ON PROJECTIVE CURVES OF MAXIMAL REGULARITY

MARKUS BRODMANN AND PETER SCHENZEL

ABSTRACT. Let $\mathcal{C} \subseteq \mathbb{P}_K^r$ be a non-degenerate projective curve of degree d > r+1 of maximal regularity so that \mathcal{C} has an extremal secant line \mathbb{L} . We show that $\mathcal{C} \cup \mathbb{L}$ is arithmetically Cohen Macaulay if d < 2r-1 and we study the Betti numbers and the Hartshorne-Rao module of the curve \mathcal{C} .

1. Introduction

Let $\mathcal{C} \subseteq \mathbb{P}^r_K$ denote a non-degenerate projective curve, where K is an algebraically closed field. Two basic numerical invariants related to \mathcal{C} are the degree deg \mathcal{C} and the Castelnuovo-Mumford regularity reg \mathcal{C} . In their fundamental paper (cf. [5]) Gruson, Lazarsfeld and Peskine have shown that

$$\operatorname{reg} \mathcal{C} < \operatorname{deg} \mathcal{C} - r + 2.$$

The degree of the curve \mathcal{C} reflects its geometric behaviour. The Castelnuovo-Mumford regularity of the curve $\mathcal{C} \subseteq \mathbb{P}^r_K$ defined in terms of the vanishing of local cohomology, can be expressed by the degree of the generators of the higher syzygy modules of the defining ideal $I_{\mathcal{C}}$ and thus reflects the cohomological and homological behaviour of \mathcal{C} .

In [1] we have studied non-degenerate curves of degree r+2 in \mathbb{P}_K^r . For $r \geq 4$ we were lead to distinguish four different main cases I - IV, according to the structure of the Hartshorne-Rao module of the considered curve. In geometric terms, case IV is precisely the case in which an extremal secant occurs or – in (co-)homological terms – the case of maximal regularity. In this paper, we investigate this latter geometric or homological situation in arbitrary degrees.

So, we consider a non-degenerate projective irreducible curve $\mathcal{C} \subseteq \mathbb{P}^r_K$ of degree d > r + 1 (with $r \geq 3$) whose Castelnuovo-Mumford regularity takes the maximally possible value d - r + 2. In this case, \mathcal{C} is smooth and rational and has a (d - r + 2)-secant line \mathbb{L} (cf. [5]).

We study the Betti numbers and the Hartshorne-Rao module of the curve \mathcal{C} . To do so, we investigate the relation between the two curves \mathcal{C} and $\mathcal{C} \cup \mathbb{L}$ from the cohomological and the homological point of view (cf. 2.7 resp. 4.1).

¹⁹⁹¹ Mathematics Subject Classification. Primary: 14H45; Secondary: 13D02.

Key words and phrases. Projective curves, Hartshorne-Rao modules, Betti numbers, maximal Castelnuovo-Mumford regularity, extremal secant line.

The second author was partially supported by Swiss National Science Foundation (Projects No. 20-52762.97 and 20-59237.99).

Quite often $\mathcal{C} \cup \mathbb{L}$ is an arithmetically Cohen-Macaulay (CM) curve. Then much can be said on \mathcal{C} , mainly as the structure of the Hartshorne-Rao module is known in this case (cf. 3.3 (ix), 4.5). Obviously, to make use of this fact, one needs to know under which circumstances $\mathcal{C} \cup \mathbb{L}$ is arithmetically CM. We give various necessary and sufficient conditions for this (see 3.3, 3.6). Also, we show that $\mathcal{C} \cup \mathbb{L}$ is arithmetically CM if d < 2r - 1 (cf. 3.5).

In the case where $\mathcal{C} \cup \mathbb{L}$ is arithmetically CM we give an approximation of the Betti numbers of \mathcal{C} (cf. 4.6), which extends the corresponding result for d = r + 2 (cf. [1]) to arbitrary degrees d.

Also we briefly discuss the "exceptional case" in which d = r + 1 (cf. 5.1) and we present several examples calculated by means of the computer algebra system Singular (cf. [4]). By these example we notably illustrate:

- The occurrence and non-occurrence of a trisecant line in the exceptional case d = r + 1 (cf. 5.1).
- The fact that in the general case, C need not lie on a surface of minimal degree (cf. 5.3).
- The fact that in the case d = 2r 1 the curve $\mathcal{C} \cup \mathbb{L}$ need not but can be arithmetically CM (cf. 5.4 resp. 5.5), while this is true in general for d < 2r 1.
- The variability of the (socle of) the Harthshorne-Rao module \mathcal{C} , if $\mathcal{C} \cup \mathbb{L}$ is not arithmetically CM (cf. 5.6).

In Section 2 we prove a few results about the secant lines. The main result 2.3 gives an estimate on the dimension of the space of global sections of $\mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(1)$. Section 3 is devoted to the study of the structure of the coordinate ring of $\mathcal{C} \cup \mathbb{L}$. In Section 4 we continue with the homological aspect describing the Betti numbers of the coordinate rings of \mathcal{C} and $\mathcal{C} \cup \mathbb{L}$ and their interaction.

2. Extremal Secants

We fix a few notations, which we use throughout this paper.

Notation and Remark 2.1. A) Let $R = \bigoplus_{n\geq 0} R_n$ be a non-negatively graded Noetherian ring. By R_+ we shall denote the irrelevant homogeneous ideal $\bigoplus_{n>0} R_n$ of R. If M is a graded R-module, and if $n \in \mathbb{Z}$, we use M_n to denote the n-th graded component of M. Also, for $n \in \mathbb{Z}$, we use $M_{\leq n}$ to denote the R_0 -submodule $\bigoplus_{m\leq n} M_m$ of M and $M_{\geq n}$ to denote the graded R-submodule $\bigoplus_{m\geq n} M_m$ of M. All polynomial rings are furnished with their standard grading.

- B) Let r be an integer ≥ 4 , let K be an algebraically closed field and let $S = K[x_0, \ldots, x_r]$ be a polynomial ring. Let $\mathcal{C} \subseteq \mathbb{P}_K^r = \operatorname{Proj}(S)$ be a non-degenerate curve, hence a non-degenerate closed connected integral subscheme of dimension 1. Moreover, let $\mathcal{J} = \mathcal{J}_{\mathcal{C}} \subseteq \mathcal{O}_{\mathbb{P}_K^r}$ the sheaf of vanishing ideals of \mathcal{C} , let $I = I_{\mathcal{C}} = \bigoplus_{n \in \mathbb{Z}} H^0(\mathbb{P}^r, \mathcal{J}(n)) \subseteq S$ denote the vanishing ideal of \mathcal{C} and let $A = A_{\mathcal{C}} := S/I$ denote the homogeneous coordinate ring of \mathcal{C} .
- C) Keep the above notation. We use d to denote the degree of $\mathcal C$ and $\overline d$ to denote the

generating degree of I, thus $\overline{d} = \min\{n \in \mathbb{N} | I = (I_{\leq n})S\}$. Keeping in mind these definitions we have the inequalities

$$\overline{d} \le \operatorname{reg} \mathcal{C} = \operatorname{reg} I \le d - r + 2,$$

in which reg is used to denote Castelnuovo-Mumford regularities (cf. [5]).

D) Let $\mathbb{L} \subseteq \mathbb{P}_K^r$ be a line, let $L \subseteq S$ be the vanishing ideal of \mathbb{L} and let

$$J = J_{\mathcal{C} \cup \mathbb{L}} = L \cap I \subset S$$

be the vanishing ideal of the union $\mathcal{C} \cup \mathbb{L} \subseteq \mathbb{P}_K^r$. Also let μ denote the degree (thus the length) of the scheme $\mathcal{C} \cap \mathbb{L} = \operatorname{Proj} S/(I+L) \subseteq \mathbb{P}_K^r$, so that \mathbb{L} is a μ -secant of \mathcal{C} . As S/L is isomorphic to a polynomial ring in two indeterminates, the vanishing ideal $(I+L)^{\operatorname{sat}} = \bigcup_{n \in \mathbb{N}} (I+L) :_S (S_+)^n \subseteq S$ of the intersection $\mathcal{C} \cap \mathbb{L} \subseteq \mathbb{P}_K^r$ can be written in the following form

$$(I+L)^{\text{sat}} = L + fS \text{ for some } f \in S_u.$$

Lemma 2.2. In the notations of 2.1, we have

$$\mu \le \overline{d} \le \operatorname{reg} \mathcal{C} \le d - r + 2.$$

Moreover, if $\mu = \overline{d}$, we may choose $f \in I_{\mu} = I \cap S_{\mu}$. Finally, if $f \in I_{\mu}$, then

$$(I + L)^{\text{sat}} = L + fS = I + L \text{ and } I = J + fS.$$

Proof. As L is a prime ideal with $I, S_+ \nsubseteq L$, we have $I_{\overline{d}} \nsubseteq L$. As $I_{\overline{d}} \subseteq L + fS$ it follows $\mu \leq \overline{d}$. Moreover, if $\mu = \overline{d}$, then

$$L_{\mu} \subsetneq I_{\mu} + L_{\mu} \subseteq (L + fS)_{\mu} = L_{\mu} + fK,$$

thus $I_{\mu} + L_{\mu} = L_{\mu} + fK$, and this allows to choose $f \in I_{\mu}$. Finally, whenever $f \in I_{\mu}$, we have $L + fS \subseteq I + L \subseteq (I + L)^{\text{sat}} = L + fS$. This proves the stated equalities. \square

Theorem 2.3. If $\mu \geq 2$, then $h^0(\mathcal{C} \cup \mathbb{L}, \mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(1)) \leq d - \mu + 3$.

Proof. Let $\delta := h^0(\mathcal{C} \cup \mathbb{L}, \mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(1))$ and consider the graded K-algebra

$$D := \bigoplus_{n \geq 0} H^0(\mathcal{C} \cup \mathbb{L}, \mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(n)),$$

so that $\delta = \dim_K D_1 \ge r+1$. As $S/J \subseteq K[D_1] \subseteq D$ and $(S/J)_n = D_n$ for all $n \gg 0$, the inclusion $S/J \hookrightarrow K[D_1]$ yields an isomorphism of schemes

$$\varepsilon: \operatorname{Proj} K[D_1] \xrightarrow{\sim} \operatorname{Proj}(S/J) = \mathcal{C} \cup \mathbb{L}.$$

Now, set $\mathbb{P}_K^{\delta-1} = \operatorname{Proj} T$, where T is the polynomial ring $S[x_{r+1}, \ldots, x_{\delta-1}]$ and let π be a surjective homomorphism of graded K-algebras, which appears in the commutative diagram

$$\begin{array}{ccc} S & \hookrightarrow & T \\ \downarrow & & \downarrow \pi \\ S/J & \hookrightarrow & K[D_1]. \end{array}$$

Consider $\operatorname{Proj} K[D_1]$ as a closed non-degenerate subscheme of $\mathbb{P}_K^{\delta-1}$ by means of π and let $Z = \operatorname{Proj}(T/S_+T)$. Then, $Z \cap \operatorname{Proj} K[D_1] = \emptyset$ and we have a commutative diagram

$$\begin{array}{ccc} \operatorname{Proj} K[D_1] & \xrightarrow{\sim} & \mathcal{C} \cup \mathbb{L} \\ \downarrow & & \downarrow \\ \mathbb{P}_K^{\delta-1} \setminus Z & \xrightarrow{p} & \mathbb{P}^r \end{array}$$

in which p is the projection centered at Z. So, for any closed subscheme $Y \subseteq \mathcal{C} \cup \mathbb{L}$, we know that $\varepsilon^{-1}(Y)$ is a closed subscheme of $\mathbb{P}_K^{\delta-1}$, isomorphic to Y and of the same degree as Y. Therefore $\mathcal{C}' := \varepsilon^{-1}(\mathcal{C}) \subseteq \mathbb{P}_K^{\delta-1}$ is a reduced irreducible curve of degree d, $\mathbb{L}' := \varepsilon^{-1}(\mathbb{L}) \subseteq \mathbb{P}_K^{\delta-1}$ is a line and $\mathcal{C}' \cup \mathbb{L}' = \operatorname{Proj} K[D_1]$. As

$$\mathcal{C}' \cap \mathbb{L}' = \varepsilon^{-1}(\mathcal{C} \cap \mathbb{L}) \simeq \mathcal{C} \cap \mathbb{L},$$

we see that \mathbb{L}' is a μ -secant of \mathcal{C}' .

Moreover, \mathcal{C}' is non-degeneratedly embedded into $\mathbb{P}^{\delta-1}_K$. Otherwise, we could find a hyperplane $H\subseteq \mathbb{P}^{\delta-1}_K$ with $\mathcal{C}'\subseteq H$. As $\mathcal{C}'\cup \mathbb{L}'\subseteq \mathbb{P}^{\delta-1}_K$ is non-degenerate, this would imply $\mathbb{L}'\nsubseteq H$ and hence $\mathcal{C}'\cap \mathbb{L}'\subseteq H\cap \mathbb{L}'\simeq \operatorname{Spec}(K)$, a contradiction to the assumption $\mu\geq 2$.

But now, by 2.2 we have
$$\mu \leq d - (\delta - 1) + 2$$
, thus $\delta \leq d - \mu + 3$.

Remark and Definition 2.4. A) We keep the notation of 2.1. In accordance with 2.1 C) we say that C is of maximal regularity if reg C = d - r + 2.

- B) We say that \mathbb{L} is an extremal secant of \mathcal{C} if $\mu = \operatorname{reg} \mathcal{C}$. (This is justified in view of 2.2.)
- C) On use of the table of [5, p. 504] we can say:

If d > r + 1 and if C is of maximal regularity, then C is smooth, rational and has an extremal secant line.

In particular we can say the following (cf. 2.2):

If d > r + 1, the curve C is of maximal regularity if and only if it has a (d - r + 2)-secant line. In this case C is smooth and rational.

Convention and Remark 2.5. A) We are interested in the case where \mathcal{C} is of maximal regularity. For the moment, we do not focus on the two particular cases d = r and d = r + 1. So, in view of 2.4 C) it is natural to convene from now on, that d > r + 1 and $\mu = d - r + 2$.

B) In view of 2.2 we now can write

$$I = J + fS$$
 with $f \in I_{d-r+2} \setminus L$,

where L denotes the ideal defining the secant line. As $L \subseteq S$ is a prime ideal, we have $J:_S f = (I \cap L):_S f = L:_S f = L$ and hence get graded isomorphisms

$$I/J \simeq fS/f(J:_S f) \simeq (S/L)(-d+r-2)$$

which yield the short exact sequence of graded S-modules

$$0 \to S/L(-d+r-2) \to S/J \to A \to 0.$$

C) In view of 2.4 C), the curve $\mathcal{C} \subseteq \mathbb{P}^r_K$ is smooth and rational. Therefore, the graded K-algebra

$$\Gamma(\mathcal{C}) := \bigoplus_{n>0} H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}}(n))$$

may be viewed as the homogeneous coordinate ring of a rational normal curve $\mathcal{C}' \subseteq \mathbb{P}^d_K$ of degree d, (cf. [5]). So, if K[s,t] is a polynomial ring, we have an isomorphism of graded K-algebras, $\Gamma(\mathcal{C}) \simeq K[s,t]^{(d)}$, where $R^{(d)}$ is used to denote the d-th Veronesean subring $\bigoplus_{n>0} R_{nd}$ of the graded ring $R = \bigoplus_{n>0} R_n$.

Notation and Remark 2.6. A) Let R be a non-negatively graded Noetherian K-algebra and let M be a graded R-module. For $i \in \mathbb{N}_0$, let $H^i(M) = H^i_{R_+}(M)$ denote the i-th local cohomology module of M with respect to the ideal R_+ . Then $H^i(M)$ is a graded R-module. If M is finitely generated, each graded component of $H^i(M)$ is of finite dimension over K. In this case, we set

$$h^{i}(M)_{n} = h^{i}_{R_{+}}(M)_{n} := \dim_{K} H^{i}(M)_{n}.$$

Finally, we use D(M) or $D_{R_+}(M)$ to denote the R_+ -transform $\varinjlim \operatorname{Hom}_R((R_+)^n, M)$ of M, which is again a graded R-module.

B) Let X = Proj(R) and let $\mathcal{F} = \tilde{M}$ be the sheaf of \mathcal{O}_X -modules induced by M. Then, the Serre-Grothendieck correspondence yields natural isomorphisms of graded R-modules

$$D(M) \simeq \bigoplus_{n \in \mathbb{Z}} H^0(X, \mathcal{F}(n))$$
 and $H^{i+1}(M) \simeq \bigoplus_{n \in \mathbb{Z}} H^i(X, \mathcal{F}(n))$ for all $i > 0$.

C) Let $Y \subseteq \mathbb{P}_K^r$ be a closed subscheme, $\mathcal{J}_Y \subseteq \mathcal{O}_{\mathbb{P}_K^r}$ its sheaf of vanishing ideals, $N \subseteq S$ its homogeneous vanishing ideal and C = S/N its homogeneous coordinate ring. Then, by part B), the *Hartshorne-Rao module*

$$\bigoplus_{n\in\mathbb{Z}}H^1(\mathbb{P}^r_K,\mathcal{J}_Y(n))$$

of Y is naturally isomorphic to the graded S-module $H^1(C)$.

Proposition 2.7. In the notation of 2.6 and under the convention 2.5 we have the following results

a)
$$h^{1}(A)_{n} = \begin{cases} 0, & for \ n \notin \{1, \dots, d-r\}, \\ d-r, & for \ n=1, \\ 1, & for \ n=d-r. \end{cases}$$

b) $h^{2}(A)_{n} = \max\{0, -dn-1\} \text{ for all } n \in \mathbb{Z}.$
c) $h^{1}(S/J)_{n} = \begin{cases} 0, & for \ n \notin \{2, \dots, d-r-1\}, \\ h^{1}(A)_{n}-d+r+n-1, & for \ 2 \leq n \leq d-r-1. \end{cases}$
d) $h^{2}(S/J)_{n} = \begin{cases} 0, & for \ all \ n > 0, \\ d-r+1, & for \ n=0, \\ -n(d+1)+d-r, & for \ all \ n < 0. \end{cases}$

Proof. a): As A is a domain of dimension > 1 and K is algebraically closed, $h^1(A)_n = 0$ for all $n \le 0$. As reg $A = \operatorname{reg} \mathcal{C} - 1 = d - r + 1$, we have $h^1(A)_n = 0$ for all $n \ge d - r + 1$. In view of 2.6 C) and the table of [5, p. 504], we have

$$h^{1}(A)_{d-r} = h^{1}(\mathbb{P}_{K}^{r}, \mathcal{J}(d-r)) = 1.$$

By 2.5 C) and the Serre-Grothendieck correspondence 2.6 B) we get isomorphisms of graded K-algebras

$$D(A) \simeq \Gamma(\mathcal{C}) \simeq K[s,t]^{(d)}$$
.

So, the graded exact sequence $0 \to A \to D(A) \to H^1(A) \to 0$ yields $h^1(A)_1 = \dim_K (K[s,t]^{(d)})_1 - \dim_K A_1 = d - r$.

b): Keep in mind the natural isomorphisms of graded A-modules

$$H^2(A) \simeq H^2(D(A)) \simeq H^2_{A_+}(D(A)) \simeq H^2_{A_+D(A)}(D(A)) = H^2_{\operatorname{Rad} A_+D(A)}(D(A))$$

which follow from the fact that D(A)/A is of finite length and from the base ring independence of local cohomology. Because of the isomorphism $D(A) \simeq K[s,t]^{(d)}$ and as $\operatorname{Rad} A_+ D(A) = D(A)_+$ we obtain graded isomorphisms

$$H^2(A) \simeq H^2_{D(A)_+}(D(A)) \simeq H^2_{(K[s,t]^{(d)})_+}(K[s,t]^{(d)}) \simeq H^2_{K[s,t]_+}(K[s,t])^{(d)}.$$

Here we have to remind the fact that local cohomology commutes with taking Veroneseans. So it follows $h^2(A)_n = h^2_{K[s,t]_+}(K[s,t])_{dn} = \max\{0, -dn-1\}$. c), d): If we apply local cohomology to the short exact sequence of 2.5 B) and keep in mind that $H^i(S/L) = 0$ for all $i \neq 2$ and $h^2(S/L)_n = \max\{0, -n-1\}$ for all $n \in \mathbb{Z}$, we obtain exact sequences

$$0 \to H^1(S/J)_n \to H^1(A)_n \to K^{\max\{0, -n + d - r + 1\}} \to H^2(S/J)_n \to H^2(A)_n \to 0.$$

It follows from a) that $h^1(S/J)_n = 0$ for all $n \notin \{1, \ldots, d-r\}$. By 2.3 and on use of the Serre-Grothendieck correspondence we have

$$\dim_K D(S/J)_1 = h^0(\mathcal{C} \cup \mathbb{L}, \mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(1)) < r + 1.$$

Hence, the graded short exact sequence $0 \to S/J \to D(S/J) \to H^1(S/J) \to 0$ induces $h^1(S/J)_1 \le r + 1 - \dim_K(S/J)_1$. As $J_1 \subseteq I_1 = 0$, we get $h^1(S/J)_1 = 0$. If we apply the above sequence with n = 1 and keep in mind statements a) and b), it follows $h^2(S/J)_1 = 0$ and hence $h^2(S/J)_n = 0$ for all n > 0. Now another use of statements a), b) and the above exact sequences proves statements d) and c).

3. On the Structure of S/J

We keep the notation introduced in 2.1 and the convention made in 2.5. Our aim is to study the homogeneous coordinate ring S/J of the union $\mathcal{C} \cup \mathbb{L} \subseteq \mathbb{P}^r_K$ and to relate it to the curve \mathcal{C} and its Hartshorne-Rao module $H^1(A)$. We start with a few general observations.

Remark 3.1. A) For a finitely generated graded module M over a non-negatively graded Noetherian ring $R = \bigoplus_{n>0} R_n$ and for $i \in \mathbb{N}_0$ let

$$a_i(M) := \sup\{n \in \mathbb{Z} | H_{R_+}^i(M)_n \neq 0\},\$$

with the convention that $\sup \emptyset = -\infty$. In this notation it follows from 2.7 c), d), that

$$reg S/J = \max\{2, a_1(A) + 1\} \le d - r.$$

B) As a consequence of this last observation we have reg $J \leq d-r+1$. By 2.5 B) we have I=J+fS for some $f \in I_{d-r+2}$. As J is generated in degrees $\leq \operatorname{reg} J$, it follows

$$J = (I_{\leq \operatorname{reg} J})S = (I_{\leq d-r+1})S.$$

C) As a consequence of the previous equalities we have

$$L = (J :_S f) = (J :_S (J_{d-r+2} + fK)) = ((I_{\leq d-r+1}) :_S I_{d-r+2}),$$

so that L is determined by I and hence \mathbb{L} by \mathcal{C} . This shows that \mathbb{L} is the unique extremal secant line of \mathcal{C} .

We add a few more observations concerning the Hartshorne-Rao modules $H^1(A)$ and $H^1(S/J)$ of the curves $\mathcal{C} \subseteq \mathbb{P}^r_K$ resp. $\mathcal{C} \cup \mathbb{L} \subseteq \mathbb{P}^r_K$.

Remark 3.2. A) As $H^i(D(A)) = 0$ for all $i \neq 2$ and as $H^2(D(A)) \simeq H^2(A)$, it follows from 2.7 b) that the A-module D(A) satisfies reg D(A) = 1. So, as a graded A-module, D(A) is generated in degrees ≤ 1 . In view of the natural epimorphism

$$D(A) \to H^1(A) \to 0$$

and as $H^1(A)_0 = 0$ (cf. 2.7 a)) it follows, that $H^1(A)$ is generated in degree 1, and thus $H^1(A) = (H^1(A)_1)S$.

B) As $H^i(D(S/J)) = 0$ for all $i \neq 2$ and as $H^2(D(S/J)) \simeq H^2(S/J)$, it follows from 2.7 d) that reg D(S/J) = 2, so that the S/J-module D(S/J) is generated in degrees ≤ 2 . In view of the natural epimorphism

$$D(S/J) \to H^1(S/J) \to 0$$

and as $H^1(S/J)_{\leq 1}=0$ (cf. 2.7 c)), it follows that $H^1(S/J)$ is generated in degree 2, thus $H^1(S/J)=(H^1(S/J)_2))S$.

C) For a graded S-module T, let soc T denote the socle $0:_S S_+ = \operatorname{Hom}_S(K,T)$ of T. If we apply cohomology to the sequence of 2.5 B) and keep in mind the left-exactness of the functor soc, we get an exact sequence of graded S-modules

$$0 \to \operatorname{soc} H^1(S/J) \to \operatorname{soc} H^1(A) \to \operatorname{soc} H^2(S/L(-d+r-2)).$$

As soc $H^2(S/L(-d+r-2)) = K(-d+r)$ and as $H^1(S/J)_{d-r} = 0$, (cf. 2.7 c)), we thus get an isomorphism of graded S-modules

$$\operatorname{soc} H^1(A) \simeq \operatorname{soc}(H^1(S/J)) \oplus K(-d+r),$$

which relates the socles of the Hartshorne-Rao modules of the two curves \mathcal{C} and $\mathcal{C} \cup \mathbb{L} \subseteq \mathbb{P}^r_K$.

Resuming our previous results, we get the following Cohen-Macaulay (CM) criterion for the ring S/J.

Theorem 3.3. The following statements are equivalent:

- (i) S/J is CM.
- (ii) $H^1(S/J) = 0$.
- (iii) $h^1(S/J)_2 = 0$.
- (iv) reg S/J = 2.
- (v) $h^1(A)_n = d r + 1 n$, for n = 1, ..., d r.
- (vi) $h^1(A)_2 \le d r 1$.
- (vii) soc $H^1(A) = K(r d)$.
- (viii) There is an isomorphism of graded S-modules

$$H^{1}(A) \simeq H^{2}(S/L)(-d+r-2)_{>1}.$$

(ix) There are independent linear forms $y_0, \ldots, y_r \in S_1$ and an isomorphism of graded S-modules

$$H^1(A) \simeq \operatorname{Hom}_K(S/((y_0, y_1)^{d-r} + (y_2, \dots, y_r)), K)(r - d).$$

Proof. (i) \iff (ii): This is clear, as dim S/J=2 and $H^0(S/J)=0$.

- (ii) \iff (iii): Clear, as $H^1(S/J)$ is generated in degree 2 (cf. 3.2 B)).
- (ii) \iff (iv): Clear by the estimate of 3.1 A) and the fact that $H^1(S/J)_{<1} = 0$.
- (ii) \iff (v): Clear by 2.7 a) and c).
- (iii) \iff (vi): Clear by 2.7 c).
- (ii) \iff (vii): As $H^1(S/J)_{\geq d-r} = 0$ (cf. 2.7 c)) and as $H^1(S/J) = 0$ if and only if soc $H^1(S/J) = 0$, we conclude by the isomorphism of 3.2 C).
- (ii) \Longrightarrow (viii): If we apply the cohomology functor to the exact sequence of 2.5 B), keep in mind that $H^1(S/J) = 0$ and $H^1(A)_{\leq 0} = H^2(S/J)_{\geq 1} = 0$ (cf. 2.7 a), d)) we get an isomorphism of graded S-modules $H^1(A) \simeq H^2(S/L)(-d+r-2)_{\geq 1}$.
- (viii) \Longrightarrow (ix): Choose linear forms $y_0, y_1, y_2, \ldots, y_r \in S_1$ such that $L = (\bar{y}_2, \ldots, y_r)$ and $S_+ = (y_0, y_1) + L$. Then, there is an isomorphism of graded S-modules

$$S/((y_0, y_1)^{d-r} + (y_2, \dots, y_r)) \simeq (S/L)/(S/L)_{>d-r}.$$

Moreover, there is an isomorphism of graded S-modules

$$\operatorname{Hom}_K((S/L)/(S/L)_{\geq d-r},K) \simeq \operatorname{Hom}_K(S/L,K)_{\geq r-d+1}.$$

By graded local duality, there is an isomorphism of graded S-modules

$$\operatorname{Hom}_K(S/L,K) \simeq H^2(S/L)(-2).$$

So, there are isomorphisms of graded S-modules

$$H^{2}(S/L)(-d+r-2)_{\geq 1} \simeq \operatorname{Hom}_{K}(S/L,K)(-d+r)_{\geq 1} \simeq$$

$$\operatorname{Hom}_K(S/L, K)_{\geq r-d+1}(r-d) \simeq \operatorname{Hom}_K(S/((y_0, y_1)^{d-r} + (y_2, \dots, y_r)), K)(r-d).$$

 $(ix) \implies (vi)$: This follows by a direct calculation.

Our next aim is to prove a sufficient criterion for S/J to be CM. We begin with a preliminary remark.

Remark 3.4. A) Let $s \in \mathbb{N}$ and let $X \subseteq \mathbb{P}_K^s$ a scheme of d points in semi-uniform position (cf. [7]), let $N \subseteq T := K[x_0, \ldots, x_s]$ be the homogeneous vanishing ideal of X so that T/N is the homogeneous coordinate ring of X. Then, according to [3] or [7], we have the estimate

$$\operatorname{reg} T/N = \operatorname{reg} N - 1 \le \left\lceil \frac{d-1}{s} \right\rceil.$$

B) Let X as in A) and assume in addition that $d \leq 2s$. Then, the ideal N satisfies the condition N_p of Green-Lazarsfeld with p = 2s + 1 - d (cf. [3, Theorem 1]). Thus, in particular N is generated by quadrics.

Now, we are ready to prove the announced Cohen-Macaulay criterion.

Proposition 3.5. If d < 2r - 1, then S/J is a Cohen-Macaulay ring.

Proof. Let $\ell \in S_1$ be a generic linear form so that $\operatorname{Proj}(A/\ell A) = \operatorname{Proj}(S/(I,\ell))$ is a scheme of d points in semi-uniform position. After a linear coordinate transformation we may assume that $\ell = x_r$ and set $S/x_rS = K[x_0, \ldots, x_{r-1}] = T$. Then,

$$\operatorname{Proj}(A/x_r A) = \operatorname{Proj}(T/IT) \subseteq \operatorname{Proj} T = \mathbb{P}_K^{r-1}$$

is a scheme of d points in semi-uniform position with vanishing ideal

$$N = (IT)^{\text{sat}} = \bigcup_{n \ge 0} (IT :_T (T_+)^n).$$

By 3.4 B) we know that N is generated by quadrics. In view of the natural isomorphism $H^0(A/x_rA) \simeq N/IT$ it follows that $H^0(A/x_rA)$ is generated in degree two. If we apply cohomology to the exact sequence $0 \to A(-1) \xrightarrow{x_r} A \to A/x_rA \to 0$, we get exact sequences

$$0 \to H^0(A/x_rA)_n \to H^1(A)_{n-1} \to H^1(A)_n \to H^1(A/x_rA)_n$$

for all $n \in \mathbb{Z}$. As

$$H^{1}(A/x_{r}A)_{n} \simeq H^{1}(T/IT)_{n} \simeq H^{1}(T/N)_{n} = 0$$

for all $n \ge \operatorname{reg} T/N$, 3.4 A) yields that $H^1(A/x_rA)_n = 0$ for all $n \ge \left[\frac{d-1}{r-1}\right] = 2$. If we apply the above sequence with n = d - r + 1 and observe 2.7 a), it follows $H^0(A/x_rA)_{d-r+1} \ne 0$. As $H^0(A/x_rA)$ is generated in degree 2 we get $H^0(A/x_rA)_2 \ne 0$. Applying the above sequence with n = 2 and observing 2.7 a) we get $h^1(A)_2 \le h^1(A)_1 - 1 = d - r - 1$. So, by 3.3 we get that S/J is CM.

We know by 3.2 B) that $H^1(S/J)$ is generated in degree 2. We close this section with a result on the number of generators of the module $H^1(S/J)$.

Proposition 3.6. $H^1(S/J)$ is minimally generated by

$$\dim_K I_2 - \binom{r+1}{2} + d + 1$$

homogeneous elements of degree 2. In particular we have

$$\dim_K I_2 \ge \binom{r+1}{2} - d - 1$$

with equality if and only if S/J is CM.

Proof. By 2.7 c) we have $h^1(S/J)_2 = h^1(A)_2 - d + r + 1$. In view of the graded exact sequence $0 \to A \to D(A) \to H^1(A) \to 0$ we have

$$h^1(A)_2 = \dim_K D(A)_2 - \dim_K A_2.$$

Moreover the graded isomorphism $D(A) \simeq K[s,t]^{(d)}$ (cf. 2.5 C), 2.6 B)) yields $\dim_K D(A)_2 = 2d+1$. As $\dim_K A_2 = \dim_K S_2 - \dim_K I_2$ and $\dim_K S_2 = \binom{r+1}{2}$ we obtain $h^1(S/J)_2 = \dim_K I_2 - \binom{r+1}{2} + d + 1$. On use of this equality and of 3.3 all our claims follow.

4. Betti Numbers

We keep our previous notation and hypothesis. We shall relate now the Betti numbers of the S-module A to the Betti numbers of the S-modules S/J and $H^1(A)$. Our interest shall be focused to the case in which S/J is CM. Nevertheless we begin with a few more general considerations.

First of all, we have the following relation between the Betti modules of A and of S/J.

Proposition 4.1. Let $t := \operatorname{reg} S/J$. Then $t \leq d - r$ and for all $i \in \{1, ..., r\}$ we have

$$\operatorname{Tor}_{i}^{S}(K,A) \simeq \operatorname{Tor}_{i}^{S}(K,S/J) \oplus K^{\binom{r-1}{i-1}}(-i-d+r+1).$$

Proof. As depth S/J > 0 we have

$$\operatorname{Tor}_{i}^{S}(K, S/J)_{i+j} = 0 \text{ if } (i, j) \notin \{1, \dots, r\} \times \{1, \dots, t\}.$$

Moreover we have $\operatorname{Tor}_i^S(K,S/L) \simeq K^{\binom{r-1}{i}}(-i)$ for all $i \in \mathbb{N}_0$. By the sequence of 2.5 B), for all $i,j \in \mathbb{N}$, we get an exact sequence

$$K^{\binom{r-1}{i}}(-i-d+r-2)_{i+j} \to \operatorname{Tor}_{i}^{S}(K, S/J)_{i+j} \to \operatorname{Tor}_{i}^{S}(K, A)_{i+j} \to K^{\binom{r-1}{i-1}}(-i-d+r-1)_{i+j} \to \operatorname{Tor}_{i-1}^{S}(K, S/J)_{i+j}.$$

It follows that $\operatorname{Tor}_i^S(K, S/J)_{i+j} \simeq \operatorname{Tor}_i^S(K, A)_{i+j}$ for all $j \notin \{d-r+1, d-r+2\}$. As $t = \operatorname{reg} S/J \leq d-r$ (cf. 3.1 a)), we have $\operatorname{Tor}_i^S(K, S/J)_{i+j} = \operatorname{Tor}_{i-1}^S(K, S/J)_{i+j} = 0$ for all $j \geq d-r+1$. Now, our claim follows easily.

We convene that $\binom{a}{b} = 0$ for all $a \in \mathbb{N}_0$ and all $b \in \mathbb{Z} \setminus \{0, \ldots, a\}$. Concerning the Betti modules of the S-module D(A) we have the following auxiliary result, which shall be used later to determine the Betti numbers of $H^1(A)$. It generalizes and simplifies the corresponding result in [1, (5.3)].

Lemma 4.2. For $i \in \{1, ..., r-1\}$ let $c_i := (d-1)\binom{r-1}{i} - \binom{r-1}{i-1}$. Then

$$\operatorname{Tor}_{i}^{S}(K, D(A)) = \begin{cases} K(0) \oplus K^{d-r}(-1), & \text{for } i = 0\\ K^{c_{i}}(-i-1), & \text{for } i \in \{1, \dots, r-1\}. \end{cases}$$

Proof. In view of the natural exact sequence

$$0 \to A \to D(A) \to H^1(A) \to 0$$

and as $H^1(A)$ is minimally generated by d-r homogeneous elements of degree 1 (cf. 2.7 a), 3.1), we have $\operatorname{Tor}_0^S(K,D(A)) \simeq K(0) \oplus K^{d-r}(-1)$. As $H^1(A)$ is generated in degree 1, we also have $\operatorname{Tor}_1^S(K, H^1(A))_1 = 0$. As I is generated in degrees ≥ 2 , the exact sequence $0 \to I \to S \to A \to 0$ gives $\operatorname{Tor}_1^S(K,A)_1 = 0$. It follows that $\operatorname{Tor}_1^S(K, D(A))_1 = 0$. As $\operatorname{reg} D(A) = 1$ (cf. 3.2 A) and as $\operatorname{depth} D(A) = 2$, it follows that $\operatorname{Tor}_i^S(K,D(A)) \simeq K^{c_i}(-i-1)$ for all $i \in \mathbb{N}$, with $c_i \in \mathbb{N}$ for $i \leq r-1$ and $c_i = 0$ for $i \geq r$.

As $\dim_K D(A)_n = \min\{0, 1 + nd\}$ for all $n \in \mathbb{Z}$, the Hilbert series of the S-module D(A) is $F(t, D(A)) = \sum_{n\geq 0} (1+nd)t^n = (1-t)^{-2}Q(t)$, with Q(t) = 1+(d-1)t. As

$$1 + (d-r)t - c_1t^2 + c_2t^3 - \dots + (-1)^{r-1}c_{r-1}t^r = \sum_{i=1}^{r-1} (-1)^i \dim_K \operatorname{Tor}_i^S(K, D(A))_j t^j = (1-t)^{r-1}Q(t)$$

we obtain
$$c_i = (d-1)\binom{r-1}{i} - \binom{r-1}{i+1}$$
 for $i = 1, \dots, r-1$.

Now, we consider the Betti numbers of the Hartshorne-Rao module $H^1(A)$.

Remark 4.3. In view of the exact sequence $0 \to A \to D(A) \to H^1(A) \to 0$, for all $i \in \mathbb{N}$ and all $j \in \mathbb{Z}$, we get exact sequences of K-vector spaces

$$\operatorname{Tor}_{i+1}^{S}(K, H^{1}(A))_{i+j} \to \operatorname{Tor}_{i}^{S}(K, A)_{i+j} \to \operatorname{Tor}_{i}^{S}(K, D(A))_{i+j}$$

 $\to \operatorname{Tor}_{i}^{S}(K, H^{1}(A))_{i+j} \to \operatorname{Tor}_{i-1}^{S}(K, A)_{i+j} \to \operatorname{Tor}_{i-1}^{S}(K, D(A))_{i+j}$

Proposition 4.4. In our previous notation we have with $H := H^1(A)$:

- a) $\operatorname{Tor}_0^S(K,H) \simeq K^{d-r}(-1)$. b) $\operatorname{Tor}_1^S(K,H) \simeq K^{c_1 \dim_K I_2}(-2)$.
- c) $\operatorname{Tor}_{i}^{S}(K, H) \simeq K^{a_{i}}(-i-1) \oplus \operatorname{Tor}_{i-1}^{S}(K, A)_{>i+2} \text{ with } a_{i} \leq {r+1 \choose i}(d-r) \text{ for } i$ $i \in \{2, \dots, r\}.$ d) $\operatorname{Tor}_{r+1}^S(K, H) \simeq \operatorname{Tor}_r^S(K, A)_{\geq r+3}.$

Proof. As H is minimally generated by d-r elements of degree 1 (cf. 2.7 a), 3.2 A)), we get statement a) and the fact that $\operatorname{Tor}_i^S(K,H)_{\leq i}=0$ for all $i\in\mathbb{N}_0$. If we apply the six term exact sequence of 4.3 with i=1 and keep in mind that $\operatorname{Tor}_0^S(K,A)=K,\operatorname{Tor}_1^S(K,A)_2\simeq I_2$ and $\operatorname{Tor}_1^S(K,D(A))=K^{c_1}(-2)$ (cf. 4.2) we thus get statement b).

Also, in view of the exact sequence of 4.3 and observing 4.2, we obtain graded isomorphisms $\operatorname{Tor}_{i}^{S}(K,H) \simeq K^{a_{i}}(-i-1) \oplus \operatorname{Tor}_{i-1}^{S}(K,A)_{\geq i+2}$ for all $i \geq 2$. It remains to show that $a_{i} \leq {r+1 \choose i}(d-r)$ for $i = \{2, \ldots, r\}$ and that $a_{r+1} = 0$.

To derive the stated inequality, write $\operatorname{Tor}_{i}^{S}(K, H)$ as the *i*-th cohomology module $\operatorname{Ker}(\partial_{i})/\operatorname{Im}(\partial_{i+1})$ of the Koszul complex

$$\dots \to H^{\binom{r+1}{i+1}}(-i-1) \xrightarrow{\partial_{i+1}} H^{\binom{r+1}{i}}(-i) \xrightarrow{\partial_i} H^{\binom{r+1}{i-1}}(-i+1) \to \dots$$

of H with respect to x_0, \ldots, x_r and observe that $H^{\binom{r+1}{i+1}}(-i-1)_{i+1} = H_0^{\binom{r+1}{i+1}} = 0$ and $H^{\binom{r+1}{i}}(-i)_{i+1} = H_1^{\binom{r+1}{i}} \simeq (K^{d-r})^{\binom{r+1}{i}}$ (cf. 2.7 a)).

Finally, the natural graded isomorphism soc $H \simeq \operatorname{Tor}_{r+1}^S(K, H)(r+1)$, the socle isomorphism of 3.2 C) and the vanishing of $h^1(S/J)_1$ (cf. 2.7 c) show that

$$K^{a_{r+1}} \simeq \operatorname{Tor}_{r+1}^{S}(K, H)_{r+2} \simeq (\operatorname{soc} H)_{1} = 0.$$

In case S/J is CM, the Betti modules of the Hartshorne-Rao module $H^1(A)$ can be determined precisely:

Proposition 4.5. For $i \in \{0, ..., r+1\}$ let $a_i := (d-r+1)\binom{r-1}{i-1} + (d-r)\binom{r-1}{i}$ and $b_i := \binom{r-1}{i-2}$. Assume that S/J is CM. Then, for all $i \in \{0, ..., r+1\}$ we have

$$\operatorname{Tor}_{i}^{S}(K, H^{1}(A)) \simeq K^{a_{i}}(-i-1) \oplus K^{b_{i}}(-i-d+r).$$

Proof. For $a \in \mathbb{N}, m \in \{1, \ldots, r\}$ and $i \in \{0, \ldots, m\}$ we set

$$M_m := S/((x_0, x_1)^a + (x_2, \dots, x_m))$$

and $u_i := (a+1)\binom{m-1}{i-1} + a\binom{m-1}{i-2}$ and $v_i := \binom{m-1}{i}$. By induction on m we wish to show:

$$\operatorname{Tor}_{i}^{S}(K, M_{m}) \simeq K^{u_{i}}(-i+1-a) \oplus K^{v_{i}}(-i).$$

By the Hilbert-Burch Theorem $M_1 = S/(x_0, x_1)^a$ has a minimal free resolution of the shape

$$0 \to S^a(-a-1) \to S^{a+1}(-a-1) \to S \to M_1 \to 0.$$

This proves the above claim if m = 1. So, let m > 1. Then, the graded short exact sequence

$$0 \to M_{m-1}(-1) \xrightarrow{x_m} M_{m-1} \to M_m \to 0$$

induces isomorphisms

$$\operatorname{Tor}_{i}^{S}(K, M_{m}) \simeq \operatorname{Tor}_{i}^{S}(K, M_{m-1}) \oplus \operatorname{Tor}_{i-1}^{S}(K, M_{m-1})(-1)$$

for all $i \in \{0, ..., m\}$. On use of the Pascal formulae for binomial coefficients we may perform the induction step needed to prove the above claim.

Now, choose m = r, a = d - r and set $M := M_r$. Then, by the previous claim we obtain

$$\operatorname{Tor}_{i}^{S}(K, M) \simeq K^{u_{i}}(-i+1-d+r) \oplus K^{v_{i}}(-i),$$

with $u_i = (d-r+1)\binom{r-1}{i-1} + (d-r)\binom{r-1}{i-2}$ and $v_i = \binom{r-1}{i}$ for each $i \in \{0, \ldots, r\}$. After a linear change of coordinates, we may assume by Theorem 3.3 that

$$H := H^1(A) = \operatorname{Hom}_K(M, K)(r - d),$$

hence by graded local duality, that

$$H \simeq \operatorname{Ext}_{S}^{r+1}(M, S(-r-1))(r-d) \simeq \operatorname{Ext}_{S}^{r+1}(M, S)(-d-1).$$

Let $0 \to F_{r+1} \to F_r \to \ldots \to F_1 \to F_0 \to M \to 0$ be a graded minimal free resolution of M. As M is of finite length over S, we have $\operatorname{Ext}_S^i(M,S) = 0$ for all $i \neq r+1$ and thus get a minimal free resolution

$$0 \to \operatorname{Hom}_S(F_0, S) \to \ldots \to \operatorname{Hom}_S(F_{r+1}, S) \to \operatorname{Ext}_S^{r+1}(M, S) \to 0$$

of H(d+1). It follows

$$\operatorname{Tor}_{i}^{S}(K, H) \simeq \operatorname{Tor}_{i}^{S}(K, \operatorname{Ext}_{S}^{r+1}(M, S))(-d-1) \simeq K \otimes_{S} \operatorname{Hom}_{S}(F_{r+1-i}, S)(-d-1) \simeq K^{u_{r+1-i}}(-i-1) \oplus K^{v_{r+1-i}}(-i-d-r).$$

As
$$u_{r+1-i} = a_i, v_{r+1-i} = b_i$$
 we get our claim.

Finally, if S/J is CM, the Betti numbers of A can be approximated as follows:

Theorem 4.6. Assume that S/J is CM and that d > r + 1. Then, for each $i \in \{1, 2, ..., r\}$ we have

$$\operatorname{Tor}_{i}^{S}(K,A) \simeq K^{u_{i}}(i-1) \oplus K^{v_{i}}(-i-2) \oplus K^{\binom{r-1}{i-1}}(-i-d+r-1),$$

where u_i and v_i are given resp. bounded according to the following table

i	1	$2 \le i \le r - 2$	r-1	r
u_i	$\binom{r+1}{2} - d - 1$	$\leq c_i$	$\leq d-1$	0
v_i	$\leq (d-1)\binom{r}{2} + (r-1)$	$\leq a_{i+1}$	d - r + 1	0

in which c_i and a_{i+1} are defined according to 4.3 resp. 4.5. Moreover $u_i - v_{i-1} = c_i - a_i$ for all $i \in \{2, ..., r-1\}$.

Proof. The stated general shape of the Betti module $\operatorname{Tor}_i^S(K, A)$ follows from Proposition 4.1, as I is generated in degree ≥ 2 and as $\operatorname{reg} S/J = 2$ (cf. Theorem 3.3). The requested value of u_1 is a consequence of Proposition 3.6. The vanishing of u_r and v_r is a consequence of Proposition 4.1.

By Proposition 4.5 and Lemma 4.2 we have

$$\operatorname{Tor}_{i+1}^{S}(K, H^{1}(A))_{i+1} \simeq \operatorname{Tor}_{i-1}^{S}(K, D(A))_{i+1} = 0$$

for all $i \in \mathbb{N}$, $\text{Tor}_{i}^{S}(K, H^{1}(A))_{i+1} \simeq K^{a_{i}}$ for all $i \in \{0, ..., r\}$ and $\text{Tor}_{i}^{S}(K, D(A))_{i+1} \simeq K^{c_{i}}$ for all $i \in \{1, ..., r-1\}$. So, the sequences of 4.3 imply that $u_{i} \leq c_{i}, v_{i} \leq a_{i+1}$ for all $i \in \{1, ..., r-1\}, u_{i} - v_{i-1} = c_{i} - a_{i}$ for all $i \in \{2, ..., r-1\}$ and $v_{r-1} = a_{r}$. \square

5. Examples

We keep the hypotheses and notations of the previous sections. We also introduce the notation

$$\beta_{ij} := \dim_K \operatorname{Tor}_i^S(K, A)_{i+j}$$

for the Betti numbers of \mathcal{C} .

Remark 5.1. A) We first consider the "exceptional case" in which d = r + 1, a case which has been excluded previously by the convention made in 2.5 A). In this case we know that $\mathcal{C} \subseteq \mathbb{P}_K^r$ is either an elliptic normal curve, or the projection of a rational normal curve $\tilde{\mathcal{C}} \subseteq \mathbb{P}_K^{r+1}$ from a generic point or else a singular rational curve, obtained by projecting a rational normal curve $\tilde{\mathcal{C}} \subseteq \mathbb{P}_K^{r+1}$ from a point which lies precisely on one secant line of $\tilde{\mathcal{C}}$, (cf. [1, (4.7) B)]). In the first and the third case, \mathcal{C} is of arithmetic genus 1, so that $H^2(A)_0 \neq 0$. In the second case we have $H^1(A)_1 \neq 0$. So, in all three cases we have reg $\mathcal{C} = \operatorname{reg} A + 1 \geq 3$ and hence $\operatorname{reg} \mathcal{C} = 3$, (cf. 2.2). So \mathcal{C} is of maximal regularity in any case.

- B) If \mathcal{C} has a 3-secant line \mathbb{L} , then by 2.2 we know that I is generated by quadrics and one cubic. According to [5, p. 504] or to [6] this only may occur in the case where \mathcal{C} is smooth and rational. From the proof of Theorem (3.1) in [5] (cf. p. 503) it follows that our curve \mathcal{C} always lies on a rational surface scroll $\mathbb{S}_{r-1-2a,a} \subseteq \mathbb{P}_K^r$, $(0 \le a \le \frac{r-1}{2})$ (we use the notation of [1, (6.1)]). Moreover, by [5, Remark (2), p. 504], \mathcal{C} has a trisecant line if and only if a = 1.
- C) Let us assume now, that C has a trisecant line L. Then, for some $f \in S_3 \setminus L$ we have I = J + fS, I + L = L + fS (cf. 2.2) and the resulting exact sequence

$$0 \to S/J \to S/L \oplus A \to S/(L+fS) \to 0$$

together with the fact that $H^1(A)_n = 0$ for all $n \neq 1$ shows that $H^1(S/J)_n = 0$ for all $n \neq 1$. If we apply 2.3 with $\mu = 3$ we also obtain

$$r + 1 + h^{1}(S/J)_{1} = \dim(S/J)_{1} + h^{1}(S/J)_{1} = h^{0}(\mathcal{C} \cup \mathbb{L}, \mathcal{O}_{\mathcal{C} \cup \mathbb{L}}(1)) \le r + 1,$$

hence $h^1(S/J)_1=0$. Therefore $H^1(S/J)=0$ and S/J becomes CM, too. So, the statement of 3.5 remains valid.

Examples 5.2. We consider the two non-degenerate rational curves $C_k \subseteq \mathbb{P}^{10}_K$ of degree 11, (k = 1, 2) given parametrically by

$$C_1:(s^{11}:s^{10}t:s^9t^2:s^7t^4:s^6t^5:s^5t^6:s^4t^7:s^3t^8:s^2t^9:st^{10}:t^{11}),$$

$$C_2:(s^{11}:s^{10}t:s^8t^3:s^7t^4:s^6t^5:s^5t^6:s^4t^7:s^3t^8:s^2t^9:st^{10}:t^{11}).$$

It is easily seen, that C_k lies on the rational surface scroll $\mathbb{S}_{9-2k,k}$ for k=1,2. Both curves are obviously smooth and obtained by projecting a rational normal curve $\tilde{C} \subseteq \mathbb{P}_K^{r+1}$ from a point (which avoids all secant lines). In particular, both curves are of regularity 3. Moreover for the Betti numbers β_{ij} of $A = A_{C_k}$ we have

k	i	1	2	3	4	5	6	7	8	9	10
	β_{i1}	43	221	550	812	742	398	91	8	0	0
1	β_{i2}	0	1	8	28	56	70	84	45	11	1
	β_{i1}	43	222	558	840	798	468	147	8	0	0
2	β_{i2}	1	9	36	84	126	126	84	45	11	1

The non-vanishing of the Betti number $\beta_{8,1}$ is in perfect coincidence with the observation that both curves C_k lie on a rational surface scroll, e.g. a surface of minimal degree (cf. [2, 3.C.1]).

In the case k=1 we have $\beta_{12}=0$, so that I is generated by quadrics. In view of 5.1 B) \mathcal{C}_1 has no trisecant line. In the case k=2 we have $\beta_{12}=1$, so that I is generated by quadrics and one cubic and we may expect that \mathcal{C} has a trisecant line \mathbb{L} . This holds indeed by [5, p. 504]. In particular S/J must be CM by 5.1 C). In fact, for the Betti numbers

$$\gamma_{ij} := \dim_K \operatorname{Tor}_i^S(K, S/J)_{i+j}$$

of S/J we get the following values

i	1	2	3	4	5	6	7	8	9	10
γ_{i1}	43	222	558	840	798	468	147	8	0	0
γ_{i2}	0	0	0	0	0	0	0	9	2	0

Observe also, that in both cases the number of generating quadrics is $\binom{12}{2} - 12 = 43$, in accordance with 3.6.

It is easy to see that for each $r \geq 3$ and each d > r + 1 there are non-degenerate curves $\mathcal{C} \subseteq \mathbb{P}^r_K$ of maximal regularity and of degree d lying on a rational surface scroll $\mathbb{S} \subseteq \mathbb{P}^r_K$. But in general, curves of maximal regularity need not lie on a scroll.

Example 5.3. Let $\mathcal{C} \subseteq \mathbb{P}^8_K$ be the non-degenerate rational curve given parametrically by

$$\mathcal{C}: (s^{11}: s^{10}t: s^9t^2: s^8t^3: s^7t^4: s^6t^5: s^5t^6: (st^{10}+s^2t^9): t^{11}).$$

Calculating the Betti numbers β_{ij} we get

				3					
Ī	β_{i1}	24	84	126 0	84	20	0	0	0
	β_{i2}	0	0	0	20	36	21	4	0
	β_{i3}	0	0	0	0	0	0	0	0
	β_{i4}	1	7	$0\\21$	35	35	21	7	1

In particular we get reg A=4, thus reg $\mathcal{C}=5=11-8-2$, so that \mathcal{C} is of maximal regularity. As $\beta_{61}=\dim_K \operatorname{Tor}_K^6(K,A)_7=0$, Green's $K_{p,1}$ -Theorem shows that \mathcal{C} does not lie on a surface scroll (cf. [2]).

By 3.5 – and in accordance with 3.6 – S/J is CM. Moreover, by 4.1 and 3.3 (iv), the first two lines of the previous table describe the Betti numbers of S/J.

By 3.5 we know that S/J is CM if d < 2r - 1. The next example illustrates that this result is sharp: There are non-degenerate curves $\mathcal{C} \subseteq \mathbb{P}_K^r$ of maximal regularity and of degree d = 2r - 1 such that S/J is not a CM ring.

Example 5.4. Let $\mathcal{C} \subseteq \mathbb{P}^6_K$ be given by

$$\mathcal{C}: (s^{11}: s^{10}t: s^9t^2: s^8t^3: s^7t^4: st^{10}: t^{11}),$$

so that C is non-degenerate and of degree $11 = 2 \cdot 6 - 1$. Here, the Betti numbers β_{ij} take the following values

i	1	2	3	4	5	6
β_{i1}	10	20	15	4	0	0
β_{i2}	3	10	10	0	0	0
β_{i3}	1	5	10	15	7	1
β_{i4}	0	0	0	0	0	0
β_{i5}	0	0	0	0	0	0
β_{i6}	1	5	10	10	5	1

We see that $\operatorname{reg} A = 6$, so that $\operatorname{reg} \mathcal{C} = 7 = 11 - 6 + 2 = d - r + 2$. Hence \mathcal{C} is of maximal regularity. But now S/J is not a CM-ring. One way to see this, is to apply 4.1 and to observe 3.3 (iv). One also could observe that the number β_{11} of generating quadrics of I is $10 \neq \binom{6+1}{2} - 11 - 1 = 9$ and apply 3.6. Moreover, the first three lines of the above table provide the Betti numbers of S/J (see 4.1). Also, by 3.6, $H^1(S/J)$ is minimally generated by one element of degree 2 and the socle formula of 3.2 C) shows that $H^1(S/J)_n = 0$ for all n > 2. So, S/J is a Buchsbaum ring with $H^1(S/J) = K(-2)$.

One might ask, whether the converse of 3.5 is true. We shall give an example showing that this is not the case in general: There are non-degenerate curves $\mathcal{C} \subseteq \mathbb{P}^r$ of maximal regularity of degree $d \geq 2r-1$ and such that S/J is a CM ring.

Example 5.5. Let $\mathcal{C} \subseteq \mathbb{P}^6_K$ be the curve of degree 11 defined parametrically by

$$\mathcal{C}:(s^{11}:s^{10}t:s^9t^2:s^8t^3:s^7t^4:(s^2t^9+st^{10}):t^{11}).$$

Here, the Betti numbers of C are as listed below:

i	1	2	3	4	5	6
β_{i1}	9	16	9	0	0	0
β_{i2}	6	24	36	25	6	0
β_{i3}	0	0	0	0	0	0
β_{i4}	0	0	0	0	0	0
β_{i5}	0	0	0	0	0	0
β_{i6}	1	5	10	10	5	1

So, first of all we have $\operatorname{reg} \mathcal{C} = \operatorname{reg} A + 1 = 7 = 11 - 6 + 2 = d - r + 2$ so that \mathcal{C} is again of maximal regularity. The number of generating quadrics is $9 = \binom{6+1}{2} - 11 - 1 = \binom{r+1}{2} - d - 1$ so that S/J is a CM-ring by 3.6. On the other hand

we have $d = 11 = 2 \cdot 6 - 1 = 2r - 1$. Again, by 4.1 the first two lines of the above diagram furnishes the Betti numbers of $\mathcal{C} \cup \mathbb{L}$.

By 3.3 we know that S/J is CM if and only if $\operatorname{soc} H^1(A) \simeq K(r-d)$, whereas in general we have $\operatorname{soc} H^1(A) \simeq \operatorname{soc} (H^1(S/J)) \oplus K(r-d)$ (see 3.2 C)). We present two examples which illustrate how much $\operatorname{soc} H^1(A)$ may vary in general.

Examples 5.6. We consider two curves $C_k \subseteq \mathbb{P}^6_K$ of degree 13, (k = 1, 2) given parametrically by

$$\mathcal{C}_1: (s^{13}: s^{12}t: s^{11}t^2: s^{10}t^3: s^9t^4: st^{12}: t^{13}),$$

$$\mathcal{C}_2: (s^{13}: s^{12}t: s^{11}t^2: s^{10}t^3: s^9t^4: (st^{12} - s^2t^{11}): t^{13}).$$

The Betti numbers are listed below

k	i	1	2	3	4	5	6
	β_{i1}	10	20	15	4	0	0
	β_{i2}	1	0	0	0	0	0
	β_{i3}	0	10	20	15	4	0
1	β_{i4}	0	0	0	0	0	0
	β_{i5}	1	5	10	10	5	1
	β_{i6}	0	0	0	0	0	0
	β_{i7}	0	0	0	0	0	0
	β_{i8}	1	5	10	10	5	1
	β_{i1}	9	16	9	0	0	0
	β_{i2}	2	4	0	1	0	0
	β_{i3}	2	14	36	34	14	2
2	β_{i4}	0	0	0	0	0	0
	β_{i5}	0	0	0	0	0	0
	β_{i6}	0	0	0	0	0	0
	β_{i7}	0	0	0	0	0	0
	β_{i8}	1	5	10	10	5	1

In both cases we have reg $C_k = 9 = 13 - 6 + 2 = d - r + 2$, so that C is of maximal regularity.

Moreover, by 4.1, we read off that reg S/J=6 resp. 4 in the case k=1 resp. k=2. So, by 3.3 clearly S/J is not CM in either case. Keeping in mind that (cf. 4.4 d) for the second isomorphism)

$$\operatorname{soc} H^{1}(A) \simeq \operatorname{Tor}_{r+1}^{S}(K, H^{1}(A)) \simeq \operatorname{Tor}_{r}^{S}(K, A)_{r>3}(r+1) \simeq \bigoplus_{j>3} K^{\beta_{rj}}(-j+1)$$

we thus get

$$\operatorname{soc} H^{1}(A) \simeq \begin{cases} K(-4) \oplus K(-7), & \text{if } k = 1, \\ K^{2}(-2) \oplus K(-7), & \text{if } k = 2. \end{cases}$$

Moreover, it follows that S/J is a Buchsbaum ring with $H^1(S/J) \simeq K^2(-2)$ in the case k=2 while it is not a Buchsbaum ring in the case k=1.

Further examples in higher degrees show that $soc H^1(A)$ may indeed vary rather strongly.

References

- [1] BRODMANN, M., SCHENZEL, P.: Curves of Degree r+2 in \mathbb{P}^r : Cohomological, Geometric, and Homological Aspects. J. of Algebra 242 (2001), 577 623.
- [2] Green, M.: Koszul Homology and the Geometry of Projective Varieties. J. of Differential Geometry 19 (1984), 125 171.
- [3] GREEN, M., LAZARSFELD, R.: Some Results on the Syzygies of Finite Sets and Algebraic Curves. Compositio Math. 67 (1988), 301 314.
- [4] GREUEL, G.-M., PFISTER, G. et al.: Singular 2.0, A Computer Algebra System for Polynomial Computations. Center for Computer Algebra, Univ. of Kaiserslautern (2001) (http://www.singular.uni-kl.de).
- [5] GRUSON, L., LAZARSFELD, R., PESKINE, C.: On a Theorem of Castelnuovo and the Equations defining Space Curves. Inventiones Math. 72 (1983), 491 506.
- [6] Hoa, T., Stückrad, J., Vogel, W.: Towards a structure theory of projective varieties of degree = codimension +2. J. Pure Appl. Algebra 71 (1991), 203 231.
- [7] NAGEL, U.: Über Gradschranken für Syzygien und komologische Hilbertfunktionen. Dissertation, Univ. Paderborn (1990).

Universität Zürich, Institut für Mathematik, Winterthurer Str. 190, CH — 8057 Zürich, Switzerland

E-mail address: brodmann@math.unizh.ch

Martin-Luther-Universität Halle-Wittenberg, Fachbereich Mathematik und Informatik, D — $06~099~\mathrm{Halle}$ (Saale), Germany

E-mail address: schenzel@mathematik.uni-halle.de