A DIAGONAL BOUND FOR COHOMOLOGICAL
POSTULATION NUMBERS
OF PROJECTIVE SCHEMES

M. BRODMANN AND A.F. LASHGARI

ABSTRACT. Let X be a projective scheme over a field K" and let F
be a coherent sheaf of Ox-modules. We show that the cohomologi-
cal postulation numbers v of F, e.g. the ultimate places at which
the cohomological Hilbert functions n — dimg (H* (X, F(n))) =:
h'-(n) start to be polynomial for n < 0, are (polynomially) bounded

in terms of the cohomology diagonal (h}(—i))?:g(f) of F. As a
consequence we obtain that there are only finitely many different
cohomological Hilbert functions h% if F runs through all coherent
sheaves of Ox-modules with fixed cohomology diagonal. In order
to prove these results we extend the regularity bound of Bayer-
Mumford [1] from graded ideals to graded modules. Moreover we
prove that the Castelnuovo-Mumford regularity of the dual FV of
a coherent, sheaf of Opr -modules F is (polynomially) bounded in
terms of the cohomology diagonal of F.

1. INTRODUCTION

Let X be a projective scheme over a field K with twisting sheaf Ox(1)
and let F be a coherent sheaf of Oy-modules. For i € Ny, the i-th
cohomological Hilbert function of (X with respect to) F is defined as
the function

(1.1) We:Z— Ny, n> hip(n):=dimy (H'(X, F(n))),

where H'(X, F(n)) denotes the i-th cohomology group of X with co-
efficients in the n-th twist F(n) := F @0, Ox(1)®" of F.
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It is well known that the function n — hi(n) is polynomial for all
n < 0. The corresponding polynomial

(1.2) Py € Qx] with pz(n) = h'=(n), V¥n <0

is called the i-th cohomological Hilbert polynomial of (X with respect
to) F and is of degree < i (cf [5, 20.4.14]).

Now, for each ¢ € Ny, we may define the i-th cohomological postulation
number (of X with respect to) F by

(1.3) Vi i=inf{n € Z|h(n) # pr(n)} — 1
with the usual convention that inf () = co. The basic aim of the present
paper is to establish the following bounding result (¢f Theorem 4.6)

For each r € Ny there is a polynomial M, € Q[uy, ..., u,| such that
for each i € Ny, each field K, each projective scheme X over K and
each coherent sheaf of Ox-modules F with dim(F) < r we have

V.Z%-' > Mr(h(;:(())v Tt h;(—?“))

This extends a result of Matteotti [7], who has calculated bounding
functions for the numbers v% in terms of the ”cohomology diagonal
(h’e(—J))j<i at and below level i” and in terms of the corresponding
cohomological Hilbert polynomials (p]f) j<i- S0, what we shall prove is
that one may bound the numbers v% without knowing the polynomials
p'z, only in terms of the "full” cohomology diagonal.

As a consequence of the mentioned bounding result we shall prove the
following finiteness result (cf Theorem 5.4)

Let r € Ny and let hg, ..., h, € Ny. Let (X, F) run through all
pairs in which X is a projective scheme over some field and F
s a coherent sheaf of Ox-modules such that

dim F <r and hér(—j)ghj for 5=0,...,r.

Then only finitely many different cohomological Hilbert functions
h's may occur.

Keep the previous notation and hypothesis and let £ € Ny. Then, the
Calstelnuovo-Mumford reqularity of F above level k is defined by (cf [4,
1.11))

(1.4) regi(F) = inf{t € Z|h(n—i) =0, VYn>t, Vi>k},
so that
(1.5) rego(F) =: reg(F)

is the usual Castelnuovo-Mumford reqularity of F.
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One of the main steps towards the bounding result mentioned above
is to show that the regularity of the dual 7V = Homoe,, (F, Opr ) of
K

a coherent sheaf F over a projective space P} is bounded in terms of
the cohomology diagonal of F. More precisely (cf Theorem 3.8)

For each r € Ny there is a polynomial L, € Q[uy,...,u,| such
that for each field K and each coherent sheaf of Opr_-modules F
we have

reg(F') < Ly (h%(0),..., hWp(—1)) .

One important ingredient in order to prove the preceeding result is
the following bounding result which relates the Castelnuovo-Mumford
regularity reg(M) and the generating degree d(M) (s. 2.2 B) resp.
2.1 C) for the definitions) of a graded submodule M of a graded free
module over a polynomial ring (cf Theorem 2.6).

For each r € Ny there is a polynomial F, € Q[s, t] such that for each
s € N, for each field K, for each polynomial ring K[x] = K[xq, ..., X,]
and for each graded submodule M C K[x]|%* we have

reg(M) < F,(s,d(M)).

In fact, polynomial regularity bounds of the above type may be deduced
by classical results on syzygies, (cf [3, Sec. 4]). We include a proof of
the above bounding result mainly because of our choice of the bounding
polynomial F: namely, if s = 1 our bound coincides with the regularity
bound of Bayer-Mumford (s. [1, 2.3]). The classical syzygetic method
furnishes much weaker bounds.

The results mentioned above, partly are modified versions of the main
results of the thesis of the second author [6] and have been announced
without proofs in [3].

We thank D. Mall and N.V. Trung for their valuable hints and remarks.

2. A REGULARITY BOUND OF BAYER-M UMFORD
TYPE

Let K[x]| := K|xo,...,X,] be a polynomial ring over a field /. The
principal aim of this section is to extend the regularity bound of Bayer-
Mumford [1] for graded ideals a C K[x] to graded submodules M C
K[x]®* for all s € N. We begin with some preliminaries on graded rings
and modules.
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2.1. Definition and Remark. A) Let R = & R, be a homogeneous
n>0

noetherian ring (so that R = Ry[R;]) and let R, := 6]9 R,, denote the

irrelevant ideal of R. If T is a graded R-module and n E Z, we denote
by T,, the n-th homogeneous part of T, so that T'= & T,,. Using this
nez

notation we define the beginning and the end of T resprectively by
beg(T) :=inf{n € Z|T, # 0},
end(T) :=sup{n € Z | T, # 0},
with the usual convention that inf and sup are formed in Z U {£oo}
with inf ) = oo, sup® = —oo.

B) Let R and T be as above. For m € Z we define the m-th left- resp.
right-truncation of T" as the Ry-submodules

n>m n<m
Clearly, 1%, is a graded submodule of 7.
C) Let R and T be as above. The generating degree of T is defined by
d(T):=inf{m € Z|T = (T<y)R}.

D) Let R and T be as above. Let Ry be a noetherian Ry-algebra. Then
R := R} ® R = & R ® R, carries a natural grading which turns it

n>0 Ro
into a homogeneous noetherian ring with irrelevant ideal R, = R, R'.
Moreover T" = R’ ® T=Ry®oT = ®Ry>T, beoomes a graded

Ry nez Ry
R'-module.
If Ry is faithfully flat over Ry, then R’ is faithfully flat over R and

moreover

beg(T") = beg(T), end(T') = end(T), d(T') = d(T). o

2.2. Reminder and Remark. A) Let R = $ R, be asin 2.1 and let
n>0

M = @& M, be a graded R-module. Let i € Ny. Then, the i-th local

nez
cohomology module Hy, (M) of M with respect to the irrelevant ideal

R, C R carries a natural grading (cf [5, Chap. 12]).

B) Let R and M be as in part A) and assume in addition, that M
is finitely generated. Let i € Ny and let n € Z. Then, the n-th
homogeneous part Hp (M), of Hj (M) is a finitely generated Ro-
module and vanishes if n is sufficiently large. This allows to define the
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(Castelnuovo-Mumford) reqularity of M at and above level k by
regt(M) := sup{end (HEJF(M)) +ili>k}eZU{-o0}
for each k € Zy (cf [5, (15.2.9)]). Then
reg(M) = reg” (M)
is the usual (Castelnuovo-Mumford) reqularity of M.

C) Keep the above notations and hypotheses. Assume in addition that
Ry is a faithfully flat Rp-algebra. Then R ® M is a finitely generated

graded module over Ry ® R and the graded flat base change theorem
gives rise to natural 1som0rph1sms of Rj-modules

H(lR;)I(%g())R)JF(RB % M), = R, 1%)) Hy, (M),

for all i € Ny and all n € Z (cf [5, (15.2.2)]).
In particular we have

regk(Rf) }%@ M) = regk(M)
0
for all k € Z,.

D) Assume now, that R = K|[x|] = K[xg,...,X,| is a polynomial ring
over the field K. Let M be a finitely generated and graded R-module
and let

O0—=F, —F_ 1—=--=F—=M=0

be a minimal graded free resolution of M. Then we have the following
well known 7 syzygetic characterization” of regularity (cf [5, (15.3.7)])

reg(M) = max{d(F;) —j |0 < j < p}. o

2.3. Reminder and Remark. A) Let R = @& R, be a homogeneous
n>0

noetherian ring and let M be a finitely generated and graded R-module.
A homogeneous element f € R, of R is said to be (R-)filter-reqular
with respect to M, if it is a non-zero divisor with respect to the module
M/ H%JF(M ).

B) It is easy to see that f € R, is filter-regular with respect to M if
and only if the annihilator (0 B f) of fin M is contained in Hy, (M).
So, f € R, is filter-regular with respect to M iff e := end(0 B f) < 0.

Moreover, if this is the case, we have e < end (H}, (M)). If in addition
n >0, we have e = end (Hy, (M)).
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C) If Ry is an infinite field and if R; # 0, then there is an element
f € R\{0} which is filter-regular with respect to M (cf [5, 15.1.4]). o

2.4. Lemma. Let K[x] = K[xq,...,X,] be a polynomial ring over the
field K, let U be a finitely generated and graded K[x]-module, let m € Z
and let M, N C U be two graded submodules such that d(M),d(N) < m
and reg(M + N) <m. Then d(M N N) < m.

Proof: ~ There are graded epimorphisms 7= : F' — M,0 : G — N
in which F' and G are graded free K[x]-modules of finite rank with
d(F),d(G) < m. In particular we have reg(F @ G) < m. So, the
graded short exact sequence

0— Ker(m+0) > FaG ™8 M+N =0

yields reg (Ker(m + 0)) < m (cf[5, (15.2.15) (i)]), thus d (Ker(m + o)) <
m. The commutative diagram

Me N Ity ar i N
TTF@Q TﬂJrg
Fad = Fad

shows that (7 & o) (Ker(m + 0)) = Ker(c), hence d (Ker(o)) < m. In
view of the graded isomorphism M NN 2 Ker(o) we get our claim. W

2.5. Definition and Remark. A) We define a sequence of polynomials
(Fy)reny € Q)s, t] as follows:

FO(Sa t) :ta

Fr—l(S, t) +7r
r

F.(s,t) :=F, 1(s,t) + s( > , VreN

We call F, the r-th Bayer-Mumford polynomial.
B) We define a sequence of integers (e, ),cn, by
eo:=0; e :=re_1+1, VrelN
It follows easily by induction, that
t< F(s,t) < F(s"\t)if0<s<s, 0<t <t
F(s,t) < s (2t)" if s,t € N, o

Now, we are ready to formulate and to prove the main result of this
section.
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2.6. Theorem. Let K[x| = K[xq, - ,X,] be a polynomial ring over
the field K. Let s,d € N and let M C K[x]%* be a non-zero graded
submodule with d(M) < d. Then

reg(M) < F,(s,d).
Proof: In view of 2.1 D) and 2.2 C) we may replace K by any of its
extension fields and thus assume that K is infinite.

We proceed by induction on r. If r = 0, M is a graded free K[xq]-
module of finite rank, so that reg(M) < d = Fy(s,d), (cf 2.2 D) ).

So, let > 0. We write R := K[x] and T := R®*/M. As reg(R¥*) =0
and in view of the graded short exact sequence 0 — M — R® — T —
0 it suffices to show that reg(T") < F,(s,d) — 1 (cf [5, (15.2.15) (i)]).

By 2.3 C) there is an element f € R;\{0} which is filter-regular with
respect to T'. After a linear change of coordinates we may assume that
f=x,.

Now, let R := R/x,R = K[xg, -+ ,X,_1]. Then, the graded R-module
M = (M +x,R*)/x,R* C R"* satisfies d(M) < d. So, by induction

we have reg(M) < F,_;(s,d). By the base ring independence of local
cohomology, this inequality remains valid if we consider M as an R-
module. As reg(x,R?*) = 1, the graded short exact sequence 0 —
X, RY* — (M +x,R%*) — M — 0 therefore gives (cf [5, (15.2.15) (iii)]

(1) reg(M + x,R%®) < F,_(s,d).

As reg(R®®) = 0, the graded short exact sequence 0 — (M +x,R%*) —
R¥ — T/x, T — 0 gives reg(T/x,T) < reg(M +x,R%*) —1 and hence

(2) reg(T/x,T) < F,_y(s,d) — 1.

By [5, (18.3.11)] we also have reg!(T') < reg(T/x,T), so that reg*(T) <
F,_i(s,d) — 1, hence reg*(T) < F,(s,d) — 1. It therefore remains to
show that end (Hy, (T)) < F,(s,d) — 1.

Applying cohomology to the graded short exact sequence 0 — T'/(0 B

x,) 5 T(1) — (T/x,T)(1) — 0 we get exact sequences

0= Hy, (T/(0 ;%)) = Hy (T)ss = Hy (T/%, ).
In view of the inequality (2) we thus get isomorphims
(3) Hy, (T/(o B xr)>n ~ HY (T)asr, Yn>F (s,d)— 1.

If we apply cohomology to the graded short exact sequence 0 — (0 L
x,) =T —=T/(0 H x,) — 0 and keep in mind that (0 H x,) € Hy (T)
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(cf 2.3 B) ) we get exact sequences 0 — (0 B X, ) — Hp, (T)n —

Hy, (T/(O H Xr)) — 0 for all n € Z. So, in view of the isomorphism
(3) we obtain short exact sequences

(4) 0= (0 %)n — Hy (T)n = Hy (T)ps1 — 0, Vi > Fo_y(s,d).

If we apply Lemma 2.4 to the submodules M, x, R?* C R% and keep
in mind that d(M), d(x,R?*) < d < F,_4(s,d) and reg(M + x,R%*) <
F, 1(s,d), (see (1)), we get d(M Nx,R¥*) < F, 1(s,d)+1. As M N
x,RY = x,(M : X, ), we obtain d(M : x,) < F,_1(s,d). But this
R®s R®s

means that d(0 B x,) < F,_i(s,d). So, if the epimorphism m, in (4)
is injective for some n > F, (s, d), the map 7, is an isomorphism for
all m > n, hence H%+(T)m = 0 for all m > n. So, in the range n >
F, 1(s,d), the function n — dimg (H%+ (T),) is strictly decreasing un-
til it reaches the value 0. But this implies end (H%+ (T)) < Froi(s,d)+
dimK (H%+ (T>Frfl(s,d)>_1- AS dimK(TFrfl(s,d)> S dimK ((RGBS)FTil(s’d))
= s(7=1 D47 and Hy (T)p_i sty S Tr_y(s.0) it follows

F, 1(s,d)+r
r

end (Hy, (T)) < Fo_i(s,d) + s( > —1=F(s,d)—1,

and this concludes our proof. [ |

2.7. Corollary. Let K[x| = K[xq, - ,X;] be a polynomial ring over
the field K, let s € N and let M C K[x]®® be a graded submodule.
Then,

reg(M) < s° (2d(M))" .
Proof: As reg(0) = —oo, we may assume that M # 0. If d(M) = 0,
by Nakayama, there is a graded isomorphism M 2 K[x]%"* with some

uw € {1,---,s}, so that reg(M) = 0. Therefore we may assume that
d(M) > 0. Then, we conclude by Theorem 2.6 and the estimate at the
end of 2.5 B). |

2.8. Remark. A) For s = 1, Corollary 2.7 gives the regularity bound
of Bayer-Mumford [1].

C) In [6, (2.1)] it is shown that under the hypothesis of Corollary 2.7 one
has reg(M) < (2d(M))*"". There, a different approach is used: First,
the regularity criterion of Bayer-Stillman [2] is extended to graded sub-
modules of free modules (cf [6, (1.10)]). Then, this extended criterion
is used to prove the mentioned bound. Actually a slight modification
of the proof of [6, (2.1)] gives the bound of Corollary 2.7. o
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3. REGULARITY OF DUAL SHEAVES

Let r € N, let K be a field and let F be a coherent sheaf of Opr -

modules. The aim of this section is to show that the regularity reg(F")

of the dual sheaf " := Homo,, (F,Op; ) is bounded in terms of the
K

full cohomology diagonal (hi-(—i));_, of F by a universal polynomial.
We first give a few preliminaries.

3.1. Reminder and Remark. A) Let R = @ R,, be a homogeneous
n>0

noetherian ring and let X = Proj(R) be the projective scheme defined
by R. Let F be a coherent sheaf of Ox-modules, and let M be a

finitely generated graded R-module such that F = M, e.g. F is the
sheaf of Ox-modules induced by M. Then, the Serre-Grothendieck
correspondence (cf [5, (20.4.4)] yields an exact sequence of graded R-
modules

1) 00— H%+(M) - M — eeazHO (X, F(n)) — H}z+(M) —0

and isomorphisms of graded R-modules

(2) Hif'(M) = & H' (X, F(n)), (VieN).

- nez
For the regularity of F (cf (1.5)) we thus get
reg(F) = reg*(M).

B) Keep the previous notations and hypotheses and consider the graded
R-module T(F) := & H°(X,F(n)). Then, the exact sequence (1) of
>0

A) shows that T(F), = M, for all n > 0, so that T(F) is finitely
generated and T(F)~ = F. Applying the sequence (1) with T'(F)
instead of M we now see that

Hyp, (T(F)) =0, end (Hp, (T(F))) <0
and hence, if F # 0:
max {0, reg(F)} = reg (T(F)).

C) Keep the above notations and hypotheses and let f € R;. Then, f
is filter-regular with respect to M if and only if it is a non-zero divisor
with respect to T'(F) or - equivalently - if the homomorphism of sheaves
f:F — F(1)is injective. In this situation, we also say that f is regular
with respect to F. If this is the case - with Y := Proj(R/fR) - we have
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exact sequences
H (X, F(n)) = H (X, Fn+1)) = H (Y, F |y (n+1)) —
H™ (X, F(n)) — H™ (X, F(n+1)) = H™ (Y, F Iy (n+1))
in which F [y denotes the restriction of F to Y.

D) Keep the previous hypothesis and notations and assume in addition,

that Ry = K is a field. Let K’ be an extension field of K. Then

X' = Proj(K' ® R) is a projective scheme over K', F' := (K' @ M)~
K K

is a coherent sheaf of Ox/-modules and
H (X, F/(n) & K & HY (X, F(n)
for all i € Ny and all n € N (cf 2.2 C), 3.1 A) ). So in the notation of
(1.1) we have
- (n) = hiz(n) for all i € Ny and all n € Z.

E) Keep the above notation and hypotheses. Let o* =* Hompg(e, R)
denote the functor of taking duals in the category of graded R-modules.
Then (M*)~ = (M~)" and hence (T'(F)*)™ = F". o

3.2. Definition and Remark. A) For r € Ny we introduce the poly-
nomials G, € Q[ug, - -+, u,, v] defined by

GU (ll(); V) =Wy

G (g, -+, up5v) :=ug + ZGrfl(llo +uy, e uw)

w=1

for all v € Ny and all » > 0.

B) Moreover, for each r € N we consider the polynomial H, € Q[uy,--- , u,]
defined by

r—1

o= (25 (17 1))

Finally, let Hy := 0.

C) Let ug, -+, up,v,up, - -+ ,uy,v" € Ny such that v < u} for all j €
{0,---,r} and v < v'. Then
0 S Gr(uﬂa'" ,UT,U) S Gr(ui)a 7u;~7vl)7

OSHr(ula"'aur)SHr(ulla"' ul)' hd
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3.3. Lemma. Letr € Ny, let K be a field and let F be a coherent sheaf
of Opr_-modules. Then:

a) h%(n) < G.(h%(0),- -, hi%=(—r);n) for all n > 0;
b) reg(F) < reg (T(F)) < Hy (hp(=1),- -+ hip(=7)).

Proof: For r = 0, both statements are obvious. So let » > 0.

'a)”: In view of 3.1 D) we may assume that K is infinite. We write
P, = Proj(K[x]), with a polynomial ring K[x] = K|[xg,- - ,x,| and
choose a finitely generated graded K [x]-module M with M = F. Then,
there is an element f € K[x];\{0} which is filter-regular with respect to
M, hence regular with respect to F (cf 2.3 C), 3.1 C) ). We may assume
that f = x, and write )7 = Proj (K[x]/(x,)) and G := F [pro1. In
view of the sequences (3) of 3.1 C) we thus get the inequalities

ho-(n) < h9%(0 +Zh° for all n € Ny;

hi(—i) < hix(—i) + hg;rl (—=(t+1)), forallieN;.

By induction and in view of the monotony statement of 3.2 C), we now
get

hy(n) < h(0)
+ D Groa(W5(0) + Hp(=1), - 1 (= (r = 1)) + R (=r);m)
=G, (hojf(())v T vh;—'(_r>; n) .

”b)”: See [4, Rem. 6] and observe 3.2 C). |

3.4. Definition and Remark. A) Let R = @ R, be a noetherian,
n>0

homogeneous ring such that Ry = K is a field. If T is a finitely gener-
ated and graded R-module, we use 1(T") to denote the minimal number
of homogeneous elements needed to generate T'.

B) Keep the notations and hypothesis of part A) and assume in addition
that there is an element f € Ry which is a non-zero divisor with respect
to T'. Then

w(T) < dimg(T,) for all n > d(T). o
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3.5. Notation. For r € Ny, let us introduce the polynomial

Ho(u. - 1
o ::< S(ug, - w) 4+ >Gr(uo,---,ur;Hr(m,--wur))

’
€ Q[u07 Tt 7ur]7
where G, and H, are defined according to 3.2 A), B). o

3.6. Lemma. Let r € Ny, let K be a field, let F # 0 be a coherent
sheaf of Opr -modules and let Fy — Fy = T(F) — 0 be a minimal

graded free presentation of the module T(F) over the polynomial ring
K[x| = K[x¢,- - ,%;|. Then

a) rank(Fy) <G, <h0 (0),--- , hlx(—r); H, (h}(—l), e h’"f(—r)) );

b) rank(Fy) < Uy (h(0), -+ hix(=r))

Proof: Let K’ be an arbitrary extension field of K zind consider the co-
herent sheaf of Opr - modules F' := ( '® T(]-")) . Then the graded
isomorphism T(F') & K’ ® T(F) and the equalities hiz (—i) = hi-(—1)

(cf 3.1 D) ) allow to replace K and F by K" and F'. So, we may as-
sume that K is infinite. Thus, there is an element f € Klx];\{0}
which is filter-regular with respect to T'(F). As Hpy, (T(F)) =
0 (cf 3.1 B) ), f is a non-zero divisor with respect to T(F). As
0 < d(T(F)) < reg(T(F) < Hy (We(=1), - ,Bx(—1) (cf 22 D),
Lemma 3.3 b) ) we conclude by 3.4 B) that rank(Fy) = pu(T(F)) <
dimpg (T(f)Hr(h}__(,l))._’hr]__(,r)))- So, by Lemma 3.3 a) and the defini-
tion of T'(F) we obtain:

(4) rank(Fy) < Gy (h%(0), -+ Wp(=r); Hy (hp(=1),- -+, B(=1))) .

This proves in particular statement a). In view of 2.2 D) and Lemma 3.3
b) we have d (Ker(n)) =d(Fy) <reg(T(F))+1< H+ 1, where

(5) H:=H, (hx(=1),--- ,hx(-1)).

As Ker(m) C Fyis torsion free, 3.4 B) now gives rank(Fy) = u (Ker(m))
< dim (Ker(m)py1) < dimg ((Fo)us1). As beg(Fy) = beg (T'(F)) =0,
we have dimg ((Fy) 1) < rank(Fy) ("), thus rank(Fy) < rank(Fy)
(7*7*1). In view of (4) and (5) this proves statement b). |

T
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3.7. Definition and Remark. A) Let r € Ny. Using the notation of
2.5 A), 3.2 B) and 3.5 we define the polynomial

L,:=F, (Ur(u(h e ,ll,«), Hr(uh T 7“-1”) + 1) € Q[uﬂv T 7ur]-
B) By the monotony statements of 3.2 C) and 2.5 B) it follows
0 S Lr(uo,"' ,U,«) S L,«(UB, 7ul>

r

for all wo, -+, wp, ug, - -y u;, € Ny with uy < ufy for j =0,--- 7. °

Now, we are ready to formulate and to prove the main result of the
present section.

3.8. Theorem. Let r € Ny, let K be a field and let F be a coherent
sheaf of Opr -modules. Then, for the dual F" := Homom{ (F,Opr) of
F we have

reg(F") < Ly (hF(0), -+ hig(=1)) .
Proof: We may assume that F # 0. Let h := (h%(0),---, hx(—71))
and consider a minimal graded free presentation Fy — Fy — T(F) —
0 of the graded module T'(F) (cf 3.1 B) ) over the polynomial ring
K[x] = K[xg,- - ,X;].
Applying the functor e* =* Homyx (e, K[x]) of graded duals to the
above presentation, we get a graded exact sequence

(6) 0—=>T(F) — Fy —Q—0,

in which @ is a graded submodule of F}'. As —beg(F}) = d(F)) <
reg(T(F))+1 < H.(h)+ 1, (cf 2.2 D), Lemma 3.3 b) ), we have a
graded embedding F} < K[x]®renk(F1) (H (h) +1). By Lemma 3.6 we
know that rank(Fy) < U.(h). So Q (—H,.(h) — 1) becomes a graded
submodule of K[x]®7"®. As d(Q) < d(F§) = —beg(Fy) = 0, we
have d (Q(—H,(h) — 1)) < H,
1 U,

(h) + 1. So, by Theorem 2.6 we obtain
(h), H.(h) + 1) and hence

reg(Q(=H,(h) = 1)) < F (

reg(Q) < Fu(Uy(b), Hy(k) + 1) = Hy(h) =1 < Ly(k) 1.
As reg(Fy) = d(Fy) = —beg(F,) = 0, the exact sequence (6) yields the
estimate reg (T(F*)) < max{0,reg(Q) + 1} < L.(h). As (T(F)*)"” =

FY, (cf 3.1 E) ), this proves our claim in view of 3.1 B). |

3.9. Corollary. Keep the notations and hypotheses of Theorem 3.8 and
let ho,- -+, h, € Ny be such that hiz(—i) < h; fori=0,---,r. Then

reg(F") <reg(T(F")) < Ly(hg,++ , hy).

Proof: Asreg (T(FY)) = max{0,reg(F")}, (cf 3.1 B) ) our statement
follows from Theorem 3.8 and the inequalities of 3.7 B). |
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4. BOUNDING COHOMOLOGICAL POSTULATION NUMBERS

Let r € Ny and let X be a projective scheme over the field K and let
F be a coherent sheaf of Ox-modules such that dim(F)( :=
dim(Supp(F))) < r. We shall prove that the cohomological postula-
tion numbers % (see (1.3) ) are bounded in terms of the cohomology
diagonal (h%(—i));_, by a universal polynomial.

We begin with the following auxilary result, in which the notation
introduced in 3.1 B) and 3.2 is used.

4.1. Lemma. Let r € N, let K be a field, let F be a coherent sheaf
of Opr-modules. Let F' be a graded free module of finite rank over
the polynomial ring K[x] = K[Xo,...,X,] and let 7 : F — T(F) be
a minimal graded epimorphism. Let G := Ker(m)™ be the sheaf of
Opr -modules induced by Ker(w). Then:

a) T(G(1)) =T(G)(1) = Ker(m)(1);

b) hg(l)(()) < rh%(0) + G, (h%(0), - -+, hix(—7r); 1);

c) hg(l)(n) =0 for alln < 0;

d)if r > 1, then hé(l)(n) =0 for all n < 0 and moreover

hGy(n) = Rizt(n+1) for 1 <i<r and all n € Z;

e) NGy (=) < Wt (=(r = 1) + (") Gr(h%(0), -+ B (—r): H),

where H := H,(h-(—=1),-+- , hiz(—r1)).

Proof:  Consider the exact sequence of sheaves of Opr -modules

(1) 0+G—F5F—0.

7a)”: Applying cohomology to (1) and keeping in mind that r» > 0 and
beg(F) > 0, we get a commutative diagram of graded K[x]-modules
with first exact row

0—T(G) — T(

~)

) — T(F)
F = T(F)

So, there is a graded isomorphism 7'(G) = Ker(m). As 7 is minimal,
we have Ker(m)o = 0 and hence T(G)y = 0. It follows T(G(1)) =
T(G)(1)z0 = T(9)(1) = Ker(m)(1).

”b)”: As usual we may assume that K is infinite. In view of statement
a) we have hg, (0) = dimg (Ker(m)) < dim(Fy) = dimg (K[x)1 Fy) +
dimy (Fy/K[x]Fy). As 7 is minimal, dimg(Fy) = h%(0), hence

— T
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dimp (K[x]; Fy) < (r+1)dimg(Fy) = (r+1)h%(0). Also, by the mini-
mality of 7 we have dimy (Fy/K[x]1 Fy) = dimy (T(F)1/K[xiT(F)o) =
h%(1) — dimy (K[x]; H*(X,F)). As K is infinite, there is an element
[ € K[x]; which is filter-regular with respect to T'(F) (cf 2.3 C) ) and
the resulting monomorphism f : H*(X,F) — H°(X, F(1)) (cf 3.1 C)
) implies that dimy (K[x]; H°(X,F)) > h%(0).

Altogether we obtain A, (0) < 7h%(0)+h%(1) and the stated inequal-
ity follows by Lemma 3.3 a).

7c)”: Clear from statement a) which gives hg(0) = 0.
”d)”: Observe that hg(n) = 0 for alln < 0 (by c) ), that h%.(0) = h%(0)
by the minimality of 7 and that h’.(m) = 0 for all i € {1,---,r — 1}
and all m € Z. Then apply cohomology to (1).
7e)”: If we apply cohomology to (1) we obtain

hay(=r) < BEH—=(r = 1)) + hp(—r + 1).
There is a graded exact sequence

0 — K[x]** ") (_q(F)) = F - N =0
with dim(N) < r. Passing to induced sheaves and then to cohomology,
we get s (—r+1) < hp, (=d(F)—=r+1)rank(F) = (d(F):“r*Z)mnk(F).

K

As rank(F) < G(h%(0),--+  hz(—=r),H) (cf Lemma 3.6 a) ) and
d(F) = d(T(F)) < reg(T(F)) < H (cf 2.2 D) and Lemma 3.3 b) )
we get our claim. [ |

In our next Lemma, we use the notation of (1.3) and of 3.7.

4.2. Lemma. Letr € Ny let K be a field and let F be a coherent sheaf
of Opr -modules. Then v > —r —1— L, (h%(0),- -+, hx(—=7)).

Proof: Let n € Z. By duality we have Hom;(H" (P}, F(n)), K) =
HO(P", F¥(—n—r—1)), hence h'z(n) = h% (—=n—r—1). So, if —n—r—
1 > reg(FY), we have h'z(n) = xzv(—n—r—1). Asn — xzv(—n—r—1)
is a polynomial function, it follows that v > —r — 1 — reg(F") and
our claim results from Theorem 3.8 . |

4.3. Lemma. Let K be a field, let r € Ny, let F be a coherent sheaf of
Op-_-modules and let e := > length o.. (HY.. (Fy)). Then,
T

m]P’TK,:c
zePr aclosed
e < h%(n —1) < max{e, h%(n) — 1},

for eachn € Z .
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Proof: Let H C F be the (unique) maximal coherent subsheaf with
finite support. Then H is of length e and G := F/H has no closed
associated points. Therefore h3 (m) = e and hj(m) = 0, so that
h%(m) = e+ hi(m) for all m € Z. As hg(n — 1) < max{0, hg(n) — 1}
(cf [4, 5.3]), we get our claim. |

Now, in order to prove and to formulate the main result of this section,
let us define one more class of bounding polynomials.

4.4. Definition and Remark. A) Let r € Ny. Then, for p=0,---,r
we define polynomials M, , € Quy,---,u,] by
M,p:=—nug, and for1 <p<r
Mr,p e Lr(u()a Ut aur> + Mr,p—l(‘/v 07 ug, - ,Ur_2, W),
where
Vi =rug+ G.(ug, - ,u,;1)

<Hr(u17"'

r

(and where G,, H,, L, are defined as in 3.2 A), B) and 3.7 A) respec-
tively). Finally, we set

W= u,_q + 7u7"> * 70> Gr(uﬂa s, Uy Hr(ula e 7u7">>7

M, = M,,.
B) In view of the monotony statements of 3.2 C) and 3.7 B) it follows
that

—Up 2 Mr,p(UOa"' 7ur) 2 Mr,p(ué)v"' 7u;n)
for all ug, -+, up, ug, - -+, u; € Ng with u; < wf; for j =0,---,r and for
allpe{0,--- r}. .

In the following lemma, pdr(M) is used to denote the projective di-
mension of an R-module M.

4.5. Lemma. Let r € N, let p € {0,---,r}, let K be a field and let
F be a coherent sheaf of Opr -modules with pdgx(T(F)) < p, where
K[xg, -+ ,x,] = K[x] is a polynomial ring. Then

vie > M, (R(0), -+, Be(—1)) fori=0,--- .

Proof: (Induction on p) Let p = 0. Then T'(F) is a graded free module
with beg(T(F)) > 0. As F = T(F)~ we have hiz(n) =0 for all i # 0,r
and all n € Z. But this implies that v% > 1% for all i € Ny. In view of
Lemma 4.3 we have v% > —h%(0) = M, 5(h%(0),- -, hiz(—1)).

So, let p > 0,let 7 : FF — T(F) be a minimal graded epimorphism from
a graded free K[x]-module F" and let G := Ker(m)~. By statement a)
of Lemma 4.1 we have pdxq(T(G(1))) < p. So, by induction vg,, >
My p1(hg1)(0),- -+, by (=r)) for all i € Ny. By statements b), c), d)
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and e) of Lemma 4.1 and in the notation of 4.4 we thus get v ' =
yé(l) > M fori=2,---,r — 1, where
M = Mr,pfl(v(h(;-'(())v T 7hr]—'(_r))v 0, h}(—l% e 7hrf72(_(r - 2>>7
W (hF(0), -+, h(=1))).

By Lemma 4.3, the definition of V' and the lefthand side inequal-
ity of 4.4 B) we have v% > —h%(0) > —V(h%(0), -, hiz(—r)) >
M. So vy > M,,(h%(0), - - hx(—r)) for i = 0,---,7 — 2. By
Lemma 4.2 we also have v, > —r — 1 — L. (h%(0),--- , hix(—7)) >
—r = Ly(hF(0), -+ B(=r)) + M = Myp(h(0),- -+ Wp(—r)).  As
the function n — >°'_ (=1)'h%(n) = xx(n) is polynomial, we get
Vit > M., (h%(0), - -+, Wz(—=r)). This concludes our proof. |
4.6. Theorem. Let r € Ny, let X be a projective scheme over the field
K and let F be a coherent sheaf of Ox-modules such that dim(F) < r.
Then v > M, (h5%(0),- -, hix(—r)) for all i € Ny.

Proof: Asusual, we may assume that K is infinite. Let 7 C Ox be the
annihilator sheaf of F and let Y C X be the closed subscheme defined
by J. Then h’z(n) = hy(n) for all i € Ny and all n € Z. This allows
to replace X by Y and hence to assume that dim(X) = dim(F) < r.
As K is infinite we thus find a finite morphism ¢ : X — P} induced by
global sections of Ox (1). Tt follows that hix(n) = ki, »(n) for all i € N
and all n € N. This allows to replace F by ¢,F and hence to assume
that X = P% = Proj(K|[x]), where K[x] = K[xq,- - ,X,| is a polyno-
mial ring. As Hyy (T(F)) = 0 (cf 3.1 B) ), we have pd 5 (T(F)) < 7.
So, Lemma 4.5 gives that v > M, .(h%(0),- -+, hiz(—r)) for all i € Ny.
As M, = M, ,, this proves our claim. [ |

July

4.7. Corollary. Keep the notations and hypotheses of Theorem 4.6 and

let ho,- -+, h, € Ny be such that hiz(—i) < h; fori=0,---,r.

Then v > M, (hg,- -+, h,) for all i € Ny.

Proof:  Clear from Theorem 4.6 and the monotony property of 4.4 B).
[ |

5. A FINITENESS RESULT

Again, let r € Ny, let X be a projective scheme over a field K and
let hg,--+,h, € Ny. In this section we shall prove that there are only
finitely many possible cohomological Hilbert functions h% : Z — Ny if
F runs through all coherent sheaves of Ox-modules with dim(F) < r
and satisfying hiz(—i) = h; for i =0,---,r. So, what we prove is that
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the cohomology diagonal (hé:(—i))?i:rgf of a coherent sheaf F of Ox-
modules bounds the number of possible cohomological Hilbert functions
hiz of F. First, we prove the following result, in which the polynomials
Hi € Quy,---,u,] and Gy, € Qug, -+ ,uy] are defined according to
3.2.

5.1. Lemma. Letr € Ny, let K be a field, let X be a projective scheme
over K. Let F be a coherent sheaf of Ox-modules with dim F < r.
Then:

W) W) < SH, sy (Wel—i)y-W(=1)) for 1 < i < v and for al
n> —i.

b) hir(n) < Gy (hi(—i),--+ ,h%(0); —n —1i) for 0 < i < r and for all
n < —i.

Proof: "a)” See [4, Rem. 6].

"b)” As usual, we may assume that K is infinite. Let X = Proj(R),

where R = @ R, is a homogeneous noetherian ring with Ry = K.
n>0

Then, there is an element f € R; which is filter-regular with respect
to T'(F) and hence regular with respect to F. The induced monomor-

phisms H® (X, F(n)) L po (H, F(n+ 1)) prove the case i = 0. So, let
i >0 and set Y = Proj(R/fR) and G := F [y. Then, dim(G) < r
and by induction we have b5 '(m) < Gi_y (hg '(=(i — 1)), -+, h3(0);
—m —i+41),(Vm < —i+1). Moreover the sequences (3) of 3.1 C)
show that hi(n) < Rhi(—i) + >..° . hi*(m) for all n < —i and
hlh(=7) < We(=j) + B (=(j + 1)) for all j < i — 1. In view of the
monotony property of G; 1 and the definition of G; (cf 3.2), we get our
claim. m

5.2. Notation. Let r € Ny and let b = (hg,--- ,h,) € N;™'. By Eg we
denote the class of all pairs (X, F) in which X is a projective scheme
over some field K and in which F is a coherent sheaf of Ox-modules
such that

dim(F) <r and hlz(—i) < h; for i = 0,--- 7. .

Now, we have the following finiteness result for cohomological Hilbert
polynomials and characteristic polynomials. (We use the symbol # to
denote cardinality.)

5.3. Proposition. Let r € Ny and let h = (hg,--- ,h,) € Nj™'. Then
@) Vie {0, ,r} g {pe] (X, F) e T4} < .
b) # {Xf (X, F) e agg} < .
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We define in the

| —

Proof:  7a)’: Fix i € {0,---,r}. Let C := E(Q
notation of 4.4 and 3.2 -
My (1) .
Nr,z(h) - n:Ml:[(ﬁ)fi (Gz(hzv 7h07 n Z) + 1) :
By 4.7 we have v > M, (h) whenever (X, F) € C. So, by 5.1 b) and the
monotony properties of G; we obtain 0 < pi(n) < Gi(hi, -+ , ho; —n —
i) for all (X,F) € C and all n < M,(h). As p% is a polynomial of
degree < i, it is determined by the values p’%(n) with M,(h) —i < n <
M, (h). So, at most N, ;(h) different cohomological Hilbert polynomials
p occur, if (X, F) runs through C.
”b)”: Follows from a) as xr = > _;_,(—1)"p’ whenever F is a coherent
sheaf of dimension < r over a projective scheme over a field. [

5.4. Theorem. Let 0 <i <1 and let h = (hg,--- ,h,) € N;™'. Then
#{n| (X, F) et} < .

,1 Assume first that ¢ > 0. Let

(e )y (b =1, 1),

I’ Moy (Gilhiy -+ hoy—n +1) + 1),

] Hy(hs )1
T,i(h) == <§Hri+1(ﬁzz'> + 1> :

By Lemma 5.1 and the monotony properties of GG; and of H,_;;; we
see that at most S, ;(h)T, ;(h) different functions

hl]—‘ fi [Mr(h) +1, Hr(h21> - 1] — Np

may occur if (X, F) runs through C.

For each pair (X, F) € C we have vz > M,(h) and reg(F) < H,(h-,),
(s. 4.7 and 3.3 b) ), so that hiz(n) = pi(n) for all n < M,(h) and
h’f(n) = 0 for all n > H,(h-,). By Proposition 5.3 it follows that

hir| (X, F) € C} is a finite set.

As ZZ o(=Dhe(n) = xx(n) for all n € Z,h%(n) = xx(n) for all
n > H.(h-,) and h%(n) = p%(n) for all n < M, (h), the finiteness of
the set {h | (X, F) € C} follows by Proposition 5.3 and the finiteness
of the sets {h% | (X, F) € C} for i > 0. |

A

Proof: Let C:=C
hoy
Sri(h) :
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