ON PROJECTIVE CURVES OF MAXIMAL REGULARITY
MARKUS BRODMANN AND PETER SCHENZEL

ABSTRACT. Let C C P} be a non-degenerate projective curve of degree d > r +1
of maximal regularity so that C has an extremal secant line . We show that CUL
is arithmetically Cohen Macaulay if d < 2r — 1 and we study the Betti numbers
and the Hartshorne-Rao module of the curve C.

1. INTRODUCTION

Let C C P, denote a non-degenerate projective curve, where K is an algebraically
closed field. Two basic numerical invariants related to C are the degree deg C and the
Castelnuovo-Mumford regularity reg C. In their fundamental paper (cf. [5]) Gruson,
Lazarsfeld and Peskine have shown that

regC < degC —r + 2.

The degree of the curve C reflects its geometric behaviour. The Castelnuovo-
Mumford regularity of the curve C C P} defined in terms of the vanishing of local
cohomology, can be expressed by the degree of the generators of the higher syzygy
modules of the defining ideal I and thus reflects the cohomological and homological
behaviour of C.

In [1] we have studied non-degenerate curves of degree r + 2 in P}.. For r > 4 we
were lead to distinguish four different main cases I - IV, according to the structure of
the Hartshorne-Rao module of the considered curve. In geometric terms, case IV is
precisely the case in which an extremal secant occurs or — in (co-)homological terms
— the case of maximal regularity. In this paper, we investigate this latter geometric
or homological situation in arbitrary degrees.

So, we consider a non-degenerate projective irreducible curve C C P of degree
d > r+1 (with r > 3) whose Castelnuovo-Mumford regularity takes the maximally
possible value d — r + 2. In this case, C is smooth and rational and has a (d —r + 2)-
secant line L (cf. [5]).

We study the Betti numbers and the Hartshorne-Rao module of the curve C. To
do so, we investigate the relation between the two curves C and C U L from the
cohomological and the homological point of view (cf. 2.7 resp. 4.1).
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Quite often C UL is an arithmetically Cohen-Macaulay (CM) curve. Then much
can be said on C, mainly as the structure of the Hartshorne-Rao module is known in
this case (cf. 3.3 (ix), 4.5). Obviously, to make use of this fact, one needs to know
under which circumstances CUL is arithmetically CM. We give various necessary and
sufficient conditions for this (see 3.3, 3.6). Also, we show that CUL is arithmetically
CMif d < 2r —1 (cf. 3.5).

In the case where C UL is arithmetically CM we give an approximation of the Betti
numbers of C (cf. 4.6), which extends the corresponding result for d = r+2 (cf. [1])
to arbitrary degrees d.

Also we briefly discuss the ”exceptional case” in which d = r + 1 (cf. 5.1) and
we present several examples calculated by means of the computer algebra system
Singular (cf. [4]). By these example we notably illustrate:

— The occurrence and non-occurrence of a trisecant line in the exceptional case
d=r+1 (cf 5.1).

— The fact that in the general case, C need not lie on a surface of minimal
degree (cf. 5.3).

— The fact that in the case d = 2r — 1 the curve C UL need not but can
be arithmetically CM (cf. 5.4 resp. 5.5), while this is true in general for
d<2r—1.

— The variability of the (socle of) the Harthshorne-Rao module C, if CUL is
not arithmetically CM (cf. 5.6).

In Section 2 we prove a few results about the secant lines. The main result 2.3 gives
an estimate on the dimension of the space of global sections of O¢yy(1). Section 3 is
devoted to the study of the structure of the coordinate ring of CUL. In Section 4 we
continue with the homological aspect describing the Betti numbers of the coordinate
rings of C and C UL and their interaction.

2. EXTREMAL SECANTS

We fix a few notations, which we use throughout this paper.

Notation and Remark 2.1. A) Let R = @,>0R, be a non-negatively graded
Noetherian ring. By R, we shall denote the irrelevant homogeneous ideal &,<oR,
of R. If M is a graded R-module, and if n € Z, we use M, to denote the n-th
graded component of M. Also, for n € Z, we use M<, to denote the Ry-submodule
Dm<nMpm of M and M, to denote the graded R-submodule ©,,>,M,, of M. All
polynomial rings are furnished with their standard grading.

B) Let r be an integer > 4, let K be an algebraically closed field and let S =
K|[xg,...,z,] be a polynomial ring. Let C C P} = Proj(S) be a non-degenerate
curve, hence a non-degenerate closed connected integral subscheme of dimension
1. Moreover, let J = Jz C OP;( the sheaf of vanishing ideals of C, let I = Iz =
GpezHO (P, J(n)) C S denote the vanishing ideal of C and let A = Ac := S/I
denote the homogeneous coordinate ring of C.

C) Keep the above notation. We use d to denote the degree of C and d to denote the
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generating degree of I, thus d = min{n € N|/I = (I-,)S}. Keeping in mind these
definitions we have the inequalities

d<regC=regl <d—r+2,

in which reg is used to denote Castelnuovo-Mumford regularities (cf. [5]).
D) Let L C P be a line, let L C S be the vanishing ideal of L and let

szcuL:LmIgS

be the vanishing ideal of the union C UL C P}.. Also let y denote the degree (thus
the length) of the scheme C NLL = Proj S/(I + L) C P}, so that L is a p-secant of
C. As S/L is isomorphic to a polynomial ring in two indeterminates, the vanishing
ideal (I 4+ L)*" = Upen(I + L) :5 (S4)™ C S of the intersection C NL C P} can be
written in the following form

(I+ L) =L+ fS for some f € S,,.
Lemma 2.2. In the notations of 2.1, we have
p<d<regC<d—r+2.
Moreover, if u = d, we may choose f € I, =1N0S,. Finaly, iof f €1, then
(I+L)™=L+fS=I1+Landl=J+fS.

Proof. As L is a prime ideal with I,S; ¢ L, we have I; ¢ L. As I; C L+ fS it
follows p < d. Moreover, if ;i = d, then

LS Li+L,C(L+fS),=L,+ [K,
thus I,+ L, = L,+ fK, and this allows to choose f € I,,. Finally, whenever f € I,,,
we have L+ fS C I+L C (I+L)* = L+ fS. This proves the stated equalities. O
Theorem 2.3. If u > 2, then h°(CUL, Ocup (1)) < d — p+ 3.
Proof. Let 6 := h°(C UL, Ocyr,(1)) and consider the graded K-algebra

D := @nonO(C U L, OCUL (n)),

so that 0 = dimg Dy > r+1. As S/J C K[D;] C D and (S/J), = D, for all n > 0,
the inclusion S/.J — K[D;] yields an isomorphism of schemes

e : Proj K[D;] — Proj(S/.J) =CUL.

Now, set P-! = Proj T, where T is the polynomial ring S[z, 41, . .., 25 1] and let 7 be
a surjective homomorphism of graded K-algebras, which appears in the commutative
diagram

S = T

! i
S/J < K[Di].
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Consider Proj K[D;] as a closed non-degenerate subscheme of ]P"i? ' by means of
and let Z = Proj(T/S,+T). Then, Z N Proj K[D;] = () and we have a commutative
diagram
Proj K[D1] %> CUL
] ]

P\Z & P
in which p is the projection centered at Z. So, for any closed subscheme Y C CUL,
we know that ¢~'(Y) is a closed subscheme of P}-!, isomorphic to Y and of the
same degree as Y. Therefore C' := ¢71(C) C P)! is a reduced irreducible curve of
degree d, I/ := e~'(L) C P! is a line and C' UL/ = Proj K[D;]. As

C'Nl=YCNL)~CnNL,

we see that I/ is a p-secant of C'.

Moreover, C' is non-degeneratedly embedded into P}, Otherwise, we could find
a hyperplane H C Pi-" with ¢’ € H. As C'UL' C P4 is non-degenerate, this
would imply I ¢ H and hence C'NL' C HNL' ~ Spec(K), a contradiction to the
assumption p > 2.

But now, by 2.2 we have p < d— (6§ — 1) + 2, thus 6 < d — p+ 3. O

Remark and Definition 2.4. A) We keep the notation of 2.1. In accordance with
2.1 C) we say that C is of maximal reqularity if regC = d — r + 2.

B) We say that L is an extremal secant of C if ;. = regC. (This is justified in view
of 2.2.)

C) On use of the table of [5, p. 504] we can say:

If d > r+1 and if C is of mazimal reqularity, then C is smooth, rational and has an
extremal secant line.

In particular we can say the following (cf. 2.2):

Ifd > r+1, the curve C is of mazimal reqularity if and only if it has a (d —r + 2)-
secant line. In this case C is smooth and rational.

Convention and Remark 2.5. A) We are interested in the case where C is of
maximal regularity. For the moment, we do not focus on the two particular cases
d=rand d=r+ 1. So, in view of 2.4 C) it is natural to convene from now on,
that d >r+1land p=d—r+2.

B) In view of 2.2 we now can write

[=J+fS with f€l; s\ L,

where L denotes the ideal defining the secant line. As L C S is a prime ideal, we
have J:s f=(INL):s f=L:s f=L and hence get graded isomorphisms

I/J~fS/f(J:s f)~(S/L)(—d+r—2)
which yield the short exact sequence of graded S-modules

0—S/L(—d+r—2)—S/J—A—=0.
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C) In view of 2.4 C), the curve C C P}, is smooth and rational. Therefore, the
graded K-algebra
T'(C) == ®ns0H"(C, Oc(n))

may be viewed as the homogeneous coordinate ring of a rational normal curve
C' C P% of degree d, (cf. [5]). So, if K[s,t] is a polynomial ring, we have an
isomorphism of graded K-algebras, I'(C) ~ K|[s,t], where R is used to denote
the d-th Veronesean subring &,>¢R,q of the graded ring R = @,>¢R,.

Notation and Remark 2.6. A) Let R be a non-negatively graded Noetherian
K-algebra and let M be a graded R-module. For i € Ny, let H'(M) = H, (M)
denote the i-th local cohomology module of M with respect to the ideal R,. Then

H(M) is a graded R-module. If M is finitely generated, each graded component of
Hi(M) is of finite dimension over K. In this case, we set

h'(M)y = hig, (M), := dimy H'(M),,.

Finally, we use D(M) or Dg, (M) to denote the R -transform lim Hompg((R4)", M)
of M, which is again a graded R-module.

B) Let X = Proj(R) and let F = M be the sheaf of Ox-modules induced by M.
Then, the Serre-Grothendieck correspondence yields natural isomorphisms of graded
R-modules

D(M) ~ @pez HY (X, F(n)) and H™ (M) ~ @,z H' (X, F(n)) for all i > 0.

C) Let Y C P be a closed subscheme, Jy C (’)]p;( its sheaf of vanishing ideals,
N C S its homogeneous vanishing ideal and C' = S/N its homogeneous coordinate
ring. Then, by part B), the Hartshorne-Rao module

®nEZH1 (]P”;(v jY (n>>

of Y is naturally isomorphic to the graded S-module H'(C).

Proposition 2.7. In the notation of 2.6 and under the convention 2.5 we have the
following results

0, form ¢ {1,....d —r},
a) h'(A), =<¢d—r, forn=1,

1, form=d—r.
b) h?(A), = max{0,—dn — 1} for alln € Z.
2,...,d—r—1
C) hl(S/J)n: 071 forngé{ ) 7d r }7
(A, —d+r+n—-1, for2<n<d-r-—1.
0, for all n > 0,
d) R*(S/J), =< d—r+1, forn =0,

—n(d+1)+d—r, foralln<O.



6 BRODMANN, SCHENZEL

Proof. a): As Ais a domain of dimension > 1 and K is algebraically closed, h'(A), =
0foralln < 0. AsregA = regC — 1 =d—r+ 1, we have h'(A), = 0 for all
n>d—r+1. In view of 2.6 C) and the table of [5, p. 504], we have

W' (A)ar = W' (P, J(d—1)) =1.
By 2.5 C) and the Serre-Grothendieck correspondence 2.6 B) we get isomorphisms
of graded K-algebras
D(A) ~T(C) ~ K[s,1]'V.
So, the graded exact sequence 0 — A — D(A) — H'(A) — 0 yields h'(A), =

dim[((K[S, t](d))l - dim[( Al =d—r.
b): Keep in mind the natural isomorphisms of graded A-modules

H?*(A) ~ H*(D(A)) ~ H} (D(A)) ~ H}, pa)(D(A)) = Hiaa a, p(ay (D(A))

which follow from the fact that D(A)/A is of finite length and from the base ring
independence of local cohomology. Because of the isomorphism D(A) ~ K][s, ¢
and as Rad A, D(A) = D(A), we obtain graded isomorphisms

H?(A) =~ Hp ), (D(A)) = H(ZK[s,t](d))+([([S7t](d)> ~ Hify g, (K[s, ).

s,t
Here we have to remind the fact that local cohomology commutes with taking
Veroneseans. So it follows h*(A), = hi, o (K[s, t])an = max{0, —dn — 1}.

¢), d): If we apply local cohomology to the short exact sequence of 2.5 B) and keep
in mind that H*(S/L) = 0 for all i # 2 and h*(S/L), = max{0,—n — 1} for all
n € Z, we obtain exact sequences

0— HYS/J), = H'(A), — Kmaxt0ntd=rtll o g2/ ), — H*(A), — 0.

It follows from a) that h'(S/.J), = 0 for all n ¢ {1,...,d — r}. By 2.3 and on use
of the Serre-Grothendieck correspondence we have

dim g D(S/J)l = hO(C UL, OCU]L(1>> <r+41.

Hence, the graded short exact sequence 0 — S/J — D(S/J) — HY(S/J) — 0
induces h'(S/J); < r+1—dimg(S/J);. As J; C I, =0, we get h'(S/J); = 0.

If we apply the above sequence with n = 1 and keep in mind statements a) and b),
it follows h%*(S/.J); = 0 and hence h?*(S/.J), = 0 for all n > 0. Now another use of
statements a), b) and the above exact sequences proves statements d) and ¢). [

3. ON THE STRUCTURE OF S/.J

We keep the notation introduced in 2.1 and the convention made in 2.5. Our aim
is to study the homogeneous coordinate ring S/.J of the union C UL C P% and to
relate it to the curve C and its Hartshorne-Rao module H'(A). We start with a few
general observations.
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Remark 3.1. A) For a finitely generated graded module M over a non-negatively
graded Noetherian ring R = @©,>ft, and for 7 € Ny let

ai(M) = sup{n € Z| Hp, (M), # 0},

with the convention that sup) = —oo. In this notation it follows from 2.7 ¢), d),
that
reg S/J = max{2,a,(A) +1} <d—r.

B) As a consequence of this last observation we have regJ < d —r + 1. By 2.5 B)
we have I = J + fS for some f € I; ,.5. As J is generated in degrees < reg./, it
follows

J = (I<regs)S = (I<g—r41) S

C) As a consequence of the previous equalities we have

L=(J:sf)=(J:s (Jamrgo+ [K)) = ((I<a—rs1) :5 Ta—rs2),
so that L is determined by I and hence IL by C. This shows that IL is the unique
extremal secant line of C.

We add a few more observations concerning the Hartshorne-Rao modules H'(A)
and H'(S/J) of the curves C C P} resp. CUL C P%..

Remark 3.2. A) As H'(D(A)) = 0 for all i # 2 and as H*(D(A)) =~ H?*(A), it
follows from 2.7 b) that the A-module D(A) satisfies reg D(A) = 1. So, as a graded
A-module, D(A) is generated in degrees < 1. In view of the natural epimorphism
D(A) — H'(A) =0
and as H'(A)p =0 (cf. 2.7 a) ) it follows, that H'(A) is generated in degree 1, and
thus H'(A) = (H'(A),)S.
B) As HY(D(S/J)) =0 for all i # 2 and as H*(D(S/.J)) ~ H*(S/.J), it follows from
2.7 d) that reg D(S/.J) = 2, so that the S/J-module D(S/.J) is generated in degrees
< 2. In view of the natural epimorphism
D(S/J) — H'(S/J) =0
and as H'(S/J)<1 =0 (cf. 2.7 ¢) ), it follows that H'(S/J) is generated in degree
2, thus H'(S/J) = (H'(S/J)3))S.
C) For a graded S-module T, let soc T denote the socle 0 :5 S; = Homg(K,T) of T
If we apply cohomology to the sequence of 2.5 B) and keep in mind the left-exactness
of the functor soc, we get an exact sequence of graded S-modules
0 — soc H'(S/J) — soc H'(A) — soc H*(S/L(—d + r — 2)).
As soc H*(S/L(—d+1r —2)) = K(—d+7) and as H'(S/J)q_, =0, (cf. 2.7 ¢) ), we
thus get an isomorphism of graded S-modules

soc H'(A) ~ soc(H'(S/J)) & K(—d + 1),
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which relates the socles of the Hartshorne-Rao modules of the two curves C and
CUL C P.
Resuming our previous results, we get the following Cohen-Macaulay (CM) criterion

for the ring S/.J.
Theorem 3.3. The following statements are equivalent:
(i) S/J is CM.
(i) H'(S/J) =0.
(iii) A'(S/J)2 = 0.
(iv) regS/J— 2.
v) WA, =d—r+1—-n,forn=1,....,d—r.
(vi) ' (A); <d—r—1.
(vii) soc H'(A) = K(r — d).
(viii) There is an isomorphism of graded S-modules

H'(A) ~ H*(S/L)(—d +1r — 2)5.

(ix) There are independent linear forms yo,...,y, € S1 and an isomorphism of
graded S-modules

HY(A) ~ Homg(S/ (o, y1)* " 4 (y2s -, ur)), K)(r — d).

Proof. (i) <= (ii): This is clear, as dim S/.J = 2 and H°(S/.J) = 0.

ii) <= (iii): Clear, as H'(S/J) is generated in degree 2 (cf. 3.2 B) ).

ii) <= (iv): Clear by the estimate of 3.1 A) and the fact that H'(S/J)<; = 0.

) <= (v): Clear by 2.7 a) and c).

iii) <= (vi): Clear by 2.7 c).

i) <= (vii): As H'(S/J)sq—r =0 (cf. 2.7 ¢) ) and as H'(S/J) = 0 if and only if
soc H'(S/.J) = 0, we conclude by the isomorphism of 3.2 C).

(ii) = (viii): If we apply the cohomology functor to the exact sequence of 2.5 B),
keep in mind that H'(S/J) =0 and H'(A)<y = H*(S/J)>1 =0 (cf. 2.7 a), d) ) we
get an isomorphism of graded S-modules Hl(A) H*(S/L)(—=d+ 71— 2)>1.

(viii) = (ix): Choose linear forms yo, y1, Y2, - - ., Yy € S1 such that L = (ya, ..., y:)
and Sy = (yo,y1) + L. Then, there is an isomorphism of graded S-modules

S/ (Yo, y1)"™" + (Yo, -+ 4r)) = (S/L)/(S/L) 2d-r-

Moreover, there is an isomorphism of graded S-modules

Hompg ((S/L)/(S/L)>q—y, K) = Homg (S/L, K)>r_q41-
By graded local duality, there is an isomorphism of graded S-modules

Homg (S/L, K) ~ H*(S/L)(—2).

So, there are isomorphisms of graded S-modules

H*(S/L)(—d +r —2)s; ~ Homg (S/L, K)(—d +7)>, ~

Hom (S/L, K)r—at1(r — d) = Homg (S/((yo, y1)*™" + (y2, - -, 4,)), K) (r — d).



CURVES OF MAXIMAL REGULARITY 9

(ix) = (vi): This follows by a direct calculation. O

Our next aim is to prove a sufficient criterion for S/.J to be CM. We begin with a
preliminary remark.

Remark 3.4. A) Let s € N and let X C P a scheme of d points in semi-uniform
position (cf. [7]), let N C T := K|xy, ..., | be the homogeneous vanishing ideal of
X so that T/N is the homogeneous coordinate ring of X. Then, according to [3] or
[7], we have the estimate

d—1
regT/N =reg N — 1 < [ ]
s

B) Let X as in A) and assume in addition that d < 2s. Then, the ideal N satisfies
the condition N, of Green-Lazarsfeld with p = 2s+1—d (cf. [3, Theorem 1]). Thus,
in particular N is generated by quadrics.

Now, we are ready to prove the announced Cohen-Macaulay criterion.
Proposition 3.5. If d < 2r — 1, then S/J is a Cohen-Macaulay ring.
Proof. Let { € Sy be a generic linear form so that Proj(A/(A) = Proj(S/(1,()) is a
scheme of d points in semi-uniform position. After a linear coordinate transformation
we may assume that ¢ =z, and set S/x,.S = K|xg,...,2, 1] =T. Then,

Proj(A/x,A) = Proj(T/IT) C ProjT = P}
is a scheme of d points in semi-uniform position with vanishing ideal

N = (IT)*™ = U,>o(IT :7 (T4)").
By 3.4 B) we know that IV is generated by quadrics. In view of the natural isomor-
phism HY(A/x,A) ~ N/IT it follows that H°(A/x,A) is generated in degree two.
If we apply cohomology to the exact sequence 0 — A(—1) 5 A — A/z, A — 0, we
get exact sequences
0— H°(A/x,A), = H(A), | — H'(A), — H' (A/x,A),

for all n € Z. As

H'(A/z,A), ~ HY(T/IT), ~ H(T/N), =0
for all n > regT/N, 3.4 A) yields that H'(A/x,A), = 0 for all n > [=1] = 2.

r—1
If we apply the above sequence with n = d — r 4+ 1 and observe 2.7 a), it follows

H°(AJx,A)g i1 #0. As H(A/x, A) is generated in degree 2 we get H°(A/x,A), #
0. Applying the above sequence with n = 2 and observing 2.7 a) we get h'(A), <
h'(A), —1=d—r — 1. So, by 3.3 we get that S/.J is CM. O

We know by 3.2 B) that H'(S/J) is generated in degree 2. We close this section
with a result on the number of generators of the module H'(S/.J).
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Proposition 3.6. H'(S/J) is minimally generated by

r+1

dim[( IQ - < 9

)+

homogeneous elements of degree 2. In particular we have
1
dimg I, > (r; ) —d—1

with equality if and only if S/.J is C'M.

Proof. By 2.7 ¢) we have h'(S/J)y = h'(A)y —d+r+1. In view of the graded exact
sequence 0 - A — D(A) — H'(A) — 0 we have

hl(A)Q = dim[( D(A)2 - dim[( AQ.

Moreover the graded isomorphism D(A) ~ K[s,t] (cf. 2.5 C), 2.6 B) ) yields
dimy D(A)s = 2d + 1. As dimg Ay = dimg S — dimg I, and dimg Sy = ("3') we
obtain h'(S/.J); = dimgx I, — ("}') +d + 1. On use of this equality and of 3.3 all

our claims follow. O

4. BETTI NUMBERS

We keep our previous notation and hypothesis. We shall relate now the Betti num-
bers of the S-module A to the Betti numbers of the S-modules S/.J and H'(A). Our

interest shall be focused to the case in which S/.J is CM. Nevertheless we begin
with a few more general considerations.

First of all, we have the following relation between the Betti modules of A and of
S/J.

Proposition 4.1. Let t :=regS/J. Thent < d—r and for alli € {1,...,r} we

have
r—1
i—1

Tord (K, A) ~ Tor? (K, S/.J) & K= (=i —d + 1+ 1).
Proof. As depth S/J > 0 we have
Tor (K, S/ J)ir; = 0if (i,5) & {1,...,7} x {1,...,t}.

Moreover we have Tor? (K, S/L) ~ K(T?I)(—i) for all © € Ny. By the sequence of
2.5 B), for all 4,j € N, we get an exact sequence

r—1

KU (mi—d 1 = 2)i4; — Tord (K, S/ J)is; —
Tor’ (K, Ay — KGo) (=i —d+ 7 —1)i; — Tors (K, S/J)is;.

It follows that Tor? (K, S/J);y; =~ Tor? (K, A);y; for all j ¢ {d—r+1,d—r+2}. As
t =regS/J <d—r (cf. 3.1 a) ), we have Tor (K,S/.J);; = Tor; |(K,S/J)iy; =0
for all 7 > d —r + 1. Now, our claim follows easily. 0
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We convene that () =0 for all « € Ny and all b € Z\ {0,...,a}. Concerning the
Betti modules of the S-module D(A) we have the following auxiliary result, which
shall be used later to determine the Betti numbers of H'(A). It generalizes and
simplifies the corresponding result in [1, (5.3) (b)].

Lemma 4.2. Fori € {1,....,r =1} let ¢;:=(d —1)(",") = ('_]). Then
K(0)® K" (=1), fori=0

Tor] (K, D(A)) = {I\”Ci(—i—D, forie{l,...,r—1}

Proof. In view of the natural exact sequence
0—A— D(A) — H'(A) =0

and as H'(A) is minimally generated by d —r homogeneous elements of degree 1 (cf.
2.7 a), 3.1), we have Tory (K, D(A)) ~ K(0) ® K% "(~1). As H'(A) is generated
in degree 1, we also have Tor; (K, H'(A)); = 0. As I is generated in degrees > 2,
the exact sequence 0 — I — S — A — 0 gives Tory (K, A); = 0. It follows that
Tor; (K, D(A)); = 0. As regD(A) = 1 (cf. 3.2 A) ) and as depth D(A) = 2, it
follows that Tor; (I, D(A)) ~ K%(—i—1) for all i € N, with ¢; € N fori <r —1
a,ndcz—()forzzr.

As dimg D(A), = min{0,1 + nd} for all n € Z, the Hilbert series of the S-module

D(A)is F(t,D(A)) = 3,501 +nd)t" = (1 —t) ?Q(t),with Q(t) = 1+ (d —1)t. As

L+ (d—1rt—ct? +ept® — .+ (=) e, 1t =
r—1
> (=1)" dimg Tor (K, D(A)); # = (1 — )" Q(t)
=0
we obtain ¢; = (d — 1)(";") — (z+1> fori=1,...,r—1. O

Now, we consider the Betti numbers of the Hartshorne-Rao module H'(A).

Remark 4.3. In view of the exact sequence 0 — A — D(A) — H'(A) — 0, for all
1 € N and all j € Z, we get exact sequences of K-vector spaces

TorS,y (K. H (A)) o4y — Torf (K, A)yy; — Tord (K. D(A))sy,
5 Torf (K. H'(A))i; = Tor? 4 (K, A)yy; = Torf 4 (K. D(4)),1,

Proposition 4.4. In our previous notation we have with H := H*(A):
a) Tor0 (K,H) ~ K (-1).
b) Tor1 (Ix H) ~ Ke=dime I2(_2),
¢) Tor] (K, H) ~ K%(—i — 1) & Tor] (K, A)siy2 with a; < (") (d — 1) for
i € {2 T}
d) Toer(K, H) Tor? (K, A)spi3.
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Proof. As H is minimally generated by d — r elements of degree 1 (cf. 2.7 a), 3.2
A) ), we get statement a) and the fact that Tor] (K, H)<; = 0 for all i € Ny. If
we apply the six term exact sequence of 4.3 with ¢ = 1 and keep in mind that
Tory (K, A) = K, Tor} (K, A)y ~ I, and Tor; (K, D(A)) = K (=2) (cf. 4.2) we thus
get statement b).

Also, in view of the exact sequence of 4.3 and observing 4.2, we obtain graded
isomorphisms Tor? (K, H) o~ K% (—i—1)&Tor? | (K, A)si o for all i > 2. Tt remains
to show that a; < ("#')(d —r) for i = {2,...,r} and that a,; = 0.

To derive the stated inequality, write Torf (K, H) as the i-th cohomology module
Ker(9;)/ Im(0;41) of the Koszul complex

r+1 7'+1> r+1
i+1 7 i—1

s HED () 2 g Uy 2 gD i)

. r1
of H with respect to xy,...,z, and observe that H(iib(—i — 1)1 = HO(“”) =0

r T+1 r
and H(D) (—i)or = BT o (a1 () (ef. 2.7 a).
Finally, the natural graded isomorphism soc H ~ Tor?, (K, H)(r + 1), the socle
isomorphism of 3.2 C) and the vanishing of h'(S/.J); (cf. 2.7 ¢) ) show that
K+t~ Tor?, | (K, H),42 =~ (soc H); = 0.
U

In case S/.J is C'M, the Betti modules of the Hartshorne-Rao module H'(A) can be

determined precisely:
Proposition 4.5. Fori € {0,....,r+1} let a; == (d—r+1)(/_})) + (d —r)(",")

and b; = (’;:21) Assume that S/.J is CM. Then, for alli € {0,...,r + 1} we have

Tor? (K, HY(A)) ~ K% (—i — 1) ® K% (—i —d +r).
Proof. For a €e Nym € {1,...,r} and i € {0,...,m} we set

My, =S/ ((xo, x1)* + (22, ..., Tm))
and w; := (a + 1)(’?:11) + a(?:;) and v; := (m;l) By induction on m we wish to
show:
Tory (K, M,,) ~ K% (=i + 1 — a) @& K" (—i).

By the Hilbert-Burch Theorem M; = S/(xp,21)® has a minimal free resolution of
the shape

0—S%(~a—1) = S""(-a—-1)—= S — M, —0.
This proves the above claim if m = 1. So, let m > 1. Then, the graded short exact
sequence

0 — My_1(=1) 2 M,_y — M,, =0

induces isomorphisms

Tor (K, M,,) ~ Tory (K, M,,_1) @ Tory (K, M,,_1)(—1)
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for all i € {0,...,m}. On use of the Pascal formulae for binomial coefficients we
may perform the induction step needed to prove the above claim.

Now, choose m = r,a = d —r and set M := M,. Then, by the previous claim we
obtain

Tory (K, M) = K" (—i+1—d+r)® K"(—i),
with u; = (d—r+1)('Z}) +(d—r)(}2)) and v; = ("]") for each i € {0,...,r}. After

i—2
a linear change of coordinates, we may assume by Theorem 3.3 that

H:= H'(A) = Homg (M, K)(r — d),
hence by graded local duality, that
H ~ Ext;™ (M, S(—r —1))(r — d) ~ Exts"™ (M, S)(—=d — 1).

Let 0 — Fryy — F, — ... > Fy = Fy, — M — 0 be a graded minimal free
resolution of M. As M is of finite length over S, we have Exty(M,S) = 0 for all
t # r+ 1 and thus get a minimal free resolution

0 — Homg(Fp, S) — ... — Homg(F, 41, S) — Extgt (M, S) — 0
of H(d+ 1). It follows
Tor; (K, H) ~ Tor; (I, Extg (M, S))(—d — 1) ~
K®gHomg(F,iq_i, S)(—d — 1) ~ K"+1-i(—i — 1) @ K+ (—i —d —r).
AS upy1_; = a;,vp01-; = b; we get our claim. O

Finally, if S/.J is CM, the Betti numbers of A can be approximated as follows:

Theorem 4.6. Assume that S/J is CM and that d > r + 1. Then, for each i €
{1,2,...,r} we have

TOI‘?(K, A) ~ KUl(Z — 1) P K”Ui(_l‘ _ 2) D K’(::D(_Z‘ —d+4r— 1),

where u; and v; are given resp. bounded according to the following table
1 1 2<i<r—2 r—1 r

u; (T —d-1 <g <d-1 0

vi | <d=-1)0G)+(r—1) <@y  d—r+10

in which ¢; and a;yq are defined according to 4.3 resp. 4.5. Moreover u; — v; 1 =
¢ —a; forallie{2,...,r—1}.

Proof. The stated general shape of the Betti module Tor; (K, A) follows from Propo-
sition 4.1, as I is generated in degree > 2 and as reg.S/.J = 2 (cf. Theorem 3.3).
The requested value of u; is a consequence of Proposition 3.6. The vanishing of w,
and v, is a consequence of Proposition 4.1.
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By Proposition 4.5 and Lemma 4.2 we have
Tor?, (K, H'(A))iy1 =~ Tor? (K, D(A))i11 =0

foralli € N, Tor? (K, H'(A));;, ~ K% foralli € {0,...,r} and Tor; (K, D(A))iy; ~
K¢ foralli e {1,...,r—1}. So, the sequences of 4.3 imply that u; < ¢;, v; < a;41 for
allie{l,....,r—1}u;—vi1=¢—a;forallie {2,....r—1} and v,y = a,. O

5. EXAMPLES

We keep the hypotheses and notations of the previous sections. We also introduce
the notation

Bij := dimy Tor} (K, A)iyj
for the Betti numbers of C.

Remark 5.1. A) We first consider the ”exceptional case” in which d = r + 1, a
case which has been excluded previously by the convention made in 2.5 A). In this
case we know that C C P is either an elliptic normal curve, or the projection of
a rational normal curve C C P! from a generic point or else a singular rational
curve, obtained by projecting a rational normal curve ¢ C P! from a point which
lies precisely on one secant line of C, (cf. [1, (4.7) B)]). In the first and the third
case, C is of arithmetic genus 1, so that H?(A)y # 0. In the second case we have
H'(A); # 0. So, in all three cases we have regC = reg A+1 > 3 and hence regC = 3,
(cf. 2.2). So C is of maximal regularity in any case.

B) If C has a 3-secant line L, then by 2.2 we know that I is generated by quadrics and
one cubic. According to [5, p. 504] or to [6] this only may occur in the case where C
is smooth and rational. From the proof of Theorem (3.1) in [5] (cf. p. 503) it follows
that our curve C always lies on a rational surface scroll S, _1_s,, C P}, (0 < a < %)
(we use the notation of [1, (6.1)]). Moreover, by [5, Remark (2), p. 504], C has a
trisecant line if and only if a = 1.

C) Let us assume now, that C has a trisecant line . Then, for some f € S5\ L we
have I = J+ fS, I+ L =L+ fS (cf. 2.2) and the resulting exact sequence

0—S/J—=S/LoA—S/(L+fS)—0

together with the fact that H*(A), = 0 for all n # 1 shows that H*(S/.J), = 0 for
all n # 1. If we apply 2.3 with ;1 = 3 we also obtain

r+1+h'(S/]) =dim(S/J); + h'(S/J); = h°(CUL, Ocur (1)) <7 +1,
hence h'(S/J); = 0. Therefore H'(S/J) = 0 and S/J becomes CM, too. So, the
statement of 3.5 remains valid.
Examples 5.2. We consider the two non-degenerate rational curves C, C P} of
degree 11, (k = 1,2) given parametrically by

Cri(s'h s 6% 0 Tt 0 657 0 650 0 51T 20 2 st s ),

Co i(s' 8" %% 0 Tt 0 657 0 640 0 51T 2% 0 5% st!0 o ).
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It is easily seen, that Cj lies on the rational surface scroll Sq_o ; for £ = 1,2. Both
curves are obviously smooth and obtained by projecting a rational normal curve
C C PiI* from a point (which avoids all secant lines). In particular, both curves are
of regularity 3. Moreover for the Betti numbers 3;; of A = A¢, we have

El¢]1 2 3 4 5 6 7 8 9 10
B [43 221 550 812 742 398 91 8 0 O
11B2]0 1 & 28 56 70 84 45 11 1
B |43 222 558 840 798 468 147 8 0 0
20621 9 36 84 126 126 84 45 11 1

The non-vanishing of the Betti number [35; is in perfect coincidence with the obser-
vation that both curves Cy lie on a rational surface scroll, e.g. a surface of minimal
degree (cf. [2, 3.C.1]).

In the case k = 1 we have 315 = 0, so that I is generated by quadrics. In view of 5.1
B) C; has no trisecant line. In the case k = 2 we have ;5 = 1, so that [ is generated
by quadrics and one cubic and we may expect that C has a trisecant line . This
holds indeed by [5, p. 504]. In particular S/.J must be CM by 5.1 C). In fact, for
the Betti numbers

Yij = dimK TOI’%S'([(, S/J)H_]
of S/.J we get the following values

|12 3 4 5 6 7 8 9 10
i1 | 43 222 558 840 798 468 147 8 0 O
Y2 | 0 0 0 0 0 0 0 92 0

Observe also, that in both cases the number of generating quadrics is (122) —12 =43,
in accordance with 3.6.

It is easy to see that for each r > 3 and each d > r + 1 there are non-degenerate
curves C C P of maximal regularity and of degree d lying on a rational surface
scroll S C P.. But in general, curves of maximal regularity need not lie on a scroll.

Example 5.3. Let C C P be the non-degenerate rational curve given parametri-
cally by

C:(s™ 5™ %% 683 5Tt 550 0 510 (st'0 + 5%17) : M),

Calculating the Betti numbers f;; we get

i1 2 3 4 5 6 7 8
Bal24 84 126 8 20 0 0 0
Bisl O 0 0 20 36 21 4 0
BslO 0 0 0 0 0 0O
Byl 1 7 21 35 35 21 7 1

In particular we get reg A = 4, thus regC =5 =11 — 8 — 2, so that C is of maximal
regularity. As [ = dimg Tor(;((K, A); = 0, Green’s K, ;-Theorem shows that C
does not lie on a surface scroll (cf. [2]).
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By 3.5 — and in accordance with 3.6 — S/.J is CM. Moreover, by 4.1 and 3.3 (iv),
the first two lines of the previous table describe the Betti numbers of S/.J.

By 3.5 we know that S/.J is CM if d < 2r — 1. The next example illustrates that
this result is sharp: There are non-degenerate curves C C P} of maximal regularity
and of degree d = 2r — 1 such that S/.J is not a CM ring.

Example 5.4. Let C C P} be given by

C: (s':s"0:s%%: % st st'0 o ),
so that C is non-degenerate and of degree 11 = 26 — 1. Here, the Betti numbers
Bi; take the following values

i |1 2 3 4 56
B |10 20 15 4 0 0
Bix| 3 10 10 0 0 0
Bis| 1 5 10 15 7 1
BiaulO 0O 0 0 00
Bis1 O 0 0 0 0 O
Bl 1 5 10 10 5 1

We see that reg A = 6, so that regC =7 =11 -6+ 2 = d —r + 2. Hence C is
of maximal regularity. But now S/.J is not a CM-ring. One way to see this, is to
apply 4.1 and to observe 3.3 (iv). One also could observe that the number f;; of
generating quadrics of I is 10 # (6;1) — 11 —1 =9 and apply 3.6. Moreover, the
first three lines of the above table provide the Betti numbers of S/.J (see 4.1). Also,
by 3.6, H'(S/.J) is minimally generated by one element of degree 2 and the socle
formula of 3.2 C) shows that H'(S/.J), = 0 for all n > 2. So, S/.J is a Buchsbaum
ring with H'(S/J) = K(-2).

One might ask, whether the converse of 3.5 is true. We shall give an example showing
that this is not the case in general: There are non-degenerate curves C C P" of
maximal regularity of degree d > 2r — 1 and such that S/.J is a CM ring.

Example 5.5. Let C C P% be the curve of degree 11 defined parametrically by
C:(s™ 5™ %% %3 st (577 + st'0) 1),

Here, the Betti numbers of C are as listed below:

i1 2 3 4 5 6
B9 16 9 0 0 0
Bin |6 24 36 25 6 0
BisO 0 0 0 0 O
Bis|O 0O 0O 0 0 0
Bis|0 0 0 0 00
Bl 5 10 10 5 1

So, first of all we have regC = regA +1 =7 =11—-64+2 =d—1r+ 2 so
that C is again of maximal regularity. The number of generating quadrics is 9 =

(6;1) —11-1= (’”2“1) —d —1 so that S/.J is a CM-ring by 3.6. On the other hand
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we have d = 11 =2-6 — 1 = 2r — 1. Again, by 4.1 the first two lines of the above
diagram furnishes the Betti numbers of C U L.

By 3.3 we know that S/J is CM if and only if soc H'(A) ~ K(r — d), whereas in
general we have soc H'(A) ~ soc(H'(S/J)) & K(r — d) (see 3.2 C) ). We present
two examples which illustrate how much soc H!(A) may vary in general.

Examples 5.6. We consider two curves C, C P9 of degree 13, (k = 1,2) given
parametrically by

Cy:(s™ 5™t M2 108 %t st!? o 1),
Co: (%50 5128 s s112 0 61043 ¢ 9% ¢ (5112 — 2411 ¢ ¢13),

The Betti numbers are listed below

Eli]1 2 3 4 5 6
Ba |10 20 15 4 0 0
Bl 0O 0 0 0 0
Bis| 0 10 20 15 4 0

1840 0 0 0 0 O
Bis| 1 5 10 10 5 1
B! O 0 0 0 0 0
Bzl O 0 0 0 0 0
Bs| 1 5 10 10 5 1
Bal9 16 9 0 0 0
Bol2 4 0 1 0 0
Bis| 2 14 36 34 14 2

2|84 0 0 0 0 0 O
Bs1 O 0 0 0 0 O
Bl O 0 0 0 0 O
Bzl O 0 0 0 0 O
Bs|1 5 10 10 5 1

In both cases we have regCy, =9 =13 -6+ 2 =d —r + 2, so that C is of maximal

regularity.
Moreover, by 4.1, we read off that reg S/.J = 6 resp. 4 in the case k = 1 resp. k = 2.
So, by 3.3 clearly S/.J is not CM in either case. Keeping in mind that (cf. 4.4 d)
for the second isomorphism)
soc H'(A) = Tory (K, H(A)) =~ Tor? (K, A),s3(r + 1) =~ @53 K77 (—j + 1)
we thus get
K(—4)® K(-7 if k=1
SOCHI(A)Z {5 )69 X( )7 1 )
K*(=2)® K(-7), ifk=2.

Moreover, it follows that S/.J is a Buchsbaum ring with H'(S/.J) ~ K?(—2) in the
case k = 2 while it is not a Buchsbaum ring in the case k£ = 1.
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Further examples in higher degrees show that soc H'(A) may indeed vary rather

strongly.
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