
R+

(Γm0(M)) → H i
R+

(M) → H i
R+

(M) → H i+1
R+

(Γm0(M)) .

As the R0-module Γm0(M) is annihilated by some power of m0, the modules at both
ends of the above sequences are Artinian. So, for each i ∈ N0 we get an exact sequence
of graded R-modules

0 → B → H i
R+

(M) → H i
R+

(M)
π−→ A → 0

in which A and B are Artinian. Choosing i > c we get our claim.

“b)”: Consider the previous sequence with i = c and set C := Ker(π). Then, the exact
sequence 0 → C → Hc

R+
(M) → A → 0 yields an exact sequence of graded R-modules

TorR
1 (R/q0R, A) → C/q0C → Hc

R+
(M)/q0H

c
R+

(M).

The first module in this sequence is Artinian as A is. The last module in the sequence
is Artinian by Theorem 2.3 b). So C/q0C is Artinian.
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Finally, the exact sequence 0 → B → Hc
R+

(M) → C → 0 induces an exact sequence of
graded R-modules

B/q0B → Hc
R+

(M)/q0H
c
R+

(M) → C/q0C

in which the modules at both ends are Artinian. So, the middle module is Artinian.

“c)”: If i > c, the desired tameness follows from statement a) and Remark 4.2. So, we
may assume that c ≥ 0 and restrict ourselves to showing that Hc

R+
(M) is tame.

Assume that Hc
R+

(M)n �= 0 for infinitely many negative integers n. Then, by Nakayama

(∗)
(
Hc

R+
(M)/q0H

c
R+

(M)
)

n
= Hc

R+
(M)n/q0H

c
R+

(M)n �= 0

for infinitely many integers n < 0. According to statement b) and Remark 4.2, the
R-module Hc

R+
(M)/q0H

c
R+

(M) is tame. Therefore (∗) holds for all n 	 0 and thus

Hc
R+

(M)n �= 0 for all n 	 0. �

Next, we want to draw a conclusion from the previous result which also applies if R0

is not local. If A0 �= ∅ is a set of ideals of R0 and M is a graded R0-module, we write
ΓA0(M) for the A0-torsion submodule of M so that ΓA0(M) is the set of all m ∈ M
which are annihilated by a product of ideals of A0. Keep in mind that ΓA0(M) is a
graded submodule of M .

5.2. Theorem. Let M �= 0 be a finitely generated graded R-module such that

F cd(M)(M) ⊆ Max(R0).

Set c := cd
(
M/ΓF cd(M)(M)(M)

)
. Then:

a) For each i > c, the R-module H i
R+

(M) is Artinian.

b) If c ≥ 0 and q0 ⊆ R0 is an ideal with Var(q0) ⊆ F cd(M)(M), the R-module
Hc

R+
(M)/q0H

c
R+

(M) is Artinian.

c) For each i ≥ c, the R-module H i
R+

(M) is tame.

Proof: “a)”: According to Corollary 3.7 b) the set Z := F cd(M)(M) is a non-empty finite
set of maximal ideals of R0. Let M := M/ΓZ(M). Then, for each p0 ∈ Spec(R0)\Z
we have an isomorphism of graded Rp0-modules Mp0

∼= Mp0 . So, for each j ∈ N0 the
graded flat base change property of local cohomology yields isomorphisms of graded
Rp0-modules

(∗) Hj
R+

(M)p0
∼= Hj

(Rp0 )+
(Mp0)

∼= Hj
R+

(M)p0.

These show that H i
R+

(M)p0 = 0 for each i > c and each p0 ∈ Spec(R0)\Z, so that

SuppR0

(
H i

R+
(M)

)
⊆ Z for all i > c. Therefore it is enough to show that for i > c the

Rm0-module H i
R+

(M)m0
∼= H i

(Rm0 )+
(Mm0) is Artinian for each m0 ∈ Z. But for each such

m0 there is an isomorphism of graded Rm0-modules Mm0/Γm0R0m0
(Mm0)

∼= Mm0, so that
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cd
(
Mm0/Γm0R0m0

(Mm0)
)
≤ c. If we apply Proposition 5.1 a) to the graded Rm0-module

Mm0 we get our claim.

“b)”: If Var(q0) = ∅, our claim is trivial. So let Var(q0) �= ∅. As

SuppR0

(
Hc

R+
(M)/q0H

c
R+

(M)
)
⊆ Var(q0)

it suffices to show that the graded R0-module(
Hc

R+
(M)/q0H

c
R+

(M)
)

m0

∼= Hc
(Rm0 )+(Mm0)/q0R0m0

Hc
(Rm0 )+(Mm0)

is Artinian for each m0 ∈ Var(q0). From the proof of statement a) and as Var(q0) ⊆ Z
we know that cd

(
Mm0/Γm0R0m0

(M0)
)
≤ c for all such m0.

Now, we conclude by Proposition 5.1 applied to the graded Rm0-module Mm0 and the
m0R0m0

-primary ideal q0R0m0
.

“c)”: Assume first, that SuppR0

(
Hc

R+
(M)

)
� Z. Then, there is a p0 ∈ Spec(R0)\Z

such that Hc
R+

(M)p0 �= 0. By the previous isomorphisms (∗) we get Hc
R+

(M)p0 �= 0,

hence
(
Hc

R+
(M)p0

)
n
�= 0 for all n 	 0 (cf Corollary 3.7 a) ). Another use of (∗) gives(

Hc
R+

(M)n

)
p0

∼=
(
Hc

R+
(M)p0

)
n
�= 0 for all n 	 0 and thus Hc

R+
(M)n �= 0 for all n 	 0.

So, the R-module Hc
R+

(M) is tame. We therefore may assume that SuppR0

(
Hc

R+
(M)

)
⊆

Z. If we apply Proposition 5.1 c) to the graded Rm0-module Mm0 we see that the Rm0-
module Hc

R+
(M)m0

∼= Hc
(Rm0 )+

(Mm0) is tame for all m0 ∈ Z. As Z is finite, we get our

claim. �

As an application of the previous result we now may prove that under some restrictions
on the support of M , the module H i

R+
(M) is tame on the “highest two levels i at which

non-vanishing of H i
R+

(M) may occur at all”.

5.3. Proposition. Let dim(R0) =: d < ∞, let M �= 0 be a finitely generated graded R-
module and let m := max Ψ(M), where Ψ(M) is defined according to Proposition 3.11.
Assume that SuppR(M) is catenarian and locally equidimensional. Then:

a) cd(M) ≤ d + m.

b) If cd(M) = d + m, then F cd(M)(M) ⊆ Max(R0).

c) H i
R+

(M) is tame for i ≥ d + m − 1.

Proof: By the graded base-ring independence property of local cohomology, by Propo-
sition 3.3 b) and by the fact that dim(R0) does not increase if R is replaced by one of its
graded homomorphic images, we may replace R by R/(0 :

R
M) and hence assume that

0 :
R

M = 0. In particular R is catenarian and locally equidimensional.
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Now, let m0 ∈ Spec(R0), let p0 ⊆ m0 be a minimal prime of R0 and let q ⊆ R be a
graded prime of R such that q ∩ R0 = m0. There is a minimal prime p of R such that
p ∩ R0 = p0.

As R is catenarian and locally equidimensional we have

height ((m0 + R+)/q) = height(m0 + R+) − height(q)

and

height(m0 + R+) = height ((m0 + R+)/p)

= height
(
(m0 + R+)/(p0 + R+)

)
− height ((p0 + R+)/p)

= height(m0/p0) + height(p0 + R+)

and hence

(∗) height ((m0 + R+)/q) = height(m0/p0) + height(p0 + R+) − height(q).

After these preparations we prove our claims:

“a), b)”: In view of Proposition 3.3 b) we have

dimR (κ(m0) ⊗R0 M) = dimR (κ(m0) ⊗R0 R)

= height ((m0 + R+)/m0R) = height ((m0 + R+)/q) ,

where q ⊆ R is an appropriate minimal prime of m0R such that q ∩ R0 = m0. As
height(m0/p0) ≤ d and height(p0 +R+) ∈ Ψ(M) statements a) and b) follow easily from
the equality (∗).
“c)”: If cd(M) < d + m we conclude by statement a) and by Theorem 4.8 e). So,
let cd(M) = d + m. By statement b) we have F cd(M)(M) ⊆ Max(R0). Let M :=
M/ΓF cd(M)(M). According to Theorem 5.2 c) it suffices to show that c := cd(M) < d+m.

Choose m0 ∈ Spec(R0) such that c = dimR

(
κ(m0) ⊗R0 M

)
. Then, there is a graded

prime q ∈ SuppR(M) such that q ∩ R0 = m0 and c = height ((m0 + R+)/q). By (∗) we
get c = height(m0/p0)+height(p0+R+)−height(q) for each minimal prime p0 ⊆ m0 of R0.
Assuming c = d+m we would get m0 ∈ F cd(M)(M) and height(q) = 0. As q ∈ SuppR(M)
and q ∩ R0 = m0 the last equality would imply Γm0(M) �= 0, a contradiction. �

As an application for low-dimensional base rings R0 we get

5.4. Corollary. Let dim(R0) ≤ 2 and let M �= 0 be a finitely generated graded R-module
such that Supp(M) is catenarian and locally equidimensional. Then:

H i
R+

(M) is tame for all i ≥ max Ψ(M).

Proof: This is clear from Theorem 4.8 d) and Proposition 5.3 c). �
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5.5. Comments and Problems. A) Let R and M be as in Corollary 5.4. Assume in
addition that

height
(
p/(0 :

R
M)
)

= gradeM(p) for all p ∈ min
(
(0 :

R
M) + R+

)
.

Then, Corollary 5.4 combined with an argument similar to that used in [28] or [30]
shows that all the R-modules H i

R+
(M) are tame. If M is a Cohen-Macaulay module,

the hypotheses of Corollary 5.4 as well as the above requirement are satisfied. Therefore
Corollary 5.4 may be viewed as an extension of [33, Theorem 5.6] or the main result of
[30], which both say that H i

R+
(M) is tame if dim(R0) ≤ 2 and M is a Cohen-Macaulay

module.

B) We do not know, whether the conclusion of Corollary 5.4 holds, if R0 is local and
of dimension 3. An affirmative answer to this would imply that H i

R+
(M) is tame for

all i ≥ 0 if R0 is semilocal and of dimension ≤ 3 and the finitely generated graded
R-module M is Cohen-Macaulay. This would improve [33, Theorem 5.4], which states
the finiteness of the set of minimal associated primes of the R-module H i

R+
(M). •

6. Asymptotic Stability of Supports

We keep the hypotheses and notation of the previous sections and consider the following
question.

6.1. Problem. (Asymptotic Stability of Supports): Let i ∈ N0 and let M be a finitely
generated graded R-module. Is the set Supp

(
H i

R+
(M)n

)
asymptotically stable for n →

−∞, e.g. is there some integer n0 such that Supp
(
H i

R+
(M)n

)
= Supp

(
H i

R+
(M)n0

)
for

all n ≤ n0? •

This problem still is open in general: as observed already in Remark 4.4 A) asymptotic
stability of supports implies tameness. It is an open problem, whether tameness implies
asymptotic stability of supports.

6.2. Remark. A) Let M be a finitely generated graded R-module and let i ∈ N0.
Observe that ∪n∈ZSupp

(
H i

R+
(M)n

)
= SuppR0

(
H i

R+
(M)

)
and that Supp

(
H i

R+
(M)n

)
=

∅ for all n � 0. So, if Supp
(
H i

R+
(M)n

)
is asymptotically stable for n → −∞, the

R0-support of H i
R+

(M) is closed.

In view of Lemma 3.8 the R0-support of H i
R+

(M) is closed if and only if AssR

(
H i

R+
(M)

)
has only finitely many minimal members.
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B) Keep the above notations and hypotheses. In view of the observations made in part
A) it might be of interest to attack Problem 6.1 by studying first the question:

(i) (Closedness of R0-Supports) Is SuppR0

(
H i

R+
(M)

)
a closed subset of Spec(R0)?

or – equivalently –

(ii) (Finiteness of Minimal Associated Primes) Has AssR

(
H i

R+
(M)

)
only finitely

many minimal members?

Question (ii) is a special case of one asked by Katzman-Sharp in [27, Remark 1.9]. •

Now, we shall prove that “Asymptotic Stability of Supports” holds “in codimension
≤ 2” provided R0 is a domain and essentially of finite type over a field and the finitely
generated graded R-module M satisfies a certain “purity condition” (which holds for
example, if M is torsion-free over R0).

6.3. Notation. A) If P ⊆ Spec(R0) and k ∈ N0 we write

P≤k := {p0 ∈ P
⏐⏐height(p0) ≤ k}.

B) Let M be a finitely generated graded R-module, let i ∈ N0 and let n ∈ Z. We use •
to denote topological closure in Spec(R0) and set

V i
n(M) :=

(
Ass(H i

R+
(M)n)≤1

)≤2

so that V i
n(M) consists of all p0 ∈ Spec(R0) which satisfy height(p0) ≤ 2 and contain

some q0 ∈ Ass
(
H i

R+
(M)n

)
with height(q0) ≤ 1.

C) Let M, i and n be as in part B). We define

W i
n(M) := Supp

(
H i

R+
(M)n

)≤2 \V i
n(M).

•

6.4. Remark. A) Keep the previous hypotheses and notations. Then, clearly we have

dim(R0) ≤ 1 =⇒ W i
n(M) = ∅.

B) It is immediate from the above definition, that

Supp
(
H i

R+
(M)

)≤2
= V i

n(M)
•
∪ W i

n(M).

C) If R0 is a domain, there is some s ∈ R0\{0} such that the (R0)s-modules Ms and
Hj

R+
(M)s are torsion-free (or zero) for all j ∈ N0 ([2, Theorem 2.5]). Therefore we have

Ass
(
Hj

R+
(M)n

)
⊆ {0} ∪ Var(sR0) for all j ∈ N0 and all n ∈ Z.



ASYMPTOTIC BEHAVIOUR OF COHOMOLOGY 25

As an immediate consequence we get

W i
n(M) ⊆ Var(sR0) for all i ∈ N0 and all n ∈ Z.

D) Clearly, by its definition, the set W i
n(M) consists of primes of height 2 which are

minimal associated primes of H i
R+

(M)n. This gives the following alternative descriptions

of W i
n(M)

W i
n(M) =

{
p0 ∈ Spec(R0)

⏐⏐height(p0) = 2 and 0 �= length(R0)p0
((H i

R+
(M)n)p0) < ∞

}
W i

n(M) = Ass
(
H i

R+
(M)

)≤2 \V i
n(M).

•

6.5. Lemma. Let i ∈ N0 assume that R0 is essentially of finite type over a field and let
M be a finitely generated graded R-module. Then, there is an integer n0 such that

V i
n(M) = V i

n0
(M) for all n ≤ n0.

Proof: According to [2, Theorem 3.7] the set T i(M)n := Ass
(
H i

R+
(M)n

)≤1
is asymp-

totically stable for n → −∞ (cf Remark 4.4 A) for this notion). Taking closures and
then restricting to codimensions ≤ 2 we get our claim. �

6.6. Lemma. Let i ∈ N0, assume that R0 is essentially of finite type over a field and let
M be a finitely generated graded R-module. Then, the following statements are equiva-
lent:

(i) The set
⋃

n∈Z
W i

n(M) is finite.

(ii) There is an integer n1 such that W i
n(M) = W i

n1
(M) for all n ≤ n1.

Proof: “(ii) =⇒ (i)”: According to Remark 6.4 D) the sets W i
n(M) are finite and vanish

for all n � 0. This gives our claim.

“(i) =⇒ (ii)”: Assume that W := ∪n∈ZW i
n(M) is finite and choose p0 ∈ W . According

to Remark 6.4 D) we have height(p0) = 2. So (R0)p0 is of dimension 2 and essentially of
finite type over a field. Applying [2, Corollary (4.8)] to the graded Rp0-module Mp0 we

see that the set AssR0

(
H i

(Rp0 )+
(Mp0)n

)
is asymptotically stable for n → −∞.

By the graded flat base change property of local cohomology we thus find an integer
k(p0) such that

(∗) Ass
(
(H i

R+
(M)n)p0

)
= Ass

(
(H i

R+
(M)k(p0))p0

)
for all n ≤ k(p0).

Now, let
n1 := min{k(p0)

⏐⏐p0 ∈ W} and W ′ = ∪n≤n1W
i
n(M).
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It suffices to show that W ′ ⊆ W i
n(M) for all n ≤ n1. So, let p0 ∈ W ′. According to

Remark 6.4 D) there is some m ≤ n1 such that p0 has height 2 and is a minimal member
of Ass

(
H i

R+
(M)m

)
. As m, n ≤ n1 ≤ k(p0) it follows by (∗) that p0 is a minimal member

of Ass
(
H i

R+
(M)n

)
for all n ≤ n1. As height(p0) = 2 we conclude by Remark 6.4 D) that

p0 ∈ W i
n(M) for all n ≤ n1. �

6.7. Lemma. Let i ∈ N0 and assume that R0 is a domain and essentially of finite type
over a field. Let M be a finitely generated graded R-module which is torsion-free over
R0. Then, the set ∪n∈ZW i

n(M) is finite.

Proof: Choose s ∈ R0\{0} according to Remark 6.4 C) so that the (R0)s-modules
Hj

R+
(M)s are torsion-free or vanishing for all j ∈ N0. If s is invertible in R0 we have

Ass
(
H i

R+
(M)n

)
⊆ {0} and hence W i

n(M) = ∅ for all n ∈ Z. So, we may assume that
R0 �= sR0. As M is torsion-free over R0, there is an exact sequence of graded R-modules
0 → M

s−→ M → M/sM → 0 which yields a monomorphism of graded R-modules

(∗) 0 → H i
R+

(M)/sH i
R+

(M) → H i
R+

(M/sM).

If we apply [2, Theorem 3.7] to the graded R/sR-module M/sM , we get that the set⋃
n∈Z

AssR0/sR0

(
H i

(R/sR)+(M/sM)n

)≤1
is finite.

In view of the graded base ring independence of local cohomology and as R0 is a cate-
narian domain, it follows that the set

∼
W :=

⋃
n∈Z

AssR0

(
H i

R+
(M/sM)n

)≤2

is finite.

Now, let p0 ∈ ∪n∈ZW i
n(M). Then height(p0) = 2, s ∈ p0 and there is some n ∈ Z such

that
(
H i

R+
(M)n

)
p0

is a non-zero (R0)p0-module of finite length (cf Remark 6.4 C), D) ).

Hence – by Nakayama
(
H i

R+
(M)n/sH i

R+
(M)n

)
p0

∼=
(
H i

R+
(M)n

)
p0

/s
(
H i

R+
(M)n

)
p0

is an

(R0)p0-module of finite length �= 0. It follows that

p0 ∈ AssR0

(
H i

R+
(M)n/sH i

R+
(M)n

)
.

Therefore the fact that height(p0) = 2 together with (∗) yields p0 ∈ AssR0

(
H i

R+
(M/sM)n

)≤2

⊆
∼
W . This proves our claim. �

Now, we prove the announced asymptotic stability result for supports in codimension
≤ 2. Unfortunately we could find no way to remove the hypotheses (∗), although we
believe that it is not necessary.
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6.8. Theorem. Let i ∈ N0 and assume that R0 is a domain and essentially of finite type
over a field. Let M be a finitely generated graded R-module such that

(∗) height(p ∩ R0) �= 1 for all p ∈ Ass(M).

Then, the set Supp
(
H i

R+
(M)n

)≤2
is asymptotically stable for n → −∞.

Proof: According to Lemma 6.6, Lemma 6.5 and Remark 6.4 B) it suffices to show that
the set W i(M) := ∪n∈ZW i

n(M) is finite. Let P := {p ∈ Ass(M)|height(p∩R0) ≥ 2}, let
a0 := ∩p∈Pp∩R0 and consider the finitely generated graded R-module M := M/Γa0(M).
Observe that

Ass
(
Γa0(M)

)
= Ass(M) ∩ Var(a0R

)
= P and

Ass(M) = Ass(M)\Var(a0R) = Ass(M)\P.

Assume first, that M = 0. Then M = Γa0(M) and thus M , and hence H i
R+

(M) is

annihilated by some power of a0. Therefore W i
n(M) ⊆ Var(a0)

≤2 and we may conclude
as this latter set is finite (or empty) by the definition of a0.

So, let M �= 0. Then Ass(M) = Ass(M)\P �= ∅. By hypothesis (∗) it follows that
Ass(M) = {0} and hence M is torsion-free over R0. So, by Lemma 6.7 the set W i(M) :=
∪n∈ZW i(M) is finite.

Now, let p0 ∈ W i(M). Then, p0 ∈ W i
n(M) for some n ∈ Z so that

(
H i

R+
(M)n

)
p0

is an

(R0)p0-module of finite length �= 0.

Now, let j ∈ N0. As Supp
(
Hj

R+
(Γa0(M))

)
⊆ Var(a0) and height(p0) = 2 ≤ height(a0),

the (R0)p0 -module
(
Hj

R+
(Γa0(M))n

)
p0

is of finite length. Applying this to the exact

sequence(
H i

R+
(Γa0(M))n

)
p0

→
(
H i

R+
(M)n

)
p0

→
(
H i

R+
(M)n

)
p0

→
(
H i+1

R+
(Γa0(M))n

)
p0

we see that
(
H i

R+
(Γa0(M))n

)
p0

or
(
H i

R+
(M)n

)
p0

is a non-zero (R0)p0-module of finite

length.

In the first case we have p0 ∈ Var(a0)
≤2, in the second case we have p0 ∈ W i

n(M) (cf
Remark 6.4 D) ). Altogether, this shows that W i(M) ⊆ W i(M) ∪ Var(a0)

≤2; but this
latter set is finite. �

6.9. Corollary. Let i ∈ N0 and assume that R0 is a domain of dimension 2 and es-
sentially of finite type over a field. Let M be a finitely generated graded R-module such
that there is no p ∈ Ass(M) with height(p ∩ R0) = dim(R0/p ∩ R0) = 1. Then the set
Supp

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞.
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Proof: Let Q0 := {p ∩ R0|p ∈ Ass(M) and height(p ∩ R0) = 1}. By our hypotheses we
have Q0 ⊆ Max(R0). If Q0 = ∅, the hypotheses (∗) of Theorem 6.8 holds and we are
done.

Otherwise let S0 := R0\
⋃

m0∈Q0
m0. Let t1, · · · , tr ∈ R0\{0} be a set of generators for

the ideal
⋂

m0∈Q0
m0. Then we have the canonical identification

Spec(R0) = Spec(S−1
0 R0) ∪

r⋃
j=1

Spec ((R0)ti) ,

which yields

Supp(T ) = Supp(S−1
0 T ) ∪

r⋃
j=1

Supp(Tti)

for each R0-module T . It thus suffices to show that the sets

Supp
(
S−1

0 H i
R+

(M)n

)
and Supp

(
(H i

R+
(M)n)tj

)
(j = 1, · · · , r)

are asymptotically stable for n → −∞.

As S−1
0 R0 is semilocal of dimension 1, the set Ass

(
H i

(S−1
0 R)+

(S−1
0 M)n

)
is asymptotically

stable for n → −∞ (cf [2, Corollary (3.10)]) and hence so is Supp
(
H i

(S−1
0 R)+

(S−1
0 M)n

)
.

By our choice of tj the graded Rtj -module Mtj satisfies the hypotheses (∗) of Theorem 6.8

so that the sets Supp
(
H i

(Rtj )+
(Mtj )n

)
are asymptotically stable for n → −∞. Now the

graded flat base change property of local cohomology allows us to conclude. �

6.10. Corollary. Keep the hypotheses of Corollary 6.9. Then AssR

(
H i

R+
(M)

)
has only

finitely many minimal members.

Proof: This is immediate by Corollary 6.9 and Remark 6.2 A). �

6.11. Corollary. Let i ∈ N and assume that R0 is a domain of dimension ≤ 2 and
essentially of finite type over a field. Let M be a finitely generated graded R-module
which is torsion-free over R0. Then

a) The set Supp
(
H i

R+
(M)n

)
is asymptotically stable for n → −∞.

b) AssR

(
H i

R+
(M)

)
has only finitely many minimal members.

�
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6.12. Comments and Problems. A) As mentioned already above, we believe that by
some refinement of the arguments in the proof of Theorem 6.8 the hypothesis (∗) may
be avoided.

B) The hypotheses made in Corollary 6.11 seem to be to restrictive. So, we like to give
encouragement to try to prove the desired “Asymptotic Stability of Supports” under the
single condition that dim(R0) ≤ 2.

C) There is some further evidence for the above suggestion: namely, as an easy con-
sequence of [33, Theorem 5.4] the set Supp

(
H i

R+
(M)n

)
is asymptotically stable for

n → −∞ as soon as dim(R0) ≤ 2 and the finitely generated graded R-module M is
Cohen-Macaulay. •

7. Asymptotic Stability of Associated Primes

We keep the previous hypotheses and notation and devote the present section to the
following question

7.1. Problem. (Asymptotic Stability of Associated Primes): Let i ∈ N0 and let M be a
finitely generated graded R-module. Is the set Ass

(
H i

R+
(M)n

)
asymptotically stable for

n → −∞, e.g. is there some integer n0 such that Ass
(
H i

R+
(M)n

)
= Ass

(
H i

R+
(M)n0

)
for all n ≤ 0. •

7.2. Remark. A) Let M be a finitely generated and graded R-module and let i ∈ N0.
Then, according to Lemma 3.8 and the fact that H i

R+
(M)n = 0 for all n � 0 we can

say:

If AssR0

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞, then the set

AssR

(
H i

R+
(M)

)
is finite.

B) The above implication shows that the Problem of Asymptotic Stability of Associated
Primes can be viewed as a refinement of the question, whether the R-module H i

R+
(M)

has only finitely many associated primes. This latter question is a special case of the
more general problem whether for an arbitrary finitely generated module M over an
arbitrary Noetherian ring R and an arbitrary ideal a ⊆ R the set AssR (H i

a(M)) is finite.
This Finiteness Problem for Associated Primes (of Local Cohomology Modules) has been
posed originally in [23] and has been answered affirmatively in many special cases (cf
[6], [12], [22], [24], [25], [31], [32]) and inspired interesting further investigations (cf [17],
[18]). Nevertheless, as shown by Singh (cf [34], [35]), the formulated Finiteness Problem
for Associated Primes cannot be answered affirmatively in general. •
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We now briefly review some of the known counter-examples to illustrate the kind of
“pathologies” that may occur.

7.3. Example. (cf [3], [5]) Let x, y, z, u, v, w be indeterminates and fix a prime number
p. Let R0 := Z[x, y, z](p,x,y,z), m0 := (p, x, y, z)R0 and p0 := (x, y, z)R0. Consider S =
R0[u, v, w] as a homogeneous R0-algebra and let R := S/(xu + yv + zw)S. Then, for
each n ≤ −3 we have

AssR0

(
H3

R+
(R)n

)
=

⎧⎪⎨
⎪⎩
{p0, m0}, if p

⏐⏐Π−n−3
i=1

(
−n − 2

i

)
;

{p0} otherwise .

B) As p|
(

pm
1

)
for all m ∈ Z and p |/

(
pk − 1

i

)
for all k ∈ N and all i ∈ {1, · · · , pk − 2},

the two sets

A :={n ≤ −3
⏐⏐AssR0

(
H3

R+
(R)n

)
= {p0, m0}} and

B :={n ≤ −3
⏐⏐AssR0

(
H3

R+
(R)n

)
= {p0}}

are both infinite. This shows in particular that the set Ass
(
H3

R+
(R)n

)
is not asymptot-

ically stable for n → −∞.

Moreover, by Lemma 3.8 we have

AssR

(
H3

R+
(R)
)

= {p0 + R+, m0 + R+}

and this shows that the converse of the implication given in Remark 7.2 A) does not
hold in general. •

7.4. Example. A) (cf [3], [26]) Let x, y, s, t, u, v be indeterminates, let k be a field and
set R0 := k[x, y, s, t](x,y,s,t). Consider S := R0[u, v] as a homogeneous R0-algebra and set
R := S/(sx2v2 − (t + s)xyuv + ty2u2)S. Then, the set⋃

n≤0

AssR0

(
H2

R+
(R)n

)
is infinite .

B) Clearly, the set Ass
(
H2

R+
(R)n

)
is not asymptotically stable for n → −∞ and accord-

ing to Lemma 3.8 the set AssR

(
H2

R+
(R)
)

is infinite. •
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7.5. Example. A) (cf [36, Remark 4.2]) Let x, y, z, u, v be indeterminates and let k be
a field. Let R0 := k[x, y, z], consider the homogeneous R0-algebra S = R0[u, v] and
set R := S/(y2u2 + xyzuv + z2v2)S. Then, the set AssR(H2

R+
(R)) is infinite. So by

Lemma 3.8 ⋃
n≤0

AssR0

(
H2

R+
(R)n

)
is infinite.

B) Here again, the set Ass
(
H2

R+
(M)n

)
is not asymptotically stable for n → −∞ and

the set AssR

(
H2

R+
(M)

)
is infinite. •

7.6. Remark. A) Observe that in Examples 7.3 and 7.4 the base ring R0 is local regular
of dimension 4. In Example 7.5 the ring R0 is regular non-local and of dimension 3.
In all three examples R is a complete intersection ring and hence Cohen-Macaulay. In
Examples 7.3 and 7.5 the ring R is a domain. In Example 7.4 R is reduced with two
minimal primes. So, the somehow unexpected pathologies occur in surprisingly simple
cases.

B) Examples 7.3 and 7.4 show in particular that over a regular local base ring of di-
mension 4 asymptotic stability of associated primes may fail in two different ways. In
particular in Example 7.3 the behaviour of the set Ass

(
H3

R+
(R)n

)
is not governed by a

periodic or “polynomial” pattern, but rather by a self-similar pattern. This is in accor-
dance with the fact that in fairly simple situations standard numerical invariants of the
components H i

R+
(R)n need not behave (anti-)polynomially (cf [11], [27]). •

Although asymptotic stability of associated primes does not hold in general, there are
many cases in which it does hold. In the following theorem we review the most important
of theses cases. We use the notation f(M) and g(M) introduced in Definition 4.6.

7.7. Theorem. Let M �= 0 be a finitely generated graded R-module and let i ∈ N0. Then,
the set Ass

(
H i

R+
(M)n

)
is asymptotically stable for n → −∞ in the following cases:
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Case dim(R0) Conditions on R0 Conditions on i

a) 0

b) 1 semilocal

c) 1 finite integral extension

of a domain

d) 1 essentially of finite

type over a field

e) 2 semilocal and finite

integral extension of

a domain

f) 2 semilocal and essentially

of finite type

over a field

g) i ≤ f(M)

h) semilocal i ≤ g(M)

Proof and Comments: “a)”: By the flat base change property of local cohomology one
has only to consider the case where the Artinian base ring R0 is local. Now Theorem 4.5
a) allows us to conclude.

“b)”: See [3, Theorem (3.5) e)].

“c), d)”: See [2, Corollary (3.10) b)].

“e), f)”: See [2, Corollary (4.8)].

“g)”: See [4, Proposition 5.6] for the case i = f(M) and observe that the claim is obvious
if i < f(M) (cf Remark 4.7).

“h)”: As R0 is semilocal the flat base change property of local cohomology allows us to
reduce to the case where the base ring R0 is local.

Now, if i < g(M), by [11, Theorem (3.6) a)] there is a polynomial P ∈ Q[x] such that

lengthR0

(
H i

R+
(M)n

)
= P (n) for all n 	 0,

and this gives the requested asymptotic stability of the set Ass
(
H i

R+
(M)n

)
for n → −∞.

If i = g(M) we conclude by [11, Theorem (4.10) a)]. �
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If the set Ass
(
H i

R+
(M)n

)
takes a stable value P0 for n → −∞, it is natural to ask

whether P0 may be expressed “by local cohomological data of M on Proj(M)”. In the
cases g) and h) this is indeed possible under mild conditions on R0. We make this more
precise in the following reminder.

7.8. Remark. A) Let M be a finitely generated graded R-module and let p ∈ Proj(R).
We define the (R+-) adjusted depth of M at p by

adj depthp(M) := depthRp
(M) + height ((R+ + p)/p)

(cf [13, Definition (9.2.2)]). If X := Proj(R) and F is the coherent sheaf of OX -modules
induced by M and if π : X → X0 := Spec(R0) is the natural morphism, then

adj depthp(M) = depthOX,p
(Fp) + dim

(
{p} ∩ π−1(π(p))

)
.

B) For i ∈ N0, we now set

Qi(M) := {p ∩ R0

⏐⏐p ∈ Proj(R) and adj depthp(M) = i}.
Assume in addition that R0 is a homomorphic image of a regular ring and that f :=
f(M) < ∞. Then, according to [5, Theorem (1.8)] we have

AssR0

(
Hf

R+
(M)n

)
= Qf(M) for all n 	 0.

C) Assume, that R0 is as in part B) and in addition local and that g := g(M) < ∞.
Then, according to [11, Theorem (4.10) c)] and by the flat base change property of local
cohomology we have

AssR0

(
Hg

R+
(M)n

)
\Max(R0) = Qg(M)\Max(R0) for all n 	 0.

•

In [2, Theorem 3.7] it is shown that “Asymptotic Stability of Associated Primes” holds
“in codimension ≤ 1” if the base ring R0 is essentially of finite type over a field. We
now shall prove that under certain additional assumptions “Asymptotic Stability of
Associated Primes holds in codimension ≤ 2”.

7.9. Proposition. Let i ∈ N0. Assume that R0 is a domain which is essentially of finite
type over a field. Let M be a finitely generated graded R-module which is torsion-free
over R0. Assume that

(∗) Ass
(
H i

R+
(M)n

)≤1 ⊆ {0} for all n 	 0.

Then, the set Ass
(
H i

R+
(M)n

)≤2
is asymptotically stable for n → −∞.
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Proof: According to [2, Theorem (3.7)] the set Ass
(
H i

R+
(M)

)≤1
is asymptotically stable

for n → −∞, so that either Ass
(
H i

R+
(M)n

)≤1
= ∅ for all n 	 0 or Ass

(
H i

R+
(M)n

)≤1
=

{0} for all n 	 0.

Assume first that Ass
(
H i

R+
(M)n

)≤1
= ∅ for all n 	 0. Then, Ass

(
H i

R+
(M)n

)≤2
=

Supp
(
H i

R+
(M)n

)≤2
for all n 	 0 and Proposition 6.8 gives our claim.

So, we may assume that there is an integer n0 such that Ass
(
H i

R+
(M)n

)≤1
= {0}

for all n ≤ n0. According to Remark 6.4 C) there is some s ∈ R0\{0} such that
Ass

(
H i

R+
(M)n

)
\{0} ⊆ Var(sR0) for all i ∈ Z.

Now, let n ≤ n0 and let p0 ∈ Ass
(
H i

R+
(M)n

)≤2 \{0}. Then s ∈ p0 and

AssR0p0

(
(H i

R+
(M)n)p0

)
= {0, p0R0p0

}

so that Γp0R0p0

(
(H i

R+
(M)n)p0

)
�= 0 and s ∈ p0R0p0

is a non-zero divisor with respect

to the R0p0
-module

(
H i

R+
(M)n

)
p0

/
Γp0R0p0

(
(H i

R+
(M)n)p0

)
. Therefore (cf [2, Lemma

(4.4)]),
Γp0Rp0

(
(H i

R+
(M)n)p0

)
� s

(
H i

R+
(M)n

)
p0

hence Γp0

(
H i

R+
(M)n

)
� sH i

R+
(M)n, so that p0 ∈ Ass

(
H i

R+
(M)n

/
sH i

R+
(M)n

)
. In view

of the natural monomorphism H i
R+

(M)n

/
sH i

R+
(M)n � H i

R+
(M/sM)n we get p0 ∈

Ass
(
H i

R+
(M/sM)n

)
. As height(p0/sR0) = 1 and sH i

R+
(M/sM)n = 0 we conclude that

p0/sR0 ∈ AssR0/sR0

(
H i

R+
(M/sM)n

)≤1
.

According to [2, Theorem (3.7)] the set AssR0/sR0

(
H i

R+
(M/sM)n

)≤1
is asymptotically

stable for n → −∞, so that
⋃

n≤n0
AssR0/sR0

(
H i

R+
(M/sM)n

)≤1
is a finite set. As a

consequence, the union
⋃

n≤n0
Ass

(
H i

R+
(M)n

)≤2
=: S is finite.

Moreover, for each p0 ∈ S the local ring R0p0
is of dimension ≤ 2 and essentially of finite

type over a field. Therefore, the set AssR0p0

(
H i

(Rp0 )+
(Mp0)n

)
is asymptotically stable

for n → −∞ (cf [2, Corollary (4.8)] for all p0 ∈ S. So, by the local flat base change
property, the set AssR0p0

(
(H i

R+
(M)n)p0

)
is asymptotically stable for n → −∞ whenever

p0 ∈ S. As S is finite, it follows that Ass
(
H i

R+
(M)n

)≤2
is asymptotically stable for

n → −∞. �

7.10. Corollary. Let i ∈ N0. Assume that R0 is a domain of dimension ≤ 2 and
essentially of finite type over a field. Let M be a finitely generated graded R-module
which is torsion-free over R0. Assume that

(∗) Ass
(
H i

R+
(M)n

)
⊆ {0} ∪ Max(R0) for all n 	 0.

Then, the set Ass
(
H i

R+
(M)n

)
is asymptotically stable for n → −∞.
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Proof: As the set Ass
(
H i

R+
(M)n

)≤1
is asymptotically stable (cf [2, Theorem (3.7)], the

set

P0 := Max(R0)
≤1 ∩

⋃
n∈Z

Ass
(
H i

R+
(M)n

)

is finite and it suffices to show that the set Sn := Ass
(
H i

R+
(M)n

)
\P0 is asymptot-

ically stable for n → −∞. If dim(R0) ≤ 1, this is obvious. So, let dim(R0) = 2.
Then

⋂
m0∈P0

m0 ⊆ R0 is a non-zero ideal and thus generated by finitely many elements
t1, · · · , tr ∈ R0\{0}.

By our hypothesis (∗) we have S≤1
n ⊆ {0} for all n 	 0 and hence by the graded flat

base change property of local cohomology there is a n0 ∈ Z such that

Ass(R0)tj

(
H i

(Rtj
)+(Mtj )n

)≤1 ⊆ {0} for all j ∈ {1, · · · , r} and all n ≤ n0.

By Proposition 7.9 the sets Ass(R0)tj

(
H i

(Rtj )+
(Mtj )n

)
become asymptotically stable for

n → −∞. Another use of the graded flat base change property now yields that the set
Sn is asymptotically stable for n → −∞. �

7.11. Comments and Problems. A) We would be rather surprised to learn that the
Examples 7.3 and 7.5 do not present the simplest situation in which asymptotic stability
of associated primes does not hold. So, we conjecture that the following two questions
have affirmative answers:

Let R0 be regular local and of dimension ≤ 3 and assume that the finitely gene-
rated graded R-module M is R0-torsion-free. Let i ∈ N0. Is the set Ass

(
H i

R+
(M)n

)
asymptotically stable for n → −∞?

Let R0 be a domain of dimension ≤ 2, which is essentially of finite type over a
field and assume that the finitely generated graded R-module M is R0-torsion-
free. Let i ∈ N0. Is the set Ass

(
H i

R+
(M)n

)
asymptotically stable for n → −∞?

B) An affirmative answer to the second of these questions would just mean that in
Corollary 7.10 the hypotheses (∗) may be dropped. We believe that the hypothesis (∗)
may be dropped also in Proposition 7.9.

C) Finally we would not be too surprised to learn that the two questions of part A) have
an affirmative answer if the condition of R0-torsion-freeness is dropped. •
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