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Abstract

In this paper, we will address the implementation of the Generalized
Convolution Quadrature (GCQ) presented and analyzed in [M. López-
Fernández, S. Sauter: A Generalized Convolution Quadrature with Vari-
able Time Stepping, Preprint 17-2011, University of Zurich (2011)] for
solving linear parabolic and hyperbolic evolution equations. Our main
goal is to overcome the current restriction to uniform time steps of Lu-
bich’s Convolution Quadrature (CQ). A major challenge for the efficient
realization of the new method is the evaluation of high-order divided dif-
ferences for the transfer function in a fast and stable way. Our algorithm
is based on contour integral representation of the numerical solution and
quadrature in the complex plane. As the main application we will consider
the wave equation in exterior domains which is formulated as a retarded
boundary integral equation.
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1 Introduction

In this paper, we will address the efficient algorithmic realization of the Gen-
eralized Convolution Quadrature (GCQ) as presented and analyzed in [15] for

∗The first author has been partially supported by the Spanish grant MTM 2010-19510.
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solving linear convolution equations of the form

k ∗ ϕ = g, (1)

where ∗ denotes convolution with respect to time, g is a given function, and k is
some fixed kernel function/operator, i.e., the left-hand side in (1) is understood
as a mapping of the function ϕ into some function space.

In many applications such as partial differential equations of hyperbolic or
parabolic type the kernel function k is defined as the inverse Laplace transform
of the transfer function/operator K in the Laplace domain and analyticity of
K is assumed in a region containing the half plane Re z ≥ σ+ > 0. For this
type of problems, the convolution quadrature method (CQ) has been developed
originally by Lubich, see [17, 18, 21, 20] for parabolic problems and [19] for
hyperbolic ones. The idea is to express the convolution kernel k as the inverse
Laplace transform of K and reduce the problem to the solution of scalar ordi-
nary differential equations (ODEs) of the form y′ = zy + g, for z the variable
in the Laplace domain. The temporal discretization then is based on the ap-
proximation of the solution of these ODEs by some time-stepping method and
the transformation of the resulting equation back to the original time domain.
This results in a discrete convolution in time which has very nice properties: a)
It allows for FFT-type algorithms for solving the discrete convolution equation
and b) the well-established theory of ODEs can be employed for deriving error
estimates in the Laplace domain and, then, these estimates can be transformed
back to the original time domain via Parseval’s theorem.

Since the derivation and algorithmic formulation of the CQ method strongly
relies on uniform time steps, only recently the generalized convolution quadra-
ture method has been presented (cf. [15]) which allows for variable time step-
ping. For the formulation of the algorithm and its error analysis, a new theory
has been developed in [15] which avoids the use of the discrete Fourier trans-
form, i.e., the reason for the restriction to uniform time steps. We will restrict to
the implicit Euler method for the time discretization. Note that the use of low
order methods is justified for problems where the solution, possibly, contains
non-uniformly distributed irregularities. We emphasize that our derivation of
the method can be extended to higher order Runge–Kutta methods, but the
representation of the discrete solution becomes more complicated. The exten-
sion of both the analysis and the implementation of our method to high order
versions is by no means straightforward and is the subject of future research.
It is our opinion that fully understanding the first order method will open the
way to further analytical and algorithmical developments.

The idea of the new GCQ method in [15] is to apply a time integrator for
scalar ODEs y′ = zy+g and allow for variable time stepping. For sectorial con-
volution kernels this idea is already present in the fast and oblivious algorithm
in [14]. However the algorithm in [14] is not applicable to wave equations and an
error analysis has not been developed. Our main application is the solution of
retarded potential integral equations (RPIE) which arise if the wave equation in
an unbounded exterior domain is formulated as a space-time integral equation
on the boundary of the scatterer.
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Another approach for solving retarded potential integral equations with vari-
able time steps has been introduced recently in [27] and is based on the partition
of unity method in time for a direct space-time Galerkin discretization of the
RPIE. This approach enjoys nice stability properties and avoids numerical dis-
sipation of energy. On the other hand, challenging quadrature problems arise
for the generation of the linear system – some quadrature methods have been
developed in [27], [12].

The paper is organized as follows. In Section 2 we will introduce abstract
one-sided convolution equations and formulate appropriate assumptions on the
growth behavior of the transfer operator in some complex half plane. Section 3
will be concerned with the temporal discretization of the convolution equation
and the description of an algorithm for its practical realization. Our algorithm
is based on contour integral representation of the numerical solution, quadrature
and time integration of parameter-dependent ODEs in the Laplace domain. In
Section 4 we will describe the new quadrature formula which is at the heart
of the GCQ algorithm. The application to the boundary integral formulation
of the wave equation will be considered in Section 5, where new estimates for
the acoustic single layer potential operator will be derived for general complex
frequencies. The results of numerical experiments will be presented in Section 6.

2 One-Sided Convolution Equations

We will consider the class of convolution operators as described in [19, Sec. 2.1]
and recall its definition. Let B and D denote some normed vector spaces and
let L (B,D) be the space of continuous, linear mappings. As a norm in L (B,D)
we take the usual operator norm

∥F∥ := sup
u∈B\{0}

∥Fu∥D
∥u∥B

.

For given right-hand side g : R≥0 → D, we consider the problem of finding
ϕ : R≥0 → B such that for all t ≥ 0∫ t

0

k (t− τ)ϕ (τ) dτ = g (t) , (2)

considered as an equation in D. The kernel operator k is defined via a transfer
operator K as follows. Let K : Iσ+ → L (B,D) be an analytic operator-valued
function in a half-plane

Iσ+ := {z ∈ C : Re z ≥ σ+} , for some σ+ > 0,

which is bounded by

∥K (z)∥ ≤ Cop |z|θ , ∀z ∈ Iσ+ , (3)

for some Cop > 0 and θ ∈ R. For ρ ∈ Z, we define

Kρ (z) := z−ρK (z) . (4)
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For any ρ > max{−1, θ + 1}, the Laplace inversion formula

kρ (t) :=
1

2π i

∫
γ

eztKρ (z) dz, (5)

for a contour γ = σ + iR, σ ≥ σ+, defines a continuous and exponentially
bounded operator kρ (t), which by Cauchy’s integral theorem vanishes for t < 0.
As in [19] we denote the convolution k ∗ ϕ by

(K (∂t)ϕ) (t) :=

(
d

dt

)ρ ∫ t

−∞
kρ (t− τ)ϕ (τ) dτ =

∫ ∞
0

kρ (τ)ϕ
(ρ) (t− τ) dτ.

(6)
for sufficiently smooth functions ϕ which satisfy ϕ (x) = 0 for x ≤ 0.

Our goal is to solve the convolution equation

K (∂t)ϕ = g, (7)

where we always assume that the given right-hand side is temporarily smooth
and vanishes near t = 0. Additional smoothness assumptions at t = 0 will be
formulated later.

The composition rule for one-sided convolutions (cf. [19, (2.3), (2.22)]) leads
to

ϕ = K−1 (∂t) g
so that

ϕ (t) =

∫ t

0

(
1

2π i

∫
γ

ezτ (K−1)ρ(z)dz
)
g(ρ) (t− τ) dτ (8)

for appropriately chosen ρ. This representation of the solution clearly shows
that the growth behavior of

∥∥K−1 (z)∥∥ determines the smoothness requirements
on the right-hand side g. We will assume that, for some Cop > 0 and µ ∈ R, a
similar estimate1 to (3) holds for K−1, namely∥∥K−1 (z)∥∥ ≤ Cop |z|µ , ∀z ∈ Iσ+ . (9)

In this way, ρ will be chosen according to

ρ > max {−1, µ+ 1, θ + 1} . (10)

In [15], the GCQ method has been derived, where the assumptions on the
transfer function/operator and its inverse were (3), (9). However, in order to
apply the quadrature method developed in [16] in a stable way and develop
a fast and stable algorithmic version of the GCQ we impose some additional
assumptions on K.

Assumption 1 K is analytic in a half plane Re z > σ−, for some σ− < −1,
and satisfies there the growth estimate

∥K (z)∥ ≤ Cop

(
1 + e−βRe z

)
(max{1, |z|})θ Re z > σ−. (11)

Thus we require K to be analytic in a region entering the left half plane but
allow for exponential growth in this region.

1For simplicity, we use the same notation for the multiplicative constants in (3) and (9).
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3 Temporal Discretization and Formulation of
the Algorithm

We recall here the definition of the generalized convolution quadrature as pre-
sented and analyzed in [15].

Definition 2 (Generalized Convolution Quadrature) For a set of given

time points (tn)
N
n=1 the generalized convolution quadrature approximation based

on the implicit Euler method of

K (∂t)ϕ = g (12)

at time points tn is given by

K−ρ
(

1

∆n

)
ϕn = g(ρ)n −

n−1∑
j=1

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−ρ

)
ϕj , (13)

for n = 1, . . . N , K−ρ(z) := zρK(z), cf. (4) and

ωn,j(z) :=
n∏

ℓ=j+1

(z −∆ℓ). (14)

The expression [·, . . . , ·]K−ρ denotes Newton’s divided difference with respect
to the arguments in the brackets with the standard generalization for repeated
arguments.

The implementation of (13) is very challenging due to the presence of high
order divided differences of the operator K−ρ at arbitrary positive arguments
∆−1j , which furthermore might appear repeatedly in an arbitrary order during a
time stepping procedure. The direct evaluation of these quantities by building
Newton’s table of divided differences is a highly ill-conditioned problem and will
likely become unreliable – we refer to [22], [4] for details and an improvement
for the special case of the exponential function. However these techniques are
not directly applicable for the class of functions described in Assumption 1. In
order to overcome this drawback, we propose to use Cauchy’s integral formula
for the divided differences; see, e.g., [5, 28], [15]. This leads to the following
representation of the summands in (13)

ωn,j (0)

([
1

∆j
,

1

∆j+1
, . . . ,

1

∆n

]
K−ρ

)
= ∆j

1

2πi

∫
C

K−ρ(z)∏n
ℓ=j(1−∆ℓz)

dz (15)

for a complex contour C located in the analyticity domain of K and surrounding
the poles ∆−1ℓ , ℓ = 1, . . . , n.

Hence, the contour integral representation of (13) is given by

K−ρ
(

1

∆n

)
ϕn = g(ρ)n − 1

2πi

∫
C

n−1∑
j=1

∆j
K−ρ(z)∏n

ℓ=j(1−∆ℓz)
ϕj dz, (16)
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which is nothing but

K−ρ
(

1

∆n

)
ϕn = g(ρ)n − 1

2πi

∫
C

K−ρ(z)
1−∆nz

un−1(z) dz, (17)

for un−1 the approximation at time tn−1 of the scalar ODE problem

ut(z, t) = z u(z, t) + ϕ(t), u(z, 0) = 0 (18)

by the implicit Euler method applied with variable step sizes ∆j = tj − tj−1,
j = 1, . . . , n− 1.

Assume now that a good quadrature rule with prescribed nodes zℓ and
weights wℓ, ℓ = 1, · · · , NQ, is available for (17). Then we are led to the compu-
tation of

K−ρ
(

1

∆n

)
ϕ̃n = g(ρ)n −

NQ∑
ℓ=1

wℓ
K−ρ(zℓ)
1−∆nzℓ

ũn−1(zℓ), (19)

where ũn−1 (zℓ) is the implicit Euler approximation of (18) for z the quadrature
point zℓ, 1 ≤ ℓ ≤ NQ. The method is formulated in an algorithmic way as
follows.

Algorithm 3 (GCQ with contour quadrature)

• Initialization. Generate2 K−ρ (zℓ) for all contour quadrature nodes zℓ,

ℓ = 1, 2, . . . , NQ. Compute ϕ̃1 from

K−ρ
(

1

∆1

)
ϕ̃1 = g

(ρ)
1 . (20)

• For n = 2, . . . , N

1. Implicit Euler step. Apply an implicit Euler step to (18) and
compute

ũn−1 (zℓ) =
ũn−2 (zℓ)

1−∆n−1zℓ
+

∆n−1

1−∆n−1zℓ
ϕ̃n−1

for all contour quadrature nodes: z = zℓ, ℓ = 1, . . . , NQ.

2. Generate linear system. If ∆n is a new time step, then, gen-

erate K−ρ
(

1
∆n

)
; otherwise this operator was already generated in a

previous step. Update the right-hand side

rn = rn (ũn−1) := g(ρ)(tn)−
NQ∑
ℓ=1

wℓ
K−ρ(zℓ)
1−∆nzℓ

ũn−1(zℓ).

2For the numerical solution of the wave equation by GCQ (cf. Sec. 5), this requires the

discretization of the operator K−m

(
1

∆1

)
, e.g., by the Galerkin boundary element method.

6



3. Linear Solve. Solve the linear system

K−ρ
(

1

∆n

)
ϕ̃n = rn.

Remark 4 This new algorithm avoids the storage of the full history ϕi, 1 ≤ i ≤
n−1: For the computation of the new ϕn only the solution un−1 of the ODEs at
time tn−1 is needed. Instead, the algorithm requires the pre-computation of the
operators K−ρ(zℓ), their storage and the solution of the (decoupled) ODEs at the
quadrature nodes zℓ. The main part of the computational cost and the memory
requirements will be spent in the computation and the storage of the K−ρ(zℓ).
We emphasize that, thanks to the results in the next section, the required number
of quadrature nodes will not be much bigger than the corresponding number of
nodes for the original convolution quadrature with uniform time stepping – which
is O(N) (see [18, 3]).

Another important advantage of our algorithm is that the time steps do not
need to be known in advance – only a lower and an upper bound of them are
required, as we will see in the next Section.

The development of an efficient quadrature rule for the integrals in (15) is a
challenging problem and depends on a subtle choice of the contour parametriza-
tion which is adapted to the class of functions considered in Assumption 1. For
this class of functions such a quadrature approximation has been developed and
analyzed recently by the authors (cf. [16]). In the following we will briefly
describe this quadrature method and adapt it to the generalized convolution
quadrature method.

4 Contour Quadrature

For the sake of simplicity and as explained in Remark 4, we will assume that
the contour in (17) and the quadrature points zℓ are fixed during the time
stepping. The choice of the contour will depend on the minimal and maximal
mesh width ∆min, ∆max, which should be chosen in advance. Since the number
of quadrature nodes will depend only very mildly on the ratio ∆max

∆min
, the choices

∆min = ∆α
max for some 1 ≤ α ≤ 2 or even stronger gradings α > 2 will lead to

an efficient algorithm.

4.1 The Quadrature Method

The contour and the quadrature will depend on3

m =
1

∆max
, M = max

(
m2,

1

∆min

)
(21)

3Our numerical experiments show that the choice M := ∆−1
min performs better in practice

while the choice as in (21) allows to employ the error estimates in [16] without modifications.
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and the ratio

q :=
M

m
. (22)

To avoid technicalities we always assume that m ≥ 2 holds.
For λ ∈ [0, 1], we employ the usual notation

sn (σ) = sn (σ|λ), cn (σ) = cn (σ|λ), dn (σ) = dn (σ|λ)

for the Jacobi elliptic functions as defined, e.g., in [1] and denote by

K (λ) :=

∫ 1

0

dx√
(1− x2) (1− λx2)

(see [8, 8.112 (1.) and (2.)] (23)

K ′ (λ) := K (1− λ) (see [8, 8.112 (3.) and 8.111 (2.)]) (24)

the complete elliptic integrals of the first kind.
For

k = k(q) =
q −
√
2q − 1

q +
√
2q − 1

and λ = k2 (25)

we set

P = −K(λ) +
i

2
K ′(λ) and Q = P + 4K(λ). (26)

Our choice for the integration contour C in (17) is

PQ→ C : σ 7→ γM (σ) =
M

q − 1

(√
2q − 1

k−1 + sn (σ)

k−1 − sn (σ)
− 1

)
(27)

which is nothing but the circle in the complex plane of radius M centered at M
parameterized in a subtle way (cf. [16, Lemma 15]. This parametrization is a
modification of the one in [10], where the computation of matrix functions by
quadrature in the complex plane was considered.

For fixed NQ ≥ 1, the quadrature weights and nodes in (19) are then given
by

zℓ = γM (σℓ), wℓ =
4K(λ)

2πi
γ′M (σℓ), with σℓ = −K(λ) +

(
ℓ− 1

2

)
4K(λ)

NQ
,

(28)
for ℓ = 1, . . . , NQ, where

γ′M (σ) =
M
√
2q − 1

q − 1

2cn (σ)dn (σ)

k(k−1 − sn (σ))2
. (29)

The choice of nodes in (28) corresponds to the composite mid-point formula.
Notice that this is equivalent to the composite trapezoidal formula for 4K(λ)-

periodic functions, with quadrature nodes shifted to the right by 2K(λ)
NQ

.

The evaluation of the Jacobi elliptic functions and the elliptic integrals at
complex arguments can be performed very efficiently in MATLAB by means of
Driscoll’s Schwarz–Christoffel Toolbox [6] which is freely available online. In
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particular the functions ellipkkp and ellipjc are needed to compute (28),
cf. [10].

As we have already mentioned in Remark 4, in our main applications the
evaluation of the quadrature rule will be the most expensive part of the pro-
cedure. Thus, it will be important to exploit the symmetry in (28). In this
way, in cases where the transfer operator K(z) is real on the real axis (so that
K(z) = K(z) by the Schwarz reflection principle), we can halve the evaluations
of the operators K(σℓ) to those σℓ belonging to PH with

H = P + 2K(λ).

This corresponds to evaluate K only along the upper semicircle centered at M
with radius M .

4.2 Error Analysis

In [15], the generalized convolution quadrature (based on the implicit Euler
method) without quadrature approximation (cf. (13)) has been introduced and
analyzed. We recall here the convergence theorem for the corresponding error
ϕ (tn)−ϕn and will derive in this section estimates for the perturbation ϕn− ϕ̃n,
i.e., for the error between the solution ϕn of the unperturbed GCQ method (13)
and the solution ϕ̃n of Algorithm 3 with the contour quadrature as in Section
4.1 – needless to say that an estimate of the total error ϕ (tn)− ϕ̃n then follows
from a triangle inequality.

Theorem 5 Let (9) be satisfied and let ∆max be sufficiently small such that
1−∆maxσ+ ≥ α0 for some α0 > 0. Let N ≥ 1 be the total number of time steps
and ρ in (13) be chosen such that (10) holds. Let the right-hand side in (12)
satisfy g ∈ Cρ+3 ([0, T ]) and g(ℓ) (0) = 0 for all 0 ≤ ℓ ≤ ρ + 2. We denote by
ϕn, for 1 ≤ n ≤ N , the solution of (13). Then, the error estimate holds

∥ϕ (tn)− ϕn∥B ≤ C∆maxcρ−µ (∆max)

 n∑
j=1

∆j +∆j−1

2
e−δ0tj−1 max

τ∈[tj−2,tj ]
ℓ∈{2,3}

∥∥∥g(ρ+ℓ) (τ)
∥∥∥
D

 ,

with

δ0 := σ+/α0 and cν (∆) =

{
1 + log 1

∆ , if ν = 1,
1, if ν > 1.

(30)

The proof of this theorem is given in [15].

The exact solution (ϕj)
N
j=0 of the generalized convolution quadrature (based

on the implicit Euler method) has the contour integral representation (cf (16))

n∑
j=1

∆jIj,nϕj = g(ρ)n with Ij,n :=
1

2πi

∫
C

K−ρ(z)∏n
ℓ=j(1−∆ℓz)

dz. (31a)
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The solution
(
ϕ̃j

)N

j=0
of the system where the contour integral is replaced by

our contour quadrature (cf. Algorithm 3) is given by

n∑
j=1

∆jQj,nϕ̃j = g(ρ)n with Qj,n :=


NQ∑
ℓ=1

wℓ
K−ρ(zℓ)∏n

k=j(1−∆kzℓ)
j < n,

1
∆n
K
(

1
∆n

)
j = n,

(31b)

where the weights and nodes are chosen by (28). The proof of the following
error estimate follows from [16, Theorem 10] with the choice (21) for m and M
and c0 ← 1/2 therein.

Lemma 6 Let q be defined as in (22), λ and k as in (25). Let N ≥ 1 be the
total number of time steps in (13) and define the ratio (cf. (21))

R := N
(
m−1 +M−1/2

)
.

Let K satisfy Assumption 1. Then there exist constants C1, C2 > 0 depending
only on Cop and θ but not on the discretization parameters such that

∆j ∥Ij,n −Qj,n∥ ≤ εquad := C1

(
Mθ+1 log q

) e2max(1,β)R

eNQτ − 1
(32)

with

τ := C2

min
{
m−1,M−1/2

}
log q

. (33)

The systems (31) can be rewritten in matrix form by setting g(ρ) =
(
g
(ρ)
n

)N

n=1
,

ϕ = (ϕn)
N
n=1, M = (Mj,n)

N
j,n=1 and M̃ =

(
M̃j,n

)N

j,n=1
with

Mj,n := ∆j

{
Ij,n j ≥ n,
0 otherwise,

and M̃j,n := ∆j

{
Qj,n j ≥ n,
0 otherwise,

i.e.,
Mϕ = g(ρ) and M̃ϕ̃ = g(ρ). (34)

Hence,

ϕ̃ =
((

I−M−1δ
)−1)

M−1g with δ = M− M̃. (35)

In order to derive consistency, stability, and convergence of the GCQ with con-
tour quadrature we will introduce some appropriate norms.

Definition 7 Let F and G denote normed vector spaces. For any f = (fn)
N
n=1 ∈

FN we set

∥f∥0,∞,F := max
1≤n≤N

∥fn∥F and ∥f∥0,1,F :=

N∑
n=1

∆n ∥fn∥F .
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A norm which is related to the second order divided differences is given by4

∥f∥2,1,F :=

N∑
n=1

(∆n +∆n−1) ∥[tn−2, tn−1, tn] f∥F .

For an operator H : FN → GN we denote the operator norm by

∥H∥(i,j,G)←(k,ℓ,F ) := sup
v∈FN\{0}

∥Hv∥i,j,G
∥v∥k,ℓ,F

for any (i, j) , (k, ℓ) ∈ {(0, 1) , (0,∞) , (2, 1)}.

Lemma 8 The norms ∥·∥0,∞,F , ∥·∥0,1,F , ∥·∥2,∞,F are equivalent and the con-

stants of equivalence depend on the final time T =
∑N

n=1 ∆n and the minimal
mesh width ∆min:

∆min ∥f∥0,∞,F ≤ ∥f∥0,1,F ≤ T ∥f∥0,∞,F ,

∥f∥2,1,F ≤ 4
N

∆min
∥f∥0,∞,F . (36)

Lemma 9 (Consistency) Let the assumptions of Lemma 6 be valid. Then,
the consistency estimate

∥δ∥(0,∞,D)←(0,∞,B) ≤ Nεquad. (37)

holds with εquad as in (32).

Proof. Let ψ = (ψn)
N
n=1 ∈ BN . Then from (32) we conclude that

∥δj,nψn∥D ≤ εquad ∥ψn∥B

holds so that

∥δψ∥0,∞,D = max
0≤n≤N

∥∥∥∥∥∥
n−1∑
j=1

δn,jψj

∥∥∥∥∥∥
D

≤ εquad max
0≤n≤N

n−1∑
j=1

∥ψj∥B ≤ εquadN ∥ψ∥0,∞,B .

The stability of the GCQ as in Definition 2 is proved in [15, Theorem 6] and
implies the stability of the GCQ with contour quadrature.

Lemma 10 (Stability) Let q be defined as in (22), λ and k as in (25). Let
N ≥ 1 be the total number of time steps in (13). Let the maximal mesh width
∆max be sufficiently small such that 1 − ∆maxσ+ ≥ α0 for some α0 > 0. Let
K and its inverse satisfy Assumption 1 and (9) for some µ and σ+ as in (9)
and let ρ be chosen according to (10). The solution of Algorithm 3 with contour

4Formally we set t−1 := −t1 and f−1 = f0 := 0.
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quadrature as in Section 4 is denoted ϕ̃n, 1 ≤ n ≤ N . Let the number of
quadrature points NQ be chosen such that

CI
stab e

δ0T
N2

∆min
εquad ≤ 1/8

with εquad as in (32). Then, the following stability estimate holds∥∥∥ϕ̃∥∥∥
0,∞,B

≤ 2CI
stab e

δ0T
∥∥∥g(ρ)

∥∥∥
2,1,D

. (38)

with δ0 as in (30).

Proof. In [15, Theorem 6] the stability estimate for the GCQ without contour
quadrature is proved which is the first inequality in

∥ϕ∥0,∞,B =
∥∥∥M−1g(ρ)

∥∥∥
0,∞,B

≤ CI
stab e

δ0T
∥∥∥g(ρ)

∥∥∥
2,1,D

(39)

(36)

≤ 4CI
stab

N

∆min
eδ0T

∥∥∥g(ρ)
∥∥∥
0,∞,D

. (40)

The GCQ with contour quadrature (cf. (19)) has a unique solution since the

operators K−ρ
(

1
∆n

)
are invertible (cf. (9)). Hence,

∥∥∥ϕ̃∥∥∥
0,∞,B

(35), (39)

≤ CI
stab e

δ0T
∥∥∥(I−M−1δ

)−1∥∥∥
0,∞,B←0,∞,B

∥∥∥g(ρ)
∥∥∥
2,1,D

≤ CI
stab e

δ0T

∥∥g(ρ)
∥∥
2,1,D

1− ∥M−1δ∥(0,∞,B)←(0,∞,B)

(40)

≤ CI
stab e

δ0T

∥∥g(ρ)
∥∥
2,1,D

1− 4CI
stab e

δ0T N
∆min

∥δ∥(0,∞,D)←(0,∞,B)

.

The combination of the consistency estimate and (38) gives the assertion.
We finally formulate the convergence theorem for the GCQ with contour

quadrature.

Theorem 11 Let q be defined as in (22), λ and k as in (25). Let N ≥ 1 be
the total number of time steps in (13). Let the maximal mesh width ∆max be
sufficiently small such that 1 −∆maxσ+ ≥ α0 for some α0 > 0. Let K and its
inverse satisfy Assumption 1 and (9), respectively, for some µ and σ+ as in (9)
and let ρ satisfy (10). The solution of Algorithm 3 with contour quadrature as
in Section 4 is denoted ϕ̃n, 1 ≤ n ≤ N . Let the number of quadrature points
NQ be chosen such that εquad in (32) satisfies

CI
stab e

δ0T
N2

∆min
εquad ≤ 1/8.

12



Then, the following error estimate holds∥∥∥ϕ− ϕ̃∥∥∥
0,∞,B

≤ CII
stab

N2

∆min
εquad

∥∥∥g(ρ)
∥∥∥
2,1,D

, (41)

with CII
stab := 2C1

(
2CI

stab e
δ0T

)2
.

Proof. From (34) we obtain the error representation

ϕ− ϕ̃ = −M−1δϕ̃

and hence, the result follows from (40), Lemma 9, and Lemma 10 via∥∥∥ϕ− ϕ̃∥∥∥
0,∞,B

(39)

≤ 4CI
stab

N

∆min
eδ0T

∥∥∥δϕ̃∥∥∥
0,∞,D

(Lem.9)

≤ 4CI
stab e

δ0T
N2

∆min
εquad

∥∥∥ϕ̃∥∥∥
0,∞,B

(Lem. 10)

≤ 2
(
2CI

stab e
δ0T

)2 N2

∆min
εquad

∥∥∥g(ρ)
∥∥∥
2,1,D

.

Finally, we will formulate a simplified version of Theorem 11 under some
mild assumptions on the step sizes and the mesh grading. Note that ∆max ≥ T

N
always holds. We assume in addition the following two (mild) assumptions on
the mesh grading: There exist Cuni > 0, α ≥ 1, and cgrad > 0 such that

∆max ≤ Cuni
T

N
and ∆min ≥ cgrad∆α

max. (42)

The subsequent constants depend on the time mesh only via the constants Cuni,
cgrad, and α but not on the size of ∆max. Condition (42) implies for the ratio
q =M/m and the quantities R, τ in Lemma 6 the estimates

q ≤ C3

(
N +Nα−1) , R ≤ 4N∆max =: C4,

τ ≥ c5
Nγ logN

with γ := max
{
1, α2

}
,

where the positive constants C3, C4, c5 only depend on T , cgrad, Cuni, and α.

Corollary 12 Let the assumptions of Theorem 11 be valid and let the mesh
satisfy (42). For given ε > 0, let the number of quadrature points for the
approximation of the contour integral satisfy

NQ ≥ C6N
γ logN

(
logN + log

(
1

ε

))
for some C6 > 0 depending only on T , on the constants in (11), and (42).
Then, the solution ϕ̃n, 1 ≤ n ≤ N , of Algorithm 3 with contour quadrature as
in Section 4 is well defined and satisfies the error estimate∥∥∥ϕ− ϕ̃∥∥∥

0,∞,B
≤ ε

∥∥∥g(ρ)
∥∥∥
2,1,D

.

13



For ε = Cuni
T
N we obtain: The choice NQ ≥ C̃6N

γ log2N implies the fol-
lowing estimate for the total error at time points tn :∥∥∥ϕ (tn)− ϕ̃n∥∥∥

B
≤ Cg∆maxcρ−µ (∆max) ∀1 ≤ n ≤ N.

Remark 13 Our numerical experiments indicate that for a grading exponent
α = 2, the choice

NQ = N logN

already leads to sufficiently small contour quadrature errors. Note that for a
transfer operator which is symmetric with respect to the real axis (as it is the
case in our applications) this implies

NQ =
1

2
N logN.

5 Application to the Wave Equation

In this section we will show that the boundary integral formulation for the wave
equation can be efficiently solved by the GCQ method by using the contour
integral representation (16) in combination with the quadrature method, i.e.,
(19) with the choice of quadrature points and nodes as in (28). For this, we will
prove in this section that the transfer operator for the retarded potential bound-
ary integral equation belongs to the class which is described in Assumption 1
with properly chosen constants α, β, p, σ−.

Let Ω− ⊂ R3 be a bounded Lipschitz domain with boundary Γ. The
unbounded complement is denoted by Ω+ := R3\Ω−. In the following Ω ∈
{Ω−,Ω+}. Our goal is to numerically solve the homogeneous wave equation

∂2t u = ∆u in Ω× (0, T ) (43a)

with initial conditions

u(·, 0) = ∂tu(·, 0) = 0 in Ω (43b)

and boundary conditions

u = g on Γ× (0, T ) (43c)

on a time interval (0, T ) for some T > 0 and given sufficiently smooth and
compatible boundary data. For its solution, we employ an ansatz as a retarded
single layer potential (cf. [7],[2])

∀t ∈ (0, T ) u(x, t) =

∫ t

0

∫
Γ

δ (t− ∥x− y∥)
4π ∥x− y∥

ϕ (y, τ) dΓy dτ ∀x ∈ Ω, (44)

with the Dirac delta distribution δ(·).
The ansatz (44) satisfies the homogeneous equation (43a) and the initial

conditions (43b). The extension x → Γ is continuous and hence, the unknown
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density ϕ in (44) is determined via the boundary conditions (43c), u(x, t) =
g(x, t). This results in the boundary integral equation for ϕ,

∀t ∈ (0, T )

∫ t

0

k(t− τ)ϕ(τ) dτ = g (t) in H1/2 (Γ) , (45)

where k(t) : H−1/2 (Γ)→ H1/2 (Γ) is the kernel operator

k (t)ϕ =

∫
Γ

δ (t− ∥· − y∥)
4π ∥· − y∥

ϕ (y) dΓy.

The Sobolev spaces Hs(Γ), s ≥ 0, are defined in the usual way (see, e.g., [9] or
[23]) and the spaces with negative order s < 0 by duality. The norm is denoted
by ∥·∥Hs(Γ).

Existence and uniqueness results for the solution of the continuous problem
(45) are proven in [2].

The Laplace transformed integral operator, i.e., the transfer operator for
k (t), is given by

K (z)ϕ :=

∫
Γ

e−z∥·−y∥

4π ∥· − y∥
ϕ (y) dΓy. (46)

It is well known (see [2, Prop. 3]) that K (z) : H−1/2 (Γ) → H1/2 (Γ) is an
isomorphism for all z with Re z > 0 and also for z = 0. More precisely, the
following continuity estimates hold [2].

Proposition 14 Let z ∈ C with Re z = σ+ > 0. Then

∥K (z)∥H1/2(Γ)←H−1/2(Γ) ≤ C
1 + σ2

+

σ3
+

|z|

and ∥∥K−1 (z)∥∥
H−1/2(Γ)←H+1/2(Γ)

≤ C 1 + σ+
σ+

|z|2 .

5.1 The Continuity Constant of the Acoustic Single Layer
Operator

In this section, we will generalize the existing estimates of the continuity con-
stant of K(z) for Re z > σ+ > 0 to the whole complex plane. The proof uses
similar arguments as in [24, Lemma 3.5 and 3.7].

For z ∈ C, the acoustic single layer boundary integral operator with complex
frequency z ∈ C is defined (cf. (46)) by

(K(z))ϕ (x) :=
∫
Γ

Gz (x− y)ϕ (y) dΓy,

where Gz : R3\ {0} → C denotes the fundamental solution for the operator

Lz := −∆ + z2, i.e., Gz (x) = gz (∥x∥) with gz (r) = e−zr

4πr . Our goal is to
estimate the continuity constant Cc (z) of the operator K (z), i.e.,

Cc (z) := ∥K(z)∥H1/2(Γ)←H−1/2(Γ)
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in terms of z. For the estimate of K(z) we will employ the Newton potential
N(z) : H−1comp

(
R3

)
→ H1

loc

(
R3

)
which is defined by

(N(z)f) (x) :=

∫
R3

e−z∥x−y∥

4π ∥x− y∥
f (y) dy ∀f ∈ H−1comp

(
R3

)
.

Let γ0 : H1
loc

(
R3

)
→ H1/2 (Γ) denote the standard trace operator and γ′0 :

H−1/2 (Γ)→ H−1comp

(
R3

)
its dual, i.e.,

⟨γ′0 (φ) , v⟩H−1
comp(R3)×H1

loc(R3) = ⟨φ, γ0 (v)⟩H−1/2(Γ)×H1/2(Γ) ∀v ∈ H1
loc

(
R3

)
.

Then, we have K(z) := γ0N(z)γ′0 (cf. [26, Def. 3.15 and (3.1.6); see also: p.146,
l 5]).

Note that for φ ∈ H−1/2 (Γ), the functional γ′0 (φ) is a distribution in
H−1comp

(
R3

)
with supp γ′0 (φ) ⊂ Γ. Hence, we may choose an open ball BΓ

with radius R = O (diamΓ) such that supp γ′0 (φ) ⊂ Γ ⊂ BΓ. The combination
of Lemma 16 below with standard mapping properties of the trace operator and
its dual leads to

∥K (z)φ∥H1/2(Γ) = ∥γ0N(z)γ′0 (φ)∥H1/2(Γ) ≤ CΓ ∥N(z)γ′0 (φ)∥H1(BΓ)

(Lem. 16)

≤ CΓCR max {1, |z|}
(
1 + e−4RRe(z)

)
∥γ′0 (φ)∥H−1(R3)

≤ C ′ΓCΓCR max {1, |z|}
(
1 + e−4RRe(z)

)
∥φ∥H−1/2(Γ) .

This is summarized as the following theorem.

Theorem 15 Let Ω ⊂ R3 be a bounded domain with diameter R. It holds

∥K(z)∥H1/2(Γ)←H−1/2(Γ) ≤ CΓ,R max {1, |z|}
(
1 + e−4RRe(z)

)
∀z ∈ C.

Thus, the transfer function K (z) for the retarded potential of the wave equation
satisfies Assumption 1 with Cop = CΓ, θ = 1, any σ− < 0, and some β > 0
depending only on diamΓ.

The proof of Theorem 15 follows from the next lemma, which provides ex-
plicit bounds for the solution operator N(z).

Lemma 16 For any R > 0, there exists a constant5 CR > 0 such that for any
f ∈ H−1comp

(
R3

)
with support contained in a ball BR with some diameter R it

holds

∥∇N (z) f∥L2(BR)+∥N (z) f∥L2(BR) ≤ CR max {1, |z|}
(
1 + e−4RRe(z)

)
∥f∥H−1(R3)

for all z ∈ C.
5In the following, the constant CR may change in every occurance – however it will always

be positive and depend only on R > 0.
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Proof. We start by recalling the definition of the Fourier transform for functions
with compact support

û (ξ) = (2π)
−3/2

∫
R3

e− i⟨ξ,x⟩ u (x) dx ∀ξ ∈ R3

and the inversion formula

u (x) = (2π)
−3/2

∫
R3

ei⟨x,ξ⟩ û (ξ) dξ ∀x ∈ R3.

Let f ∈ H−1comp

(
R3

)
be given and let BR ⊂ R3 be an open ball of radius R

containing supp f . Let ν ∈ C∞ (R≥0) be a cutoff function such that

supp ν ⊂ [0, 4R] , ν|[0,2R] = 1, |ν|W 1,∞(R≥0) ≤
C

R
,

∀x ∈ R≥0 : 0 ≤ ν (x) ≤ 1, ν|[4R,∞[ = 0, |ν|W 2,∞(R≥0) ≤
C

R2
.

(47)

LetM (z) := ν (∥z∥) and

wν (x) :=

∫
BR

G (z, x− y)M (x− y) f (y) dy ∀x ∈ R3.

Since supp f ⊂ BR we may define

w := G (z, ·) ⋆ f and write wν = (G (z, ·)M) ⋆ f. (48)

The properties of ν guarantee wν |BR = w|BR so that we may restrict our atten-
tion to the function wν . We compute the Fourier transform of G (z, ·)M:

̂(G (z, ·)M) (ξ) = (2π)
−3/2

∫
R3

e− i⟨ξ,x⟩G (z, x)M (x) dx

= (2π)
−3/2

∫ ∞
0

g (z, r) ν (r) r2
(∫

S2
e− i r⟨ξ,ζ⟩ dSζ

)
dr

= (2π)
−3/2

I (z, ξ) .

The inner integral in I (z, ξ) can be evaluated analytically (cf. [24, p. 1882])
and I (z, ξ) = ι (z, ∥ξ∥) with

ι (z, s) = 4π

∫ ∞
0

g (z, r) ν (r) r2
sin (rs)

(rs)
dr. (49)

Applying the Fourier transform to the convolution (48) leads to

ŵν = (2π)
3/2 ̂(G (z, ·)M)f̂ .
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By using standard properties of the Fourier transformation and its relation to
Sobolev norms we obtain

∥w∥H1(BR) ≤ ∥wν∥H1(R3) = (2π)
3/2

∥∥∥∥√1 + ∥ξ∥2 ̂(G (z, ·)M)f̂

∥∥∥∥
L2(R3)

(50)

≤
(
max
ξ∈R3

∣∣∣(1 + ∥ξ∥2) I (z, ξ)∣∣∣)
∥∥∥∥∥∥ 1√

1 + |ξ|2
f̂

∥∥∥∥∥∥
L2(R3)

≤
(
max
s≥0

∣∣(1 + s2
)
ι (z, s)

∣∣) ∥f∥H−1(R3) .

Hence, Lemma 17 below implies

∥w∥H1(BR) ≤ CR max {1, |z|}
(
1 + e−4RRe(z)

)
∥f∥H−1(R3) .

Lemma 17 The function ι (z, ·) defined in (49) can be estimated by

max
s≥0

∣∣(1 + s2
)
ι (z, s)

∣∣ ≤ CR max {1, |z|}
(
1 + e−4RRe(z)

)
∀z ∈ C.

Proof. Applying integration by parts we obtain

|ι (z, s)| = C

|z|

∣∣∣∣∫ ∞
0

e−zr
(
ν′ (r)

sin (rs)

s
+ ν (r) cos (rs)

)
dr

∣∣∣∣
≤ C 1 + e−4RRe(z)

|z|

∫ 4R

0

(
C

R
r + 1

)
dr = CR

1 + e−4RRe(z)

|z|
.

On the other hand for |z| ≤ 1

|ι (z, s)| =
∣∣∣∣∫ ∞

0

e−zr ν (r)
sin (rs)

s
dr

∣∣∣∣ ≤ (
1 + e−4RRe(z)

)∫ 4R

0

∣∣∣∣ sin rss
∣∣∣∣ dr

≤
(
1 + e−4RRe(z)

)∫ 4R

0

rdr = 8R2
(
1 + e−4RRe(z)

)
so that

|ι (z, s)| ≤ CR
1 + e−4RRe(z)

1 + |z|
.

For the product s2ιk (s), we get∣∣s2ι (z, s)∣∣ = C

∣∣∣∣∫ ∞
0

e−zr ν (r) s sin (rs) dr

∣∣∣∣ = C

∣∣∣∣∫ ∞
0

e−zr ν (r) ∂r cos (rs) dr

∣∣∣∣
≤ C

(∣∣∣∣∫ ∞
0

cos (rs) ∂r
(
e−zr ν (r)

)
dr

∣∣∣∣+ 1

)
≤ C |z|

∣∣∣∣∫ ∞
0

cos (rs) e−zr ν (r) dr

∣∣∣∣+ C

(∣∣∣∣∫ ∞
0

cos (rs) e−zr ν′ (r) dr

∣∣∣∣+ 1

)
≤ C (1 +R |z|)

(
1 + e−4RRe(z)

)
.
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6 Numerical Experiments

6.1 Decoupled, purely time-depending example

In [27] analytical solutions for the acoustic potential in (45) have been computed
for the case ∂Ω = S2, assuming that g(x, t) = g(t)Y m

n , for Y m
n the spherical

harmonic of degree n and order m. It is well known (cf. [13], [25]) that

K(z)Y m
n = λn(z)Y

m
n ,

where λn(z) can be expressed in terms of modified Bessel functions Iκ and Kκ

(see [1]) by
λn(z) = In+ 1

2
(z)Kn+ 1

2
(z).

The ansatz
ϕ(x, t) = ϕ(t)Y m

n

leads to the one-dimensional problem: Find ϕ(t) such that∫ t

0

L−1[λn](t− τ)ϕ(τ) dτ = g(t).

For n = 0, the first spherical harmonic Y 0
0 is constant so that g(x, t) = g(t)

and

λ0(z) =
1− e−2z

2z
.

The exact solution in this case is given by

ϕ(t) = 2

⌊t/2⌋∑
k=0

g′(t− 2k). (51)

Remark 18 The full wave-equation is particularly important to model electric
or acoustic systems shortly after they are “switched on”, i.e., before the sys-
tem has reached a time-harmonic steady state which then can be modeled in the
frequency domain by a Helmholtz-type equation. The problem becomes very chal-
lenging if the right-hand side g is not very smooth at t = 0, i.e., has only, say,
one or two vanishing derivatives at t = 0. These are the kind of applications,
where the GCQ becomes advantageous.

To test the performance of the GCQ for such kinds of applications we have
chosen the following model problem as our first numerical example

g(t) = t3/2e−t, K(z) = λ0(z) =
1− e−2z

2z
, K−1(z) = 2z

1− e−2z
, (52)

where g and g′ vanish at the origin but g′′ already has a singularity for t = 0.
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Remark 19 (Choice of Regularization Parameter) In our numerical ex-
periments it turns out that the simplest choice ρ = 0 of the regularization pa-
rameter in (19) performs very well and indicate that the theoretical condition
ρ ≥ 3 in [15] might be too strong. It is an open problem whether there exist
examples where ρ > 0 is necessary or whether this condition is an artifact of the
theory.

We have approximated ϕ for t ∈ [0, 1] by applying (13) with ρ = 0. Note
that the non-smoothness of g at t = 0 is inherited to an irregularity of the
solution ϕ of strength O

(
t1/2

)
due to (51). This justifies to use a time mesh

which is algebraically graded towards t = 0. As a grading exponent we have
chosen (heuristically) a quadratic grading, i.e., α = 2 in

tj =

(
j

N

)α

, j = 1, . . . , N (53)

and compared this in our numerical experiment to constant time stepping, i.e.,
α = 1 in (53). As expected we observe numerically (cf. Figure 3) an order
reduction from 1 to 1/2 for the error associated to the implicit Euler method with
constant time steps while the optimal (linear) convergence order is preserved
by using the graded mesh.

In order to compute the approximation with α = 1 we employed the CQ
algorithm as presented in [18]. For the approximation with α = 2 we applied
the algorithm described in Section 3 with the quadrature formula (28). In this
case, the choice of parameters for the quadrature is given by

∆max = N−1, ∆min = N−2, q = N, θ = −1.

From Corollary 12 we deduce that, by choosing the number of contour quadra-
ture points according to NQ = O

(
N log2N

)
, the GCQ with contour quadrature

converges at the same rate as the unperturbed GCQ method. In practice a bet-
ter behavior is observed and the results displayed in Figure 3 are computed with
NQ = N logN .

Figure 1 shows the numerical and the exact solution for N = 20 time steps
and the two values of the grading power α = 1, 2. The corresponding evolution
of the absolute error is shown in Figure 2. The maximal error appears at the
first time steps due to the lack of regularity at the origin and is much smaller
for the graded mesh than for constant time stepping. More precisely, Figure 3
shows that the convergence is optimal (linear) for the graded mesh while the

convergence speed is reduced to O
(
∆

1/2
max

)
for constant time steps.

6.2 The full wave equation

Let again ∂Ω be the unit sphere. We solve numerically the full wave equation
(43) with right-hand side

g(x, t) = g(t)Y 1
1 (x), (54)
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Figure 1: Exact and approximation of the potential for the data in (52) with 20
steps. Left: With uniform time steps (α = 1 in (53)). Right: With quadratically
graded time steps (α = 2 in (53))
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Figure 2: Pointwise error in the approximation of the potential for the data in
(52) with 20 steps. Left: With uniform time steps (α = 1 in (53)). Right: With
quadratically graded time steps (α = 2 in (53))
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Figure 3: Error with respect to the number of steps for g in (52). The straight
lines indicate slopes 1/2 and 1, respectively.

for the same time-dependent part g (t) as in (52). Y 1
1 denotes the spherical

harmonic of degree 1 and order 1. In spherical coordinates, Y 1
1 is given by

Y 1
1 (θ, φ) = −

√
3

8π
sin(θ)eiφ.

For t ∈ [0, 2] the analytical solution for the potential is

ϕ(x, t) =

(
2g′(t) + 2

∫ t

0

sinh(τ)g′(t− τ) dτ
)
· Y 1

1 (x).

For the spatial discretization we use Martin Huber’s BEM implementation in
MATLAB (cf. [11]) of the Galerkin boundary element method with continuous,
piecewise linear boundary elements on surface triangulations – for details of
the boundary element method we refer, e.g., to [26]. At every spatial node,
the behavior of the solution in time is the same as in the scalar example in
Section 6.1. Thus, we choose again the time steps as in (53) and compare the
performance for α = 1.01 (almost uniform time stepping) and α = 2.

Once the problem is discretized in space, we integrate in time the semidis-
crete problem by applying the algorithm in Section 3 for both values of α. Note
that every summand in (19) involves a boundary element matrix. If the spatial
boundary element mesh is unchanged during the time stepping, these matrices
can be pre-computed in parallel.
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Figure 4: Error with respect to the number of time steps for g as in (54). NS is
the number of degrees of freedom in the spatial discretization. The abbreviation
“OQ” stands for “original quadrature” for approximating the entries of the
boundary element matrices (cf. [26]), where the order is chosen as in the case
of constant time stepping. “IQ” stands for “improved quadrature” where the
quadrature order is significantly increased. The straight dashed lines depict the
slopes 1/2 and 1, respectively.

In Figure 4, the maxima max1≤n≤N

∥∥∥ϕ (tn)− ϕ̃n∥∥∥
L2(Γ)

of the spatial L2-

errors for the two considered grading exponents, α = 1.01 and α = 2, are
depicted. For the Galerkin boundary element discretization with continuous,
piecewise linear shape functions we employed a boundary element mesh on the
sphere consisting of 616 (NS = 310), 1192 (NS = 598) and 2568 (NS = 1286)
triangles. As in the purely time-dependent problem of the previous section
we observe an improvement of the order of convergence with respect to the
number of time steps from 1/2 to 1. In this plot we can also observe that the
accuracy which is required for the quadrature approximation being involved
for the generation of the boundary element matrices has to take into account
the size (smallness) of the time steps: We can eliminate this pollution effect
by either refining in space (crosses) or by increasing the number of quadrature
nodes in the matrix assembly process (diamonds) or, of course, by doing both
(circles and grey dots). A careful analysis in order to optimize the quadrature in
space with respect to the time steps and the spatial discretization is the subject
of future research.
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