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Abstract. Let M be a finitely generated graded module over a Noetherian ho-
mogeneous ring R with local base ring (R0,

�
0). Then, the n-th graded component

H i

R+
(M)n of the i-th local cohomology module of M with respect to the irrelevant

ideal R+ of R is a finitely generated R0-module which vanishes for all n � 0. In
various situations we show that, for an �

0-primary ideal � 0 ⊆ R0, the multiplic-
ity e �

0
(H i

R+
(M)n) of H i

R+
(M)n is antipolynomial in n of degree less than i. In

particular we consider the following three cases:
a) i < g(M), where g(M) is the so called cohomological finite length di-

mension of M ;
b) i = g(M);
c) dim(R0) = 2.

In the cases a) and b) we express the degree and the leading coefficient of the
representing polynomial in terms of local cohomological data of M (e.g. the sheaf
induced by M) on Proj(R).
We also show that the lengths of the graded components of various graded sub-
modules of H i

R+
(M) are antipolynomial of degree less than i and prove invariance

results on these degrees.

1. Introduction

Throughout this paper we use the following notation.

1.1. Notation and Convention. A) Let R =
⊕

n∈ � 0
Rn be a Noetherian ho-

mogeneous ring with local base ring (R0, � 0). So R0 is a Noetherian ring and
there are finitely many elements l1, . . . , lr ∈ R1 such that R = R0[l1, . . . , lr]. Let
R+ :=

⊕
n∈ � Rn denote the irrelevant ideal of R and let � := � 0 ⊕ R+ denote the

graded maximal ideal of R. Moreover let � 0 ⊆ R0 be an � 0-primary ideal. Finally
let M =

⊕
n∈ � Mn be a finitely generated graded R-module.

B) Let (R̂0, ̂� 0) denote the � 0-adic completion of the local ring (R0, � 0). By R̂ we

shall denote the Noetherian homogeneous ring R̂0 ⊗R0 R and by M̂ we denote the

finitely generated graded R̂-module R̂0 ⊗R0 M .
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C) For i ∈ � 0 and for any ideal � ⊆ R let H i� (M) denote the i-th local cohomology
module of M with respect to � . Keep in mind that if the ideal � is graded, H i� (M)
carries a natural R-grading. In this case, for n ∈ � , let H i� (M)n denote the n-th
graded component of H i� (M).

D) If � ⊆ � , inf( � ) and sup( � ) are formed in � ∪ {±∞}. We convene that the
degree of the 0-polynomial and the Krull dimensions of the empty set and of the zero
module are equal to −∞, thus deg(0) = dim(∅) = dim(0) = −∞.

E) We say that a numerical function h : � → � is antipolynomial (of degree d), if
there is a polynomial p ∈ � [x] (of degree d) such that h(n) = p(n) for all n � 0. In
this situation, p is called the representing polynomial of h.

F) If ∅ 6= P ⊆ Spec(R0), we write minP for the set of all minimal members of P with
respect to inclusion.

In this paper we are interested in the graded components H i
R+

(M)n of the i-th lo-

cal cohomology module H i
R+

(M) of M with respect to R+. In geometric terms, we

aim to study the Serre cohomology modules H i−1(X,F(n)) of the projective scheme
X = Proj(R) with coefficients in the n-th twist F(n) of the coherent sheaf of OX -

modules F = M̃ induced by M (cf. [B]).
It is well known that the R0-module H i

R+
(M)n is finitely generated for all n ∈ �

and vanishes for all sufficiently large values of n (cf. [B-S, Proposition 15.1.5]). On
the other hand not much is known in general on the asymptotic behaviour of the
R0-module H i

R+
(M)n if n tends to −∞, except that this behaviour may be unexpect-

edly complicated (cf. [B-K-S], [K-S], [Si-Sw]). In this paper, we aim to study the
mentioned asymptotic behaviour from the point of view of numerical invariants.

If dim(R0) = 0, this asymptotic behaviour is well understood. In this case the graded
R-module H i

R+
(M) is Artinian, hi

M(n) := lengthR0
(H i

R+
(M)n) is finite for all n ∈ �

and hence there is a polynomial pi
M ∈ � [x] such that hi

M(n) = pi
M(n) for all n � 0

(cf. [B-S, Theorem 17.1.9]). Moreover, the degree and the leading coefficient of
the polynomial pi

M can be expressed in terms of local cohomological data of M on

X = Proj(R) (hence of the coherent sheaf F = M̃ induced by M on X): Namely, the
degree of pi

M equals the dimension of the so called i-th cohomological pseudo-support

+Psuppi(M) := { � ∈ Proj(R)|H
i−dim(R/ � )� R � (M � ) 6= 0}

of M . Moreover, the leading coefficient of pi
M can be expressed by an “associativity

formula” in terms of the lengths of the R � -modules H
i−dim(R/ � )� R � (M � ) where � runs

through all � ∈ +Psuppi(M) for which dim(R/ � ) is maximal (cf. [B-M-M, Theorem
1.1]).
Our aim is to find extensions of these results which apply if dim(R0) > 0. We let the
case dim(R0) = 0 set the standard for our “maximal expectation”. We shall show



MULTIPLICITIES OF GRADED COMPONENTS OF LOCAL COHOMOLOGY MODULES 3

that in certain cases some numerical invariants of the R0-modules H i
R+

(M)n are of
antipolynomial growth and express the degrees and the leading coefficients of the
representing polynomials in terms of local cohomological data of M on Proj(R).
If dim(R0) > 0, the R0-modules H i

R+
(M)n need not be of finite length and so other

numerical invariants must be used. There are three ways of doing so which could lead
to natural extensions of the results which hold if dim(R0) = 0. Namely instead of the
function given by hi

M , one could consider

• the function given by n 7→ lengthR0
(Γ � 0(H

i
R+

(M)n)), where Γ � 0 denotes
� 0-torsion;

• the function given by n 7→ lengthR0
(0 :Hi

R+
(M)n

� 0), where (0 :Hi
R+

(M)n
� 0) ⊆

H i
R+

(M)n is the submodule of all elements annihilated by � 0;

• the function given by n 7→ e � 0(H
i
R+

(M)n), where e � 0 denotes the Hilbert-
Samuel multiplicity.

Instead of the length one also could think on the minimal number of generators as a
numerical invariant and consider

• the function given by n 7→ lengthR0
(H i

R+
(M)n/ � 0H

i
R+

(M)n).

If dim(R0) = 1, the four numerical functions mentioned above are antipolynomial of
degree less than i (cf. [B-F-T, Theorem 3.5]). Moreover in this case, the first Hilbert-
Samuel coefficient of the R0-module H i

R+
(M)n is antipolynomial in n of degree less

than i, whereas the corresponding postulation numbers have a common upper bound
(cf. [B-R, Theorems 3.1 and 3.3]). In the present paper we shall see that the degrees
of the polynomials which represent the functions

n 7→ lengthR0
(0 :Hi

R+
(M)n

� 0) and n 7→ lengthR0
(H i

R+
(M)n/ � 0H

i
R+

(M)n)

are independent on the � 0-primary ideal � 0 (cf. Theorem 2.8). This follows easily
from the fact that the graded R-modules (0 :Hi

R+
(M) � 0) and H i

R+
(M)/ � 0H

i
R+

(M)

are K-Artinian, e.g. Artinian with graded components of finite length in all degrees
n � 0 (cf. Remark 2.1).
The same independence result holds for the function

n 7→ lengthR0
(Hc

R+
(M)n/ � 0H

c
R+

(M)n)

if R0 is of arbitrary dimension and c is the cohomological dimension of M with respect
to R+, thus c = dim(M/ � 0M). (The fact that the graded R-module
Hc

R+
(M)n/ � 0H

c
R+

(M)n is K-Artinian for arbitrary local base ring R0 has been shown
independently by Rotthaus and Şega (cf. [Ro-Se, Theorem 2.1]).)
To return to the case dim(R0) = 1 let us notice that we do not give a general descrip-
tion of the degrees and the leading coefficients of the representing polynomials of the
above four numerical functions.
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In the case dim(R0) = 2, the situation changes drastically. Here, the graded R-
modules (0 :Hi

R+
(M) � 0) and H i

R+
(M)/ � 0H

i
R+

(M) need not be Artinian in general

(cf. [B-F-T, Examples 4.1, 4.2]). Moreover the above numerical functions need not
be antipolynomial in this case, as shown by examples of Katzman and Sharp. Let us
quote one of their examples in slightly modified form.

1.2. Example. (cf. [K-S, Theorem 3.2]) Let K be any field of characteristic zero.
Let R0 := K[x,y](x,y) and let S := R0[u,v] where x,y,u,v are indeterminates over
K. Define a grading on S by setting deg(x) = deg(y) = 0 and deg(u) = deg(v) = 1.
Let f := 2x2v2 + 2xyuv + y2u2 and set R := S/fS. Notice that f is homogeneous
of degree 2 and R is a Noetherian homogeneous ring whose base ring R0 is regular
local and of dimension 2. According to Katzman and Sharp, for each n < 0

lengthR0
(H2

R+
(R)n) =

{
n2, if n ≡ 0 mod 4;

n2 − 1, if n 6≡ 0 mod 4.

This example somehow covers all the bad cases that are to be expected if dim(R0) = 2.
We namely prove (cf. Theorem 5.7):

If dim(R0) = 2 and dimR0(H
i
R+

(M)n) ≥ 1 for all n � 0, then the

function given by n 7→ e � 0(H
i
R+

(M)n) is antipolynomial of degree less
than i.

Under fairly mild additional hypotheses on R0, this result finds a natural extension
to the case dim(R0) > 2 (cf. Theorem 5.9). Also, if dim(R0) = 2 and x ∈ � 0 is
� 0-filter regular with respect to H i

R+
(M)n for all n � 0, the function given by

n 7→ lengthR0
(0 :Hi

R+
(M)n

x)

is antipolynomial of degree less than i (cf. Proposition 5.4). It should be noted that
here the graded R-module (0 :Hi

R+
(M) x) need not be Artinian (cf. Remark 5.5 B)).

Moreover we shall see that the graded R-modules H1
� 0R(H i

R+
(M)) are Artinian if

dim(R0) = 2 but not necessarily if dim(R0) = 3 (cf. Proposition 5.10 and Example
5.11).

If R0 is of arbitrary dimension one still has a chance to study the asymptotic behaviour
of some of our numerical functions for special choices of i. We already gave a comment
of this type concerning the case i = dim(M/ � 0M). In Section 3 we follow this idea
and first study the function

n 7→ lengthR0
(H i

R+
(M)n)

for values of i which are strictly smaller than the cohomological finite length dimension
of M , which we define as

g(M) := inf{j ∈ � 0|lengthR0
(Hj

R+
(M)n) = ∞ for infinitely many n ∈ � }.
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If i < g(M), we shall see that there are isomorphisms H i
R+

(M)n
∼= H i

� (M)n for all
n � 0 (cf. Proposition 3.4). This allows to apply local duality and hence to generalize
what has been said on the case dim(R0) = 0 (cf. Theorem 3.6 and Remark 3.7 A)):

If i < g(M), the function given by n 7→ lengthR0
(H i

R+
(M)n) is an-

tipolynomial and the degree and the leading coefficient of the repre-
senting polynomial may be expressed by local cohomological data of M
on Proj(R).

As an application we can show that for arbitrary i, but under some assumption on
the supports of the R0-modules H i

R+
(M)n, the function given by

n 7→ e � 0(H
i
R+

(M)n)

is antipolynomial with a representing polynomial whose degree and leading coefficient
are expressed in terms of local cohomological data of M on Proj(R) (cf. Corollary
3.10).
In Section 4 we study the case where i equals the finite length dimension g = g(M) of
M . As a first result we prove that the graded R-module Γ � 0R(Hg

R+
(M)) is K-Artinian

(cf. Proposition 4.2) and draw the conclusion that the numerical functions given by

n 7→ lengthR0
(Γ � 0(H

g
R+

(M)n)) and n 7→ lengthR0
(0 :Hg

R+
(M)n

� 0)

are both antipolynomial of degree less than g (cf. Corollaries 4.3 and 4.4). Now, by
a mere use of the Associativity Formula one might conclude that the function given
by

n 7→ e � 0(H
g
R+

(M)n)

is antipolynomial of degree less than g.
But we do better and apply the results of Section 3 in order to get a description of
the degree and the leading coefficient of the representing polynomial in terms of local
cohomological data of M (cf. Theorem 4.11):

The function given by n 7→ e � 0(H
g
R+

(M)n) is antipolynomial and the
degree and the leading coefficient of the representing polynomial may
be expressed by local cohomological data of M on Proj(R).

To reach this goal, we first prove a result on the asymptotic behaviour of the set
AssR0(H

g
R+

(M)n) and of the set Supp0(H
g
R+

(M)n) of all � 0 ∈ AssR0(H
g
R+

(M)n) for

which dim(R0/ � 0) is maximal (cf. Theorem 4.10).

As for the unexplained terminology we refer to [E].
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2. Hilbert-Kirby Polynomials

In this section we give a few preliminaries on Hilbert-Kirby polynomials and some
first applications to local cohomology modules.

2.1. Remark. A) Let A =
⊕

n∈ � An be an Artinian R-module. We keep in mind the
following fact:

a) If (B(m) =
⊕

n∈ � B
(m)
n )m∈ � 0 is a descending sequence of graded submodules

B(m) of A such that for each n ∈ � there is some mn ∈ � 0 with B
(mn)
n = 0,

then B(m) = 0 for all m � 0.

B) Let A be as above. Then all the R0-modules An are Artinian and the following
statements are equivalent:

(i) The R0-module An is finitely generated for all n � 0.
(ii) lengthR0

(An) < ∞ for all n � 0.
(iii) There is some m ∈ � with � m

0 An = 0 for all n � 0.

(To prove (ii) ⇒ (iii), apply statement A)a) with B(m) = � m
0 A).

If A satisfies the equivalent requirements (i), (ii) and (iii), there is a (uniquely deter-

mined) polynomial P̃A ∈ � [x] such that

lengthR0
(An) = P̃A(n) for all n � 0,

the Hilbert-Kirby polynomial of A (cf. [Ki]).

C) A graded R-module A which is Artinian and satisfies the equivalent conditions
(i), (ii) and (iii) of part B) is said to be a graded Artinian module with Hilbert-Kirby
polynomial or just a graded K-Artinian R-module. Clearly:

The property of being a graded K-Artinian R-module is inherited by graded
submodules and by graded homomorphic images and is preserved under shift-
ing.

Moreover one has the following base change property:

If (R′
0, � ′

0) is a Noetherian flat local R0-algebra with � ′
0 = � 0R

′
0 and if A is

a graded K-Artinian R-module, then A′ := R′
0 ⊗R0 A is a graded K-Artinian

module over R′ := R′
0 ⊗R0 R. Moreover P̃A′ = P̃A.

2.2. Remark. A) Let N =
⊕

n∈ � Nn be a Noetherian graded R-module. Then, it is
easy to see that the following statements are equivalent:

(i) lengthR0
(Nn) < ∞ for all n � 0.

(ii) There is some m ∈ � with � m
0 Nn = 0 for all n � 0.

If N satisfies these two equivalent requirements, there is a (uniquely determined)
polynomial PN ∈ � [x] such that

lengthR0
(Nn) = PN(n) for all n � 0,



MULTIPLICITIES OF GRADED COMPONENTS OF LOCAL COHOMOLOGY MODULES 7

the Hilbert polynomial of N .

B) A graded R-module N which is Noetherian and satisfies the equivalent conditions
(i) and (ii) of part A) is said to be a graded Noetherian module with Hilbert polynomial
or just a graded H-Noetherian R-module. Observe the following facts:

The property of being a graded H-Noetherian R-module is inherited by graded
submodules and by graded homomorphic images and is preserved under shift-
ing.

In addition we have the following base change property:

If (R′
0, � ′

0) is a Noetherian flat local R0-algebra with � ′
0 = � 0R0

′ and if N
is a graded H-Noetherian R-module, then N ′ := R′

0 ⊗R0 N is a graded H-
Noetherian module over R′ := R′

0 ⊗R0 R. Moreover PN ′ = PN .

C) Let N be a graded H-Noetherian R-module. Then the projective support of N ,

ProjSupp(N) := Proj(R) ∩ Supp(N),

is contained in Var( � 0R). Moreover the degree of the Hilbert polynomial of N is
given by the dimension of the projective support of N , thus

a) deg(PN) = dim(ProjSupp(N)).

If lengthR0
(Nn) < ∞ for all n ∈ � , we have Supp(N) ⊆ Var( � 0R), so the graded sup-

port of N satisfies ∗Supp(N) ⊆ ProjSupp(N)∪ { � } and hence dim(ProjSupp(N)) =
dim(N) − 1. Thus we get:

b) If lengthR0
(Nn) < ∞ for all n ∈ � , then deg(PN) = dim(N) − 1.

D) Let PN 6= 0. By e(N) we denote the multiplicity of N . So, the leading coefficient
of the Hilbert polynomial of N has the form

a) LC(PN ) = e(N)
deg(PN )!

with e(N) ∈ � .

Finally, let ProjSupp0(N) denote the (finite) set of all � ∈ ProjSupp(N) whose closure
has maximal dimension, thus

ProjSupp0(N) := { � ∈ ProjSupp(N)|dim(R/ � ) = deg(PN) + 1}.

Then, the so-called Associativity Formula for multiplicities says (cf. [Br-He, Corollary
4.7.9])

e(N) =
∑

� ∈ProjSupp0(N)

lengthR � (N � )e(R/ � ).

For later use let us recall the relation between graded K-Artinian and H-Noetherian
modules given by graded Matlis duality.
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2.3. Remark. A) (cf. [B-S, Exercise 13.4.5], [Br-He, Theorem 3.6.17]) Let ∗E :=
∗ER(R/ � ) be the ∗injective envelope of the graded R-module R/ � , and let E0 :=
ER0(R0/ � 0) be the injective envelope of the R0-module R0/ � 0. Moreover, for a
graded R-module T =

⊕
n∈ � Tn and an R0-module U , let ∗D(T ) := ∗HomR(T, ∗E)

and D0(U) := HomR0(U, E0) denote the ∗Matlis dual of T and the Matlis dual of U
respectively. Keep in mind that there are isomorphisms of R0-modules

a) ∗D(T )n
∼= D0(T−n) for all n ∈ � .

As the exact contravariant functor D0 preserves lengths of R0-modules, we thus get

b) lengthR0
(∗D(T )n) = lengthR0

(T−n) for all n ∈ � ,

and this includes the case where the occuring lengths are infinite.

B) Assume now in addition that (R0, � 0) is complete. Then by graded Matlis duality
and by the statements A)a), b) we have:

a) The graded R-module T is H-Noetherian if and only if its ∗Matlis dual ∗D(T )

is K-Artinian. Moreover, in this case P̃∗D(T )(x) = PT (−x).
b) The graded R-module T is K-Artinian if and only if its ∗Matlis dual ∗D(T ) is

H-Noetherian. Moreover, in this case P̃T (x) = P∗D(T )(−x).

C) Let A be a graded K-Artinian R-module. Then A carries a natural struc-

ture as a graded R̂-module. Clearly, as an R̂-module A is again K-Artinian with
length �

R0
(An) = lengthR0

(An) for all n ∈ � . In particular, as an R̂-module A has the
same Hilbert-Kirby polynomial as it has over R.

We now take the ∗Matlis dual of the R̂-module A and denote it by ∗D̂(A). Then
according to statements B)b) and A)b) we can say

The graded R̂-module ∗D̂(A) is H-Noetherian with

lengthR0
(An) = length �

R0
(∗D̂(A)−n)

for all n ∈ � and P̃A(x) = P∗

�

D(A)(−x).

Moreover in view of Remark 2.2 C)b) we can say:

a) If lengthR0
(An) < ∞ for all n ∈ � , then deg(P̃A) = dim �

R(∗D̂(A)) − 1.

2.4. Proposition. Let T be a graded R-module such that the R-module (0 :T � 0) is
Artinian. Then

lengthR0
(0 :Tn � 0) < ∞ for all n ∈ �

and
deg(P̃(0:T � 0)) = dim �

R(∗D̂(0 :T � 0)) − 1.

Proof. As (0 :Tn
� 0) is an Artinian R0/ � 0-module, we have lengthR0

(0 :Tn
� 0) < ∞ for

all n ∈ � . By Remark 2.3 C)a) it follows

deg(P̃(0:T � 0)) = dim �

R(∗D̂(0 :T � 0)) − 1.
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It thus suffices to show that the R̂-modules ∗D̂(0 :T � 0) and ∗D̂(0 :T � 0) have the

same dimension. As (0 :T � 0) = (0 :T � 0R̂0) and (0 :T � 0) = (0 :T � 0R̂0) we may

replace R by R̂, hence assume that R0 is complete and identify the functors ∗D̂ and
∗D.
As � 0 is � 0-primary, there is some n ∈ � with � n

0 ⊆ � 0. As ∗D is contravariant and
exact, the monomorphisms of graded R-modules

(0 :T � 0)
� (0 :T � 0)

� (0 :T � n
0 )

yield epimorphisms of graded R-modules

∗D(0 :T � n
0 ) →→ ∗D(0 :T � 0) →→

∗D(0 :T � 0).

It thus suffices to show that

Supp(∗D(0 :T � n
0 )) ⊆ Supp(∗D(0 :T � 0)).

If n = 1, this is obvious. If n > 1, let µ := dimR0/ � 0( � n−1
0 / � n

0 ). If we apply the
functor HomR0(•, T ) to the short exact sequence of R0-modules

(α) 0 → (R0/ � 0)
⊕µ → R0/ � n

0 → R0/ � n−1
0 → 0

we get an exact sequence of graded R-modules

0 → HomR0(R0/ � n−1
0 , T ) → HomR0(R0/ � n

0 , T ) → HomR0(R0/ � 0, T )⊕µ

and hence

0 → (0 :T � n−1
0 ) → (0 :T � n

0 ) → U → 0,

where U is a graded submodule of (0 :T � 0)
⊕µ. If we apply the functor ∗D we thus

obtain the following diagram of graded R-modules with exact row and column

0

0 // ∗D(U) //

OO

∗D(0 :T � n
0 ) // ∗D(0 :T � n−1

0 )

∗D(0 :T � 0)
⊕µ

OO

which induces

Supp(∗D(0 :T � n
0 )) ⊆ Supp(∗D(0 :T � 0)) ∪ Supp(∗D(0 :T � n−1

0 ))

and hence allows to conclude by induction.
�

2.5. Corollary. Let A be a graded K-Artinian R-module and let � ⊆ � 0 be an ideal.
Then deg(P̃(0:A

� )) = deg(P̃A).
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Proof. According to Remark 2.1 B) there is some m ∈ � with � m
0 An = 0 for all n � 0.

Consequently P̃A = P̃(0:A � m
0 ) and P̃(0:A

� ) = P̃(0:A
� + � m

0 ). If we apply Proposition 2.4 to
the � 0-primary ideals � m

0 and � + � m
0 we get

deg(P̃(0:A � m
0 )) = deg(P̃(0:A

� + � m
0 )) = dim �

R(∗D̂(0 :A � 0)) − 1.

This proves our claim.
�

2.6. Proposition. Let T be a graded R-module such that the R-module T/ � 0T is
Artinian. Then

lengthR0
(Tn/ � 0Tn) < ∞ for all n ∈ �

and
deg(P̃T/ � 0T ) = dim �

R(∗D̂(T/ � 0T )) − 1.

Proof. As Tn/ � 0Tn is an Artinian R0/ � 0-module, we have lengthR0
(Tn/ � 0Tn) < ∞ for

all n ∈ � . By Remark 2.3 C)a) it follows

deg(P̃T/ � 0T ) = dim �

R(∗D̂(T/ � 0T )) − 1.

It thus suffices to show that the R̂-modules ∗D̂(T/ � 0T ) and ∗D̂(T/ � 0T ) have the

same dimension. As T/ � 0T = T/ � 0R̂0T and T/ � 0T = T/ � 0R̂0T , we may replace R

by R̂, hence assume that R0 is complete and identify the functors ∗D̂ and ∗D.
As � 0 is � 0-primary, there is some n ∈ � with � n

0 ⊆ � 0. As ∗D is contravariant and
exact, the epimorphisms of graded R-modules

T/ � n
0T →→ T/ � 0T →→ T/ � 0T

yield monomorphisms of graded R-modules
∗D(T/ � 0T ) � ∗D(T/ � 0T ) � ∗D(T/ � n

0T ).

It thus suffices to show that Supp(∗D(T/ � n
0T )) ⊆ Supp(∗D(T/ � 0T )). This is done

similarly as in the proof of Proposition 2.4 on use of the exact sequence (α) of that
proof.

�

2.7. Corollary. Let A be a graded K-Artinian R-module and let � ⊆ � 0 be an ideal.

Then deg(P̃A/ � A) = deg(P̃A).

Proof. According to Remark 2.1 B) there is some m ∈ � with � m
0 An = 0 for all

n � 0. Therefore P̃A = P̃A/ � m
0 A and P̃A/ � A = P̃A/( � + � m

0 )A. Applying Proposition 2.6
to the � 0-primary ideals � m

0 and � + � m
0 we get

deg(P̃A/ � m
0 A) = deg(P̃A/( � + � m

0 )A) = dim �

R(∗D̂(A/ � 0A)) − 1.

This proves our claim.
�

Our next theorem is a supplement to the main result of [B-F-T].
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2.8. Theorem. Let i ∈ � 0 and assume that dim(R0) ≤ 1. Let

d := dim �

R(∗D̂(H i
R+

(M)/ � 0H
i
R+

(M))) − 1

and
d̄ := dim �

R(∗D̂(0 :Hi
R+

(M) � 0)) − 1.

Then there are polynomials P, P̄ , Q̄ ∈ � [x] such that

a) deg(P ) = d and lengthR0
(H i

R+
(M)n/ � 0H

i
R+

(M)n) = P (n) for all n � 0.

b) deg(P̄ ) = d̄ and lengthR0
(0 :Hi

R+
(M)n

� 0) = P̄ (n) for all n � 0.

c) deg(Q̄) = d̄ and lengthR0
(Γ � 0(H

i
R+

(M)n)) = Q̄(n) for all n � 0.

Proof. According to [B-F-T, Corollary 2.6] the graded R-modules H i
R+

(M)/ � 0H
i
R+

(M)
and (0 :Hi

R+
(M) � 0) are Artinian. So, if we apply Proposition 2.6 respectively Propo-

sition 2.4 we get statements a) and b).
By [B-F-T, Theorem 2.5] the graded R-module Γ � 0R(H i

R+
(M)) is Artinian. As all the

R0-modules H i
R+

(M)n are finitely generated, it follows that lengthR0
(Γ � 0(H

i
R+

(M)n))

is finite for all n ∈ � . So, there is some t ∈ � with � t
0Γ � 0R(H i

R+
(M)) = 0 (cf. Re-

mark 2.1 B)). It follows Γ � 0R(H i
R+

(M)) = (0 :Hi
R+

(M) � t
0). If we apply Proposition

2.4 with � 0 = � t
0, we get statement c).

�

Next, we give a supplement to Theorem 2.1 and Corollary 2.4 of [Ro-Se].

2.9. Remark. We denote by c(M) the cohomological dimension of M with respect to
R+, thus

c := c(M) := sup{i ∈ � 0|H
i
R+

(M) 6= 0}.

According to [B-H, Lemma 3.4] one has

c(M) = dimR(M/ � 0M).

2.10. Theorem. Let c := c(M) ∈ � 0 and let

d := dim �

R(∗D̂(Hc
R+

(M)/ � 0H
c
R+

(M))) − 1.

Then, there is a polynomial Q ∈ � [x] of degree d such that

lengthR0
(Hc

R+
(M)n/ � 0H

c
R+

(M)n) = Q(n) for all n � 0.

Proof. Let T := Hc
R+

(M). According to Proposition 2.6 if suffices to show that T/ � 0T
is Artinian. The graded R-module T/ � 0T is Artinian (cf. [Ro-Se, Theorem 2.1]).
As � 0 is � 0-primary, there is some n ∈ � such that � n

0 ⊆ � 0. It therefore suffices to
show that T/ � n

0T is an Artinian R-module. If n = 1, this is clear by what is said in
the first paragraph of this proof. If n > 1, we set µ := dimR0/ � 0

( � n−1
0 / � n

0 ) and use
the exact sequence of R-modules

(T/ � 0T )⊕µ → T/ � n
0T → T/ � n−1

0 T → 0
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to conclude by induction.
�

3. The case i < g(M)

In this section we introduce the cohomological finite length dimension g = g(M) of
a finitely generated graded R-module M and we study the asymptotic behaviour of
the R0-modules H i

R+
(M)n for n → −∞ in the range i < g.

3.1. Definition. We define the cohomological finite length dimension g(M) of M as
the least integer i such that the R0-module H i

R+
(M)n is of infinite length for infinitely

many integers n:

g := g(M) := inf{i ∈ � 0|]{n ∈ � |lengthR0
(H i

R+
(M)n) = ∞} = ∞}.

3.2. Remark. Clearly g > 0 and:

a) lengthR0
(H i

R+
(M)n) < ∞ for all i < g and all n � 0.

b) If g < ∞, lengthR0
(Hg

R+
(M)n) = ∞ for infinitely many n < 0.

c) If M is annihilated by some power of � 0 (thus in particular if dim(R0) = 0)
we have g = ∞.

d) Let (R′
0, � ′

0) be a Noetherian flat local R0-algebra with � ′
0 = � 0R0. Then

g(R′
0 ⊗R0 M) = g(M).

(Statement d) follows immediately by the flat base change property of local coho-
mology and by the fact that lengthR′

0
(R′

0 ⊗R0 T ) = lengthR0
(T ) for each R0-module

T .)

Our next aim is to show that in the range i < g(M) the R0-modules H i
R+

(M)n and

H i
� (M)n coincide for all n � 0.

3.3. Lemma. Let i ∈ � 0, let n0 ∈ � , let � ⊆ R0 be an ideal and let b ∈ � 0. Assume
that the R0-module Hj�

⊕R+
(M)n is of finite length for all n ≤ n0 and all j ≤ i. Then,

there are isomorphisms of R0-modules

Hj
( � ,b)⊕R+

(M)n
∼= Hj�

⊕R+
(M)n for all n ≤ n0 and all j ≤ i.

Proof. Let j ≤ i. Then, for each n ∈ � there is an exact sequence of R0-modules

(Hj−1�
⊕R+

(M)n)b → Hj
( � ,b)⊕R+

(M)n → Hj�
⊕R+

(M)n → (Hj�
⊕R+

(M)n)b

(cf. [B-S, Exercise 13.1.12]). For n ≤ n0 the R0-modules Hj−1�
⊕R+

(M)n and Hj�
⊕R+

(M)n

are b-torsion. Therefore, we have (H j−1�
⊕R+

(M)n)b = (Hj�
⊕R+

(M)n)b = 0.
�
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3.4. Proposition. Let i ∈ � 0, let n0 ∈ � and assume that the R0-module Hj
R+

(M)n

is of finite length for all n ≤ n0 and all j ≤ i. Then:

a) For each n ≤ n0 and each j ≤ i there is an isomorphism of R0-modules

Hj
R+

(M)n
∼= Hj

� (M)n.

b) For each j ≤ i, the graded R-module H j
� (M) is K-Artinian.

Proof. a) Let b1, . . . , bt ∈ R0 be such that � 0 =
∑t

l=1 R0bl. For each k ∈ {0, . . . , t}

let � k :=
∑k

l=1 R0bl. Observe that � 0 ⊕ R+ = R+ and � t ⊕ R+ = � . Now, a repeated
application of Lemma 3.3 gives our claim.
b) Clear by statement a), as the R-modules H j

� (M) are Artinian.
�

As an application we get the announced comparison result, the basic tool needed to
prove the main result of this section.

3.5. Corollary. Let j < g(M). Then:

a) Hj
R+

(M)n
∼= Hj

� (M)n for all n � 0.

b) Hj
� (M) is K-Artinian.

3.6. Theorem. Let i < g. Then:

a) There is a polynomial P̃ ∈ � [x] such that

lengthR0
(H i

R+
(M)n) = P̃ (n) for all n � 0.

b) The set

S := Si(M) := { � ∈ Proj(R)| � ∩ R0 = � 0 and H
i−dim(R/ � )� R � (M � ) 6= 0}

is a closed subset of Proj(R) and deg(P̃ ) = dim(S) < i.

c) If P̃ 6= 0, then

S0 := Si
0(M) := { � ∈ S| dim(R/ � ) = dim(S) + 1}

is a finite non-empty set and the leading coefficient of P̃ is given by

LC(P̃ ) =
(−1)dim(S)

dim(S)!

∑

� ∈S0

lengthR � (H i−dim(S)−1� R � (M � ))e(R/ � ).

Proof. a) In view of Corollary 3.5 it suffices to set P̃ := P̃Hi� (M).
b), c) By the flat base change property of local cohomology we have

length �
R0

(Hj
�

R+
(M̂)n) = lengthR0

(Hj
R+

(M)n) for all j ∈ � 0 and all n ∈ � . This shows

that neither g nor P̃ (x) are affected if we replace R and M by R̂ and M̂ respectively.
Moreover, if we set

F := { � ∈ Proj(R)| � ∩ R0 = � 0} and F̂ := {
�

∈ Proj(R̂)|
�

∩ R̂0 = ̂� 0},
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by the natural isomorphism of graded rings R/ � 0R ∼= R̂/̂� 0R̂, the map

Φ : F → F̂ , � 7→ �̂
is a homeomorphism (whose inverse is given by

�
7→

�
∩ R) such that

(α) R̂/ �̂ ∼= R/ � for all � ∈ F .

In particular we have dim(R̂/ �̂ ) = dim(R/ � ) for all � ∈ F and the flat base change

property of local cohomology gives rise to isomorphisms of R̂� � -modules

(β) R̂� � ⊗R � H
i−dim(R/ � )� R � (M � ) ∼= H

i−dim(
�

R/
� � )

� � �

R � � (M̂� � ).

The statements (α), (β) show that Φ induces bijections

S → Ŝ := {
�

∈ F̂|H
i−dim(

�

R/
�

)
� �

R �
(M̂ � ) 6= 0},

S0 → Ŝ0 := {
�

∈ Ŝ| dim(R̂/
�

) = dim(S) + 1}.

By statement (α) we have R̂� � / �̂ R̂� � ∼= R � / � R � and hence by statement (β)

length �

R � � (H
i−dim(

�

R/
� � )

� � �

R � � (M̂� � )) = lengthR � (H i−dim(R/ � )� R � (M � )) for all � ∈ S0.

So, to prove the remaining claims we may replace R and M by R̂ and M̂ respectively
and hence assume that (R0, � 0) is complete.
Now, by Cohen’s Structure Theorem for complete local rings there is a polynomial
ring R′ = R′

0[x1, . . . ,xs] over a complete regular local ring R′
0 and a surjective homo-

morphism h : R′ → R of graded rings. We write d′ := dim(R′) and keep in mind that

R′(−s) is the *canonical module of R′. Now, let Ω := Extd′−i
R′ (M, R′(−s)). Then, by

the Graded Local Duality Theorem (cf. [Br-He, Theorem 3.6.19]) and the graded base
ring independence of local cohomology we get an isomorphism of graded R-modules
H i

� (M) ∼= ∗D(Ω). As H i
� (M) is K-Artinian, Ω is H-Noetherian and

(γ) P̃ (x) = P̃Hi� (M)(x) = PΩ(−x)

(cf. Remark 2.3 B)a)). Now, let � ∈ Proj(R) and let � ′ := h−1( � ) ∈ Proj(R′). Then
dim(R′/ � ′) = dim(R/ � ) shows that dim(R′� ′) = d′ − dim(R/ � ). Moreover

Ω � = Ω � ′
∼= Extd′−i

R′� ′ (M � ′ , R′(−s) � ′) = Ext
dim(R′� ′ )+dim(R/ � )−i

R′� ′ (M � ′, R′� ′).

Hence by local duality H
i−dim(R/ � )� R � (M � ) ∼= D(Ω � ), where D := HomR � (•, ER � (R � / � R � ))

denotes the functor of taking the Matlis duals over R � . As the functor D is length
preserving, we get

(δ) lengthR � (H i−dim(R/ � )� R � (M � )) = lengthR � (Ω � ) for all � ∈ Proj(R).
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As Ω is H-Noetherian, we have Ω � = 0 for each � ∈ Proj(R) with � ∩ R0 6= � 0.
Together with statement (δ) this proves that

(ε) S = ProjSupp(Ω).

First of all this shows that S is a closed subset of Proj(R). Moreover, by statement

(γ) and by Remark 2.2 C)a) we have deg(P̃ ) = dim(S).
By the statements (γ), (δ), (ε), by the fact that dim(R/ � ) = dim(S)+1 for all � ∈ S0

and by Remark 2.2 C)b), D)a) we get our claim.
�

3.7. Remark. A) Assume that dim(R0) = 0. Then g = g(M) = ∞ (cf. Remark 3.2
c)). Let i ∈ � 0. Then the set S of Theorem 3.6 b) is precisely the i-th cohomological
pseudo-support +Psuppi(M) of M (cf. [B-M-M, Definition and Remark 1.2 A)]) and
so Theorem 3.6 generalizes Theorem 1.1 of [B-M-M].

B) As shown by Example 1.2 it may happen that for a fixed i ∈ � the R0-modules
H i

R+
(M)n are all of finite length but that these lengths are not of antipolynomial

growth. In such a case we obviously must have i > g(M).

Next, we apply Theorem 3.6 to prove a result on the asymptotic growth of the mul-
tiplicity e � 0(H

i
R+

(M)n) of the R0-module H i
R+

(M)n with respect to � 0 for n → −∞.
We first recall a few preliminaries.

3.8. Remark. A) For a finitely generated R0-module T there is a (uniquely deter-
mined) polynomial P̄ � 0,T ∈ � [x] such that

lengthR0
(T/ � n+1

0 T ) = P̄ � 0,T (n) for all n � 0,

the Hilbert-Samuel polynomial of T with respect to � 0.

B) In the notation of part A) we have

deg(P̄ � 0,T ) = dim(T ).

By e � 0(T ) we shall denote the Hilbert-Samuel multiplicity of T with respect to � 0. So,
if T 6= 0, the leading coefficient of P̄ � 0,T is given by

LC(P̄ � 0,T ) =
e � 0(T )

dim(T )!
with e � 0(T ) ∈ � .

C) Finally, let Supp0(T ) denote the (finite) set of all � 0 ∈ Supp(T ) such that R0/ � 0

is of maximal dimension:

Supp0(T ) := { � 0 ∈ Supp(T )| dim(R0/ � 0) = dim(T )}.

Then, the so called Associativity Formula for Hilbert-Samuel multiplicities says (cf.
[Br-He, Corollary 4.7.8])

a) e � 0(T ) =
∑

� 0∈Supp0(T ) length(R0) � 0
(T � 0)e � 0(R0/ � 0).
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3.9. Lemma. Let i ∈ � 0 and assume that there is a non-empty set W ⊆ Spec(R0)
with Supp0(H

i
R+

(M)n) = W for all n � 0. Assume that for each � 0 ∈ W there is

some polynomial P̃ [ � 0] ∈ � [x] such that length(R0) � 0
(H i

(R � 0 )+
(M � 0)n) = P̃ [ � 0](n) for all

n � 0 and set Q̃ :=
∑

� 0∈W
P̃ [ � 0]e � 0(R0/ � 0). Then

a) e � 0(H
i
R+

(M)n) = Q̃(n) for all n � 0.

b) deg(Q̃) = max{deg(P̃ [ � 0])| � 0 ∈ W}.

c) LC(Q̃) =
∑

� 0∈W0
LC(P̃ [ � 0])e � 0(R0/ � 0), where W0 := { � 0 ∈ W| dim(R0/ � 0) =

deg(Q̃)}.

Proof. By the graded flat base change property of local cohomology there are iso-
morphisms of R0-modules H i

(R � 0 )+
(M � 0)n

∼= (H i
R+

(M)n) � 0 for all n ∈ � . Now, we

conclude by the Associativity Formula of Remark 3.8 C)a).
�

3.10. Corollary. Let i ∈ � 0 and assume that there is a non-empty set W ⊆ Spec(R0)
with Supp0(H

i
R+

(M)n) = W for all n � 0. Assume that i < g(M � 0) for all � 0 ∈ W.
Then:

a) There is a polynomial Q̃ ∈ � [x] such that

e � 0(H
i
R+

(M)n) = Q̃(n) for all n � 0.

b) In the notation of Theorem 3.6 we have

d := deg(Q̃) = max{dim(S i(M � 0))| � 0 ∈ W}.

c) Let W0 := { � 0 ∈ W| dim(S i(M � 0)) = d}. Then

U := U i(M) := { � ∈ Proj(R)| � ∩ R0 ∈ W0 and � ∈ S i
0(M � ∩R0)}

is a finite non-empty set and the leading coefficient of Q̃ is given by

LC(Q̃) =
(−1)d

d!

∑

� ∈U
lengthR � (H i−d−1� R � (M � ))e((R/ � ) � ∩R0)e � 0(R0/( � ∩ R0)).

Proof. Statement a) is immediate by Lemma 3.9 a). By Theorem 3.6 b) and in the

notation of Lemma 3.9 we have deg(P̃ [ � 0]) = dim(S i(M � 0)). In view of Lemma 3.9 b)
this proves statement b).
Now, let � 0 ∈ W0 and let

U [ � 0] := { � ∈ Proj(R)| � ∩ R0 = � 0 and � ∈ Si
0(M � 0)}.

Then, by Theorem 3.6 c) we have

LC(P̃ [ � 0]) =
(−1)d

d!

∑

� ∈U [ � 0]

lengthR � (H i−d−1� R � (M � ))e((R/ � ) � 0).

As U =
⋃

� 0∈W0
U [ � 0] statement c) follows by Lemma 3.9 c).

�
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3.11. Remark. A) It is not known yet, whether the set Supp0(H
i
R+

(M)n) is always
asymptotically stable for n → −∞. So we have to assume this.

B) The hypothesis that i < g(M � 0) for all � 0 ∈ W cannot be omitted in general, as
shown again by Example 1.2.

C) Let i < g(M). Then the requested asymptotic stability holds with W ⊆ { � 0} by
Theorem 3.6. If W = { � 0} Corollary 3.10 is a mere restatement of Theorem 3.6.

3.12. Corollary. Let i ∈ � 0 and let dim(H i
R+

(M)n) = dim(R0) for infinitely many
n ∈ � . Then there is a non-empty set W ⊆ Supp0(R0) for which Corollary 3.7 holds.

Proof. By our hypothesis V :=
⋃

n∈ � Supp0(H
i
R+

(M)n) ∩ Supp0(R0) is a non-empty

finite set and Supp0(H
i
R+

(M)n) ∩ Supp0(R0) 6= ∅ for infinitely many integers n. So,
there is a � 0 ∈ V such that

(α) � 0 ∈ Supp0(H
i
R+

(M)n) for infinitely many n ∈ � .

For each � 0 ∈ V we have dim((R0) � 0) = 0 and the graded R � 0-module H i
R+

(M) � 0
∼=

H i
(R � 0 )+

(M � 0) is Artinian. Hence (H i
R+

(M)n) � 0
∼= (H i

R+
(M) � 0)n is non-vanishing for

infinitely many n < 0 if and only if it is for all n � 0. So, for each � 0 ∈ V the above
condition (α) is equivalent to the condition

� 0 ∈ Supp0(H
i
R+

(M)n) for all n � 0.

This shows that dim(H i
R+

(M)n) = dim(R0) for all n � 0 and then that there is a non-

empty set W ⊆ V such that Supp0(H
i
R+

(M)n) = W for all n � 0. As g(M � 0) = ∞
for each � 0 ∈ W (cf. Remark 3.2 c)), we may apply Corollary 3.7.

�

4. The Case i = g(M)

4.1. Remark. A) Let us recall the definition of the R+-finiteness dimension of M
(cf. [B-S, Definition 9.1.3]):

f := f(M) := inf{j ∈ � 0|H
j
R+

(M) is not finitely generated}.

B) As the R0-modules Hj
R+

(M)n are finitely generated and vanish for all n � 0 we
also may write

a) f = inf{j ∈ � 0|H
j
R+

(M)n 6= 0 for infinitely many n < 0}.

So, we may say

b) f ≤ g with strict inequality if AssR0(H
f
R+

(M)n) = { � 0} for all n � 0.
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C) Assume that x ∈ R1 is a non-zerodivisor with respect to M . Then applying

cohomology to the exact sequence 0 → M
x·
→ M(1) → M/xM → 0 we see that

a) f(M/xM) ≥ f(M) − 1; g(M/xM) ≥ g(M) − 1.

4.2. Proposition. Let i ∈ � 0 with i ≤ g. Then the graded R-module Γ � 0R(H i
R+

(M))
is K-Artinian.

Proof. We choose i ≤ g. As the R0-modules Γ � 0R(H i
R+

(M))n = Γ � 0(H
i
R+

(M)n) ⊆

H i
R+

(M)n are finitely generated, it suffices to show that Γ � 0R(H i
R+

(M)) is Artinian.
This we do by induction on i.
As H0

R+
(M)n = 0 for all n � 0, the case i = 0 is obvious. So, let i > 0. Let

x be an indeterminate and let R′
0 := R0[x] � 0R0[x], � ′

0 := � 0R
′
0, R′ := R′

0 ⊗R0 R
and M ′ := R′

0 ⊗R0 M . Then by the flat base change property of local cohomology
R′

0 ⊗R0 Γ � 0R(H i
R+

(M)) ∼= Γ � ′

0
(H i

R′

+
(M ′)). So, by the Remarks 2.1 C) and 3.2 d) it

suffices to show that the R′-module Γ � ′

0
(H i

R′

+
(M ′)) is K-Artinian. Therefore, we may

replace R and M by R′ and M ′ respectively and hence assume that R0/ � 0 is infinite.
As i > 0 we may replace M by M/ΓR+(M) and thus assume that ΓR+(M) = 0. So
there is an element x ∈ R1 which is a non-zerodivisor with respect to M .
Now, consider the graded R-module U i := H i−1

R+
(M)/xH i−1

R+
(M) and the exact se-

quence of graded R-modules

0 → U i → H i−1
R+

(M/xM) → (0 :Hi
R+

(M) x)(−1) → 0

which induces an exact sequence of graded R-modules

(α) Γ � 0R(H i−1
R+

(M/xM)) → Γ � 0R((0 :Hi
R+

(M) x)(−1)) → H1
� 0R(U i).

As i ≤ g, the R0-module H i−1
R+

(M)n is of finite length for all but finitely many degrees

n and hence the same holds for U i
n. Therefore the graded R-module

H1
� 0R(U i) ∼=

⊕

n∈ �
H1

� 0R(U i)n
∼=

⊕

n∈ �
H1

� 0
(U i

n)

is concentrated in finitely many degrees and has graded components which are Ar-
tinian R-modules. So, H1

� 0R(U i) is an Artinian R-module. As

i − 1 ≤ g − 1 = g(M) − 1 ≤ g(M/xM),

(cf. Remark 4.1 C)a)) by induction, Γ � 0R(H i−1
R+

(M/xM)) is an Artinian R-module.

Therefore, by the sequence (α) the R-module

Γ � 0R(0 :Hi
R+

(M) x) = (0 :Γ �
0R(Hi

R+
(M)) x)

is Artinian. So by Melkersson’s Lemma the R-module Γ � 0R(H i
R+

(M)) is Artinian,
too.

�
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4.3. Corollary. Let g < ∞. Then there is a polynomial P̃ ∈ � [x] of degree less than
g such that

lengthR0
(Γ � 0(H

g
R+

(M)n)) = P̃ (n) for all n � 0.

Proof. By Proposition 4.2 the graded R-module

Γ � 0R(Hg
R+

(M)) =
⊕

n∈ �
Γ � 0(H

g
R+

(M)n)

is K-Artinian and so has a Hilbert-Kirby polynomial P̃ . It remains to show that

deg(P̃ ) < g. This we do by induction on g. As usually we may assume that R0/ � 0 is
infinite and – as g > 0 – that ΓR+(M) = 0. So, there is an element x ∈ R1 which is

a non-zerodivisor with respect to M . As lengthR0
(Hg−1

R+
(M)n) < ∞ for all n � 0 we

thus get for all n � 0 exact sequences of R0-modules

0 → Hg−1
R+

(M/xM)n+1/Un+1 → Hg
R+

(M)n → Hg
R+

(M)n+1

with an R0-submodule Un+1 ⊆ Hg−1
R+

(M/xM)n+1 of finite length. In particular

Γ � 0(H
g−1
R+

(M/xM)n+1/Un+1) ∼= Γ � 0(H
g−1
R+

(M/xM)n+1)/Un+1 for all n � 0. So, we
get exact sequences

0 → Γ � 0(H
g−1
R+

(M/xM)n+1)/Un+1 → Γ � 0(H
g
R+

(M)n) → Γ � 0(H
g
R+

(M)n+1)

for all n � 0. It follows that

0 ≤ P̃ (n) ≤ P̃ (n + 1) + lengthR0
(Γ � 0(H

g−1
R+

(M/xM))n+1) for all n � 0.

If g = 1, we have Hg−1
R+

(M/xM)n+1 = H0
R+

(M/xM)n+1 = 0 for all n � 0 and hence

deg(P̃ ) < 1 = g. Now, let g > 1. Observe that g(M/xM) ≥ g − 1 (cf. Remark 4.1

C)a)). If g(M/xM) = g − 1 we can use induction to find a polynomial Q̃ ∈ � [x] of
degree less than g − 1 such that

lengthR0
(Γ � 0(H

g−1
R+

(M/xM)n+1)) = Q̃(n + 1) for all n � 0.

If g(M/xM) > g − 1, we find such a polynomial Q̃ by Theorem 3.6. Thus, for all

n � 0 we have 0 ≤ P̃ (n) ≤ P̃ (n+1)+ Q̃(n+1), and this proves that deg(P̃ ) < g.
�

4.4. Corollary. Let g < ∞ and let P̃ be as in Corollary 4.3. Then, there is an
polynomial P̄ ∈ � [x] such that

deg(P̄ ) = deg(P̃ )

and
lengthR0

(0 :Hg
R+

(M)n
� 0) = P̄ (n) for all n � 0.

Proof. Apply Corollary 2.5 with A = Γ � 0R(Hg
R+

(M)).
�
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4.5. Remark. A) Let � ∈ Proj(R). The (R+-)adjusted depth of M at � is defined as

adjdepth � (M) := depthR � (M � ) + height((R+ + � )/ � )

(cf. [B-S, Definition 9.2.2], where a different notation is used).

B) Observe that with � 0 := � ∩ R0 we have

a) height((R+ + � )/ � ) = dim((R/ � ) � 0).

As a consequence of this,

b) adjdepth � R � 0
(M � 0) = adjdepth � (M).

C) Let us also recall that according to [B-S, Theorems 9.3.5 and 13.1.17] we have

a) f(M) ≤ inf{adjdepth � (M)| � ∈ Proj(R)}

with equality if R0 is a homomorphic image of a regular local ring.

4.6. Lemma. Assume that AssR0(H
f
R+

(M)n) = { � 0} for all n � 0. Then, in the
notation of Theorem 3.6 we have

{ � ∈ Proj(R)|adjdepth � (M) = f} = Sf (M) 6= ∅.

Proof. As f < g = g(M) (cf. Remark 4.1 B)b)) and Hf
R+

(M)n 6= 0 for infinitely many

n < 0 (cf. Remark 4.1 B)a)) Theorem 3.6 shows that Sf (M) 6= ∅. It thus remains
to prove the stated equality. Let � ∈ Proj(R) with adjdepth � (M) = f . We wish to

show that � ∈ Sf (M). As a first step we prove that � 0 := � ∩ R0 = � 0. Assume to
the contrary that � 0

�
� 0. Then, by Remark 4.5 B)b), C)a) we have

f(M � 0) ≤ adjdepth � R � 0
(M � 0) = f.

As Supp(Hf
R+

(M)n) ⊆ { � 0} for all n � 0 we get (Hf
R+

(M)n) � 0 = 0 for all n � 0.
On use of the graded flat base change property of local cohomology we thus get
f(M � 0) > f , a contradiction. So we must have � 0 = � 0. Now, on use of Remark 4.5
B)a) we have height((R+ + � )/ � ) = dim(R/ � ), hence depthR � (M � ) = f − dim(R/ � ).

It follows H
f−dim(R/ � )� R � (M � ) 6= 0, thus � ∈ Sf (M).

Conversely, let � ∈ Sf (M). Then � ∩ R0 = � 0 and H
f−dim(R/ � )� R � (M � ) 6= 0. So, in view

of Remark 4.5 B)a)

depthR � (M � ) ≤ f − dim(R/ � ) = f − height((R+ + � )/ � ).

It follows adjdepth � (M) ≤ f and hence adjdepth � (M) = f (cf. Remark 4.5 C)a)).
�

4.7. Proposition. Let f < ∞. Then for all n � 0 we have

min AssR0(H
f
R+

(M)n) = min{ � ∩ R0| � ∈ Proj(R) and adjdepth � (M) = f}.
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Proof. By [B-H, Proposition 5.6] we know that the set AssR0(H
f
R+

(M)n) is asymp-

totically stable for n → −∞. So, there is a non-empty set W ⊆ Spec(R0) such that

W = min AssR0(H
f
R+

(M)n) for all n � 0.

Let � 0 ∈ W. Then (Hf
R+

(M)n) � 0 6= 0 for all n � 0. So, on use of the flat base change

property of local cohomology we get f(M � 0) = f and Ass(R0) � 0
(Hf

(R � 0 )+
(M � 0)n) =

{ � 0(R0) � 0} for all n � 0. Now, if we apply Lemma 4.6 to the R � 0-module M � 0 , we
find some � ∈ Proj(R � 0) with � ∩ (R0) � 0 = � 0(R0) � 0. Let � = � ∩R. Then � 0 = � ∩R0

and adjdepth � (M) = adjdepth � (M � 0) = f (cf. Remark 4.5 B)b)).
Now, conversely, let � 0 ∈ Spec(R0) minimal with the property that there is some
� ∈ Proj(R) with � ∩ R0 = � and adjdepth � (M) = f . Then adjdepthR � 0

(M � 0) = f

(cf. Remark 4.5 B)b)) and hence f(M � 0) ≤ f . Again, by the flat base change prop-
erty of local cohomology f(M � 0) ≥ f and hence f(M � 0) = f . Another use of the flat

base change property implies that � 0 ∈ Supp(Hf
R+

(M)n) for infinitely many n < 0 (cf.

Remark 4.1 B)a)). Therefore we find some � ′
0 ∈ W with � ′

0 ⊆ � 0. By the first part of
our proof there is some � ′ ∈ Proj(R) with � ′ ∩ R0 = � ′

0 and adjdepth � ′(M) = f . By
the minimality of � 0 we get � ′

0 = � 0 and hence � 0 ∈ W.
�

4.8. Remark. In [B-K-S, Theorem 1.8] it is shown that, under the hypothesis that
R0 is a homomorphic image of a regular ring and f < ∞,

AssR0(H
f
R+

(M)n) = { � ∩ R0| � ∈ Proj(R) and adjdepth � (M) = f}

for all n � 0. Proposition 4.7 shows that if one considers only the subsets of minimal
members no extra hypothesis on R0 is needed to get equality.

4.9. Lemma. Let g < ∞ and S0 ⊆ R0 be a multiplicatively closed set such that
S0 ∩ � 0 6= ∅ and such that the set Pn := { � 0 ∈ AssR0(H

g
R+

(M)n)|S0 ∩ � 0 = ∅} is
non-empty for infinitely many n ∈ � . Then:

a) f(S−1
0 M) = g.

b) AssS−1
0 R0

(Hg

(S−1
0 R)+

(S−1
0 M)n) = {S−1

0 � 0| � 0 ∈ Pn} for all n ∈ � .

Proof. By the graded flat base change property of local cohomology we have isomor-
phisms of S−1

0 R0-modules

H i
(S−1

0 R)+
(S−1

0 M)n
∼= S−1

0 H i
R+

(M)n

for all i ∈ � 0 and for all n ∈ � . Choosing i = g, we get claim b).
If i < g, Supp(H i

R+
(M)n) ⊆ { � 0} for all n � 0. As S0 ∩ � 0 6= ∅ it follows that

S−1
0 H i

R+
(M)n = 0 for all n � 0 and hence the above isomorphisms yield claim

a).
�

Our next result is an extension of the corresponding results in [B-H] and [B-K-S]
obtained by replacing f(M) by g(M).
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4.10. Theorem. Let g < ∞ and T := T (M) := { � ∈ Proj(R)|adjdepth � (M) = g}
and let W = W(M) be the set of all � 0 ∈ Q := Q(M) := { � ∩ R0| � ∈ T } for which
dim(R0/ � 0) is maximal. Then:

a) There is some n0 ∈ � such that AssR0(H
g
R+

(M)n) = AssR0(H
g
R+

(M)n0) for all
n ≤ n0.

b) If n0 is as in statement a), then Supp0(H
g
R+

(M)n) = W for all n ≤ n0.

c) If R0 is a homomorphic image of a regular local ring, then

AssR0(H
g
R+

(M)n) \ { � 0} = Q \ { � 0} for all n � 0.

If g = f , the same equalities hold without removing � 0 from AssR0(H
g
R+

(M)n)
respectively Q.

Proof. a) If f = g, we conclude by [B-H, Proposition 5.6]. So, let f < g. By the

graded flat base change property there are isomorphisms of R̂0-modules Hg
�

R+
(M̂)n

∼=

R̂0 ⊗R0 Hg
R+

(M)n and these show by flatness that

AssR0(H
g
R+

(M)n) = { ̂� 0 ∩ R0|̂� 0 ∈ Ass �R0
(Hg

�

R+
(M̂)n)}

for all n ∈ � . This allows to replace R and M respectively by R̂ and M̂ and hence
to assume that (R0, � 0) is complete.
Now, by the definition of g, the set

(α) P :=
⋃

n∈ �
AssR0(H

g
R+

(M)n) \ { � 0}

is non-empty. As P is countable and R0 is complete, by the Countable Prime Avoid-
ance Principle (cf. [S-V]), we find an element

(β) s ∈ � 0 \
⋃

P.

As lengthR0
(Hg

R+
(M)n) = ∞ for infinitely many n ∈ � , we have AssR0(H

g
R+

(M)n) \

{ � 0} 6= ∅ for all such n. If we apply Lemma 4.9 with S = {sk|k ∈ � } we get
f(Ms) = g. So, by [B-H, Proposition 5.6] there is some m0 ∈ � such that

Ass(R0)s
(Hg

(Rs)+
(Ms)n) = Ass(R0)s

(Hg
(Rs)+

(Ms)m0) for all n ≤ m0.

In the notation of Lemma 4.9 we have Pn = AssR0(H
g
R+

(M)n) \ { � 0}. So, by Lemma

4.9 b) the set Pn is asymptotically stable for n → −∞. Moreover, by Proposition 4.2
the set AssR0(H

g
R+

(M)n) ∩ { � 0} is asymptotically stable for n → −∞. This proves

claim a).
b) According to statement a) there is a non-empty set V ⊆ Spec(R0) such that

Supp0(H
g
R+

(M)n) = V for all n � 0.

It suffices to show that V = W. If f = g, this follows by Proposition 4.7. So, let
f < g. Let v := dim(R0/ � 0) and w := dim(R0/ � ′

0), where � 0 ∈ V and � ′
0 ∈ W.
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First let � 0 ∈ V. As lengthR0
(Hg

R+
(M)n) = ∞ for infinitely many n < 0, we

have � 0

�
� 0. If we apply Lemma 4.9 with S = R0 \ � 0 we get f(M � 0) = g and

Ass(R0) � 0
(Hg

(R � 0 )+
(M � 0)n) = { � 0(R0) � 0} for all n � 0. So, by Proposition 4.7 there is

some � ∈ Proj(R � 0) such that � ∩ (R0) � 0 = � 0(R0) � 0 and adjdepth � (M � 0) = g. Setting
� := � ∩ R it follows � ∩ R0 = � 0, � = � R � 0 and adjdepth � (M) = g (cf. Remark 4.5
B)b)). So, we have shown

(γ) V ⊆ Q and v > 0.

Next, let � 0 ∈ W. By (α) we have dim(R0/ � 0) = w ≥ v > 0 so that � 0

�
� 0 and

Lemma 4.9 a) yields again that f(M � 0) = g. As � 0 ∈ minQ it follows by Remark
4.5 B)b) that � 0(R0) � 0 ∈ min Ass(R0) � 0

(Hg
(R � 0 )+

(M � 0)n) for all n � 0 and hence (by

Lemma 4.9 b)) that � 0 ∈ min AssR0(H
g
R+

(M)n) for all n � 0. As dim(R0/ � 0) ≥ v it

follows � 0 ∈ Supp0(H
g
R+

(M)n) for all n � 0. This shows that W ⊆ V and v = w. In

view of statement (γ) we get V = W.
c) If g = f we may conclude by [B-K-S, Theorem 1.8]. So, let f < g. Now, the set
P defined in (α) is finite by statement a) and in addition non-empty. So, we find an
element s as in (β). Again we get f(Ms) = g. If we apply [B-K-S, Theorem 1.8] to the
graded Rs-module Ms we get our claim by Lemma 4.9 b) and Remark 4.5 B)b).

�

4.11. Theorem. Let g < ∞, and let T = T (M) and W = W(M) be as in Theorem
4.10.

a) There is a polynomial Q̃ ∈ � [x] such that e � 0(H
g
R+

(M)n) = Q̃(n) for all
n � 0.

b) d := deg(Q̃) = max{height((R+ + � )/ � )| � ∈ T and � ∩ R0 ∈ W} − 1 > 0.
c) Let

T0 := T0(M) := { � ∈ T | � ∩ R0 ∈ W and height((R+ + � )/ � ) = d + 1}.

Then, the leading coefficient of Q̃ is given by

LC(Q̃) =
(−1)d

d!

∑

� ∈T0

lengthR � (Hg−d−1� R � (M � ))e((R/ � ) � ∩R0)e � 0(R0/( � ∩ R0)).

Proof. By Theorem 4.10 it is clear that Supp0(H
g
R+

(M)n) = W for all n � 0. Let

� 0 ∈ W. Then, � 0

�
� 0 and by Lemma 4.9 and Remark 4.1 B)b)

(α) f(M � 0) = g < g(M � 0).

Altogether we thus may apply Corollary 3.10. This obviously gives statement a).
Moreover, by (α) we may apply Lemma 4.6 and Remark 4.5 B)b) in order to see that

(β) { � R � 0| � ∈ T and � ∩ R0 = � 0} = Sg(M � 0) for all � 0 ∈ W.

Now by Remark 4.5 B)a) and Corollary 3.10 we get

max{height((R+ + � )/ � )| � ∈ T and � ∩ R0 ∈ W} − 1
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= max{dim((R/ � ) � ∩R0) − 1| � ∈ T and � ∩ R0 ∈ W}

= max{dim(Sg(M � 0))| � 0 ∈ W} = deg(Q̃).

This proves statement b).
Finally from (β) and in view of Remark 4.5 B)a) we obtain T0(M) = U(M), where
U(M) is defined as in Corollary 3.10. Now statement c) of Corollary 3.10 allows to
complete our proof.

�

5. The case dim(R0) = 2

In this section we primarily study the asymptotic growth of the multiplicities
e � 0(H

i
R+

(M)n) for n → −∞ with respect to � 0 in the case where dim(R0) = 2.

As shown by Example 1.2 we cannot expect that the function n 7→ e � 0(H
i
R+

(M)n)
behaves antipolynomially in general. But as we shall show below, antipolynomiality
holds if dimR0(H

i
R+

(M)n) ≥ 1 for all n � 0.
Also, under fairly mild conditions on the ring R0, there is a natural extension of
the mentioned antipolynomiality result to the case where R0 is of dimension greater
than 2. In addition we show that in the case dim(R0) = 2 the function n 7→
lengthR0

(0 :Hi
R+

(M)n
x) is antipolynomial if x ∈ � 0 is choosen appropriately and

that the R-modules H1
� 0R(H i

R+
(M)) are Artinian.

5.1. Remark. A) Let T be an R0-module and let x ∈ � 0. We recall that x is said to
be � 0-filter regular with respect to T if it satisfies the following equivalent conditions:

(i) x is a non-zero divisor with respect to T/Γ � 0(T ).
(ii) (0 :T x) ⊆ Γ � 0(T ).
(iii) x 6∈

⋃
AssR0(T ) \ { � 0}.

B) Let T be finitely generated. Then in view of the above characterisation (iii), each
� 0-filter regular element x ∈ � 0 is a parameter with respect to T .

5.2. Lemma. Let dim(R0) = 2, let i ∈ � 0 and let x ∈ � 0 be a parameter for R0.
Then, the graded R-module Γ � 0R(H i

R+
(M/xM)) is K-Artinian with Hilbert-Kirby

polynomial of degree less than i.

Proof. By the graded base ring independence of local cohomology, there is an iso-
morphism of graded R-modules Γ � 0R(H i

R+
(M/xM)) ∼= Γ � 0R/xR(H i

(R/xR)+
(M/xM)).

But according to [B-F-T, Theorems 2.5 b) and 3.5 d)] the right hand side module is
K-Artinian with Hilbert-Kirby polynomial of degree less than i.

�
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5.3. Lemma. Let i ∈ � 0. Then the graded R-module H i
R+

(Γ � 0R(M)) is K-Artinian
with Hilbert-Kirby polynomial of degree less than i.

Proof. As Γ � 0R(M) is annihilated by some power of � 0, we have g(Γ � 0R(M)) = ∞
(cf. Remark 3.2 c)) and moreover, by the graded base ring independence of local
cohomology, an isomorphism of graded R-modules H i

R+
(Γ � 0R(M)) ∼= H i

� (Γ � 0R(M)).
Now we conclude by Corollary 3.5 b).

�

Next, we prove a result which seems of a certain interest for its own.

5.4. Proposition. Let dim(R0) = 2, let i ∈ � 0 and let x ∈ � 0 be a parameter for R0

and � 0-filter regular with respect to M and with respect to H i
R+

(M)n for all n � 0.

Then there exists a polynomial S̃ ∈ � [x] such that deg(S̃) < i and

lengthR0
(0 :Hi

R+
(M)n

x) = S̃(n) for all n � 0.

Proof. Consider the exact sequence 0 → Γ � 0R(M) → M → M → 0 where M :=
M/Γ � 0R(M) and the induced exact sequence

H i
R+

(Γ � 0R(M)) → H i
R+

(M)
µ
→ H i

R+
(M) → H i+1

R+
(Γ � 0R(M)).

As H i
R+

(Γ � 0R(M)) and H i+1
R+

(Γ � 0R(M)) are K-Artinian (cf. Lemma 5.3) so are Ker(µ)

and Coker(µ). Consider the exact sequences

0 → Ker(µ) → H i
R+

(M) → Im(µ) → 0,

0 → Im(µ) → H i
R+

(M) → Coker(µ) → 0.

Now we apply the functor HomR(R/x0R, •) to get the following exact sequences of
graded R-modules

0 → (0 :Ker(µ) x) → (0 :Hi
R+

(M) x) → (0 :Im(µ) x) → Ext1
R(R/x0R, Ker(µ)),

0 → (0 :Im(µ) x) → (0 :Hi
R+

(M) x) → (0 :Coker(µ) x).

As (0 :Ker(µ) x) and (0 :Coker(µ) x) are graded submodules of Ker(µ) and Coker(µ),

they both are K-Artinian. Moreover, Ext1
R(R/x0R, Ker(µ)) is a graded subquotient

of a finite direct sum of copies of Ker(µ) and thus is K-Artinian. So, the modules
(0 :Ker(µ) x), (0 :Coker(µ) x) and Ext1

R(R/x0R, Ker(µ)) admit Hilbert-Kirby polynomi-
als. It thus suffices to show that the function given by n 7→ lengthR0

(0 :Hi
R+

(Mn) x) is

antipolynomial of degree less than i. Therefore we may replace M by M and hence
assume that Γ � 0R(M) = 0. Now, x is regular with respect to M . By this argument
and the fact that x is � 0-filter regular with respect to H i

R+
(M)n for all n � 0, we

get for all such n the exact sequences

(α) 0 → (0 :Hi
R+

(M)n
x) → Γ � 0(H

i
R+

(M)n) → Γ � 0(xH i
R+

(M)n) → 0,
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(β) 0 → Γ � 0R(xH i
R+

(M))
ν
→ Γ � 0R(H i

R+
(M)) → Γ � 0R(H i

R+
(M)/xH i

R+
(M)),

0 → Γ � 0R(H i
R+

(M)/xH i
R+

(M)) → Γ � 0R(H i
R+

(M/xM)).

By Lemma 5.2, the R-module Γ � 0R(H i
R+

(M/xM)) is K-Artinian with Hilbert-Kirby
polynomial of degree less than i. Now in view of (β), Coker(ν) is K-Artinian with

deg(P̃Coker(ν)) < i. Let S̃ := P̃Coker(ν). Then deg(S̃) < i and on use of (α), (β) we get

lengthR0
(0 :Hi

R+
(M)n

x) = lengthR0
(Γ � 0(H

i
R+

(M)n)) − lengthR0
(Γ � 0(xH i

R+
(M))n)

= lengthR0
(Coker(ν)n) = S̃(n)

for all n � 0 and this completes our proof.
�

5.5. Remark. A) If (R0, � 0) is complete, there are elements x ∈ � 0 which satisfy all
the requirements of Proposition 5.4. Namely, let

P := { � ∩ R0| � ∈ AssR(M) ∪ Ass(R0) ∪
⋃

n∈ � ,i∈ � 0

AssR0(H
i
R+

(M)n)} \ { � 0}.

Then, by the Countable Prime Avoidance Principle (cf. [S-V]) we have � 0 \
⋃
P 6= ∅,

and each element in this set satisfies the requirements of Proposition 5.4 (cf. Remark
5.1).

B) Although the function n 7→ lengthR0
(0 :Hi

R+
(M) x) is antipolynomial in the situ-

ation of Proposition 5.4, the graded R-module (0 :Hi
R+

(M) x) need not be Artinian.

Indeed if this module is Artinian, then by Melkersson’s Lemma Γ � 0R(H i
R+

(M)) is
Artinian. But there are many examples for which this is not the cases. To see a
concrete case let R = M be as in Example 1.2 and choose i = 2.

5.6. Lemma. Let dim(R0) = 2 and let x ∈ � 0 be a parameter which is a non-zero
divisor with respect to M . Then for each i ∈ � 0, the graded module

Γ � 0R(H i
R+

(M))/(xH i
R+

(M) ∩ Γ � 0R(H i
R+

(M)))

is K-Artinian with Hilbert-Kirby polynomial of degree less than i.

Proof. The short exact sequence 0 → M
x·
→ M → M/xM → 0 yields a monomor-

phism of graded R-modules H i
R+

(M)/xH i
R+

(M) � H i
R+

(M/xM). As

Γ � 0R(H i
R+

(M))/(xH i
R+

(M) ∩ Γ � 0R(H i
R+

(M)))

∼= (Γ � 0R(H i
R+

(M)) + xH i
R+

(M))/xH i
R+

(M) ⊆ Γ � 0R(H i
R+

(M)/xH i
R+

(M)),

we may conclude by the left-exactness of the functor Γ � 0R and by the fact that
Γ � 0R(H i

R+
(M)/xH i

R+
(M)) is K-Artinian with Hilbert-Kirby polynomial of degree

less than i (cf. Lemma 5.2).
�
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5.7. Theorem. Let dim(R0) = 2 and let dimR0(H
i
R+

(M)n) ≥ 1 for all n � 0. Then

there exists a polynomial Q̃ ∈ � [x] such that deg(Q̃) < i and e � 0(H
i
R+

(M)n) = Q̃(n)
for all n � 0.

Proof. If dimR0(H
i
R+

(M)n) = 2 for infinitely many n, we conclude by Corollary 3.10.

So, we may assume that dimR0(H
i
R+

(M)n) = 1 for all n � 0.
By the graded flat base change property of local cohomology there are isomorphisms

of R̂0-modules

R̂0 ⊗R0 H i
R+

(M)n
∼= H i�

R+
(M̂)n

for all n ∈ � . Moreover, � 0R̂0 is ̂� 0-primary and for each finitely generated R0-module

T we have dimR0(R̂0 ⊗R0 T ) = dimR0(T ) and e � 0
�
R0

(R̂0 ⊗R0 T ) = e � 0(T ). Altogether,

this allows to replace R and M by R̂ and M̂ respectively and hence to assume that
(R0, � 0) is complete. Consider the exact sequence 0 → Γ � 0(M) → M → M → 0
with M := M/Γ � 0R(M) and the induced exact sequence

H i
R+

(Γ � 0R(M)) → H i
R+

(M)
β
→ H i

R+
(M) → H i+1

R+
(Γ � 0R(M)).

Since H i
R+

(Γ � 0(M)) and H i+1
R+

(Γ � 0(M)) are K-Artinian, the R-modules Ker(β) and

Coker(β) are K-Artinian too. Hence dimR0(Ker(β)n) = dimR0(Coker(β)n) ≤ 0, and
so e � 0(H

i
R+

(M)n) = e � 0(H
i
R+

(M)n) for all n � 0. So we may replace M by M and
hence assume that Γ � 0R(M) = 0. Now, according to Remark 5.5 A) there is an
element x ∈ � 0 which is a parameter for R0 and � 0-filter regular with respect to M
and all R0-modules H i

R+
(M)n.

As x is a non-zero divisor with respect to Tn := H i
R+

(M)n/Γ � 0(H
i
R+

(M)n) and this
R0-module has dimension 1 for all n � 0, we thus get

e � 0(H
i
R+

(M)n) = e � 0(Tn) = e � 0(Tn/xTn)

= lengthR0
(Tn/xTn) = lengthR0

(H i
R+

(M)n/(xH i
R+

(M)n + Γ � 0(H
i
R+

(M)n)))

for all n � 0.
So, in view of Lemma 5.6 and the short exact sequence

0 → Γ � 0R(H i
R+

(M))/(xH i
R+

(M) ∩ Γ � 0R(H i
R+

(M))) → H i
R+

(M)/xH i
R+

(M)

→ H i
R+

(M)/(xH i
R+

(M) + Γ � 0R(H i
R+

(M))) → 0

it suffices to find a polynomial P̃ ∈ � [x] of degree less than i such that

lengthR0
(H i

R+
(M)n/xH i

R+
(M)n) = P̃ (n)

for all n � 0.
As x is a non-zero divisor with respect to M , we have a monomorphism of graded
R-modules

H i
R+

(M)/xH i
R+

(M) � H i
R+

(M/xM).
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If we apply the functor Γ � 0R and keep in mind that

H i
R+

(M)n/xH i
R+

(M)n = (H i
R+

(M)/xH i
R+

(M))n

is � 0-torsion for all n � 0, we may use Lemma 5.2 and set P̃ := P̃Γ �
0R(Hi

R+
(M)/xHi

R+
(M)).

�

5.8. Remark. A) Let R be as in Example 1.2. Then the function n 7→ e � 0(H
2
R+

(R)n) =

lengthR0
(H2

R+
(R)n) is not antipolynomial. This shows that the conclusion of Theorem

5.7 need not hold if dim(H i
R+

(M)n) = 0 for all n � 0.

B) Let R =
⊕

n∈ � 0
Rn be as in Example 1.2, let R′

0 := R0[z]( � 0,z), where z is an
indeterminante. Let R′ := R′

0⊗R0 R and let � ′
0 be the maximal ideal of R′

0. Then, by
the graded flat base change property of local cohomology there are isomorphisms of
R′

0-modules H2
R′

+
(R′)n

∼= R′
0 ⊗R0 H2

R+
(R)n for all n ∈ � . On use of the Associativity

Formula (cf. Remark 3.8 C)a)) it easily follows that

e � ′

0
(H2

R′

+
(R′)n) = lengthR0

(R′
0 ⊗R0 H2

R+
(R)n) for all n ∈ �

so that the function n 7→ e � ′

0
(H2

R′

+
(R′)n) is not antipolynomial. On the other hand

we have dimR′

0
(H2

R′

+
(R′)n) = 1 for all n � 0.

This shows that the conclusion of Theorem 5.7 need not hold if dim(R0) > 2.

C) Observe that in Theorem 5.7 we did not impose that the set Supp0(H
i
R+

(M)n) is

asymptotically stable for n → −∞ but only that dimR0(H
i
R+

(M)n) ultimately takes
a positive value if n tends to −∞.

Notice that in Theorem 5.7 the only restriction on the base ring R0 was that dim(R0) =
2. But under reasonably mild conditions on the structure of R0, one has the following
extension of Theorem 5.7.

5.9. Theorem. Let i ∈ � 0 and assume that R0 is a finite integral extension of a
domain or essentially of finite type over a field. Assume that dimR0(H

i
R+

(M)n) ≥

dim(R0)− 1 for infinitely many integers n. Then the set Supp0(H
i
R+

(M)n) is asymp-

totically stable for n → −∞ and there is a polynomial S̃ ∈ � [x] such that deg(S̃) < i

and e � 0(H
i
R+

(M)n) = S̃(n) for all n � 0.

Proof. If dimR0(H
i
R+

(M)n) = dim(R0) for infinitely many n ∈ � , we may conclude

by Corollary 3.12. So, we may assume that dimR0(H
i
R+

(M)n) = dim(R0) − 1 for
infinitely many n ∈ � . Now, by [B-F-L, Theorem 3.7 and Proposition 3.9] the set

{ � 0 ∈ AssR0(H
i
R+

(M)n)| dim(R0/ � 0) ≥ dim(R0) − 1}

is asymptotically stable for n → −∞. This shows that dimR0(H
i
R+

(M)n) = dim(R0)−

1 and that there is a non-empty set W ⊆ Spec(R0) with Supp0(H
i
R+

(M)n) = W for
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all n � 0.
Now, let � 0 ∈ W. Then dim(R0/ � 0) = dim(R0) − 1 and hence dim((R0) � 0) ≤ 1.
As � 0 ∈ Supp0(H

i
R+

(M)n) for all n � 0 and in view of the graded flat base change

property of local cohomology we see that H i
(R � 0 )+

(M � 0)n
∼= (H i

R+
(M)n) � 0 is an (R0) � 0-

module of finite length and hence H i
(R � 0 )+

(M � 0)n = Γ � 0(H
i
(R � 0 )+

(M � 0)n) for all n � 0.

But according to [B-F-T, Theorem 3.5 d)] there is a polynomial P̃ [ � 0] ∈ � [x] of degree

less than i such that length(R0) � 0
(H i

(R � 0 )+
(M � 0)n) = P̃ [ � 0](n) for all n � 0. Now we

get our claim by Theorem 3.6.
�

Our last result is an extension of [B-F-T, Theorem 2.5 b)] to the case dim(R0) = 2.

5.10. Proposition. Let i ∈ � 0 and let dim(R0) ≤ 2. Then the graded R-module
H1

� 0R(H i
R+

(M)) is Artinian.

Proof. If dim(R0) ≤ 1, this statement is the same as [B-F-T, Theorem 2.5 b)]. Let
dim(R0) = 2. There is a system of parameters (x, y) of R0 and hence H1

� 0R(H i
R+

(M)) =

H1
(x,y)R(H i

R+
(M)). Consider the exact sequence of R-modules

0 → H1
yR(H i−1

R+
(M)) → H i

(y,R+)(M) → ΓyR(H i
R+

(M)) → 0,

which yields an epimorphism H1
xR(H i

(y,R+)(M)) →→ H1
xR(ΓyR(H i

R+
(M))). Further-

more, there is a monomorphism

H1
xR(H i

(y,R+)(M)) � H i+1
(x,y,R+)(M) = H i+1

� (M),

and the latter module is Artinian. So H1
xR(ΓyR(H i

R+
(M))) is Artinian.

Application of the functor ΓxR to the monomorphism H1
yR(H i

R+
(M)) � H i+1

(y,R+)(M)

yields a monomorphism ΓxR(H1
yR(H i

R+
(M))) � ΓxR(H i+1

(y,R+)(M)). Furthermore,

there is an epimorphism

H i+1
� (M) = H i+1

(x,y,R+)(M) →→ ΓxR(H i+1
(y,R+)(M)),

and the first module is Artinian. So ΓxR(H1
yR(H i

R+
(M))) is Artinian. Now, by the

exact sequence

0 → H1
xR(ΓyR(H i

R+
(M))) → H1

(x,y)R(H i
R+

(M)) → ΓxR(H1
yR(H i

R+
(M))) → 0

we get our claim.
�

The following example shows that the above result need not hold if dim(R0) > 2.

5.11. Example. Let K be a field, let x,y, z,u,v, t be indeterminates and let R0 :=
K[x,y, z](x,y,z) and � 0 := (x,y, z)R0. Furnish the polynomial ring S := R0[u,v]
with its standard grading and consider the Noetherian homogeneous R0-algebra R :=
S/(xv − yu)S, which is canonically isomorphic to the Rees ring R0[(x,y)t] of R0

with respect to the ideal (x,y) ⊆ R0. Let R0 := K[x,y](x,y)
∼= R0/zR0, � 0 :=
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� 0R0 = (x,y)R0 and R := R/zR = S/(xv− yu)S, where S := R0[u,v]. If we apply

cohomology to the exact sequence 0 → R
z·
→ R → R → 0 and observe that R+ is

generated by two elements, we get an exact sequence of graded R-modules

(α) H2
R+

(R)
z·
→ H2

R+
(R) → H2

R+
(R) → 0.

As R ∼= R0⊗R0
R, the graded flat base change property of local cohomology gives rise

to isomorphisms of R0-modules H2
R+

(R) ∼= R0 ⊗R0
H2

R+
(R). As R0 is isomorphic to a

localization of the polynomial ring R0[z], it follows that the map z· in (α) is injective.
so applying local cohomology with support in � 0R we get a monomorphism of R-
modules Γ � 0R(H2

R+
(R)) � H1

� 0R(H2
R+

(R)). But according to [B-F-T, Example 4.2],

the R-module Γ � 0R(H2
R+

(R)) = Γ � 0(H
2
R+

(R)) is not Artinian. So H1
� 0R(H2

R+
(R)) is

not Artinian.
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