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Abstract

We develop a stability and convergence theory for the Ultra Weak Variational For-
mulation (UWVF) of a highly indefinite Helmholtz problem in Rd, d ∈ {1, 2, 3}. The
theory covers conforming as well as nonconforming generalized finite element methods.
In contrast to conventional Galerkin methods where a minimal resolution condition is
necessary to guarantee the unique solvability, it is proved that the UWVF admits a
unique solution under much weaker conditions. As an application we present the error
analysis for the hp-version of the finite element method explicitly in terms of the mesh
width h, polynomial degree p and wave number k. It is shown that the optimal conver-
gence order estimate is obtained under the conditions that kh/

√
p is sufficiently small

and the polynomial degree p is at least O(log k).
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1 Introduction

In this paper we analyze the Discontinuous Galerkin method (DG) applied to the following
model Helmholtz problem:

−∆u− k2u = f in Ω, (1.1)

∂u

∂n
+ i ku = g on ∂Ω. (1.2)

Here, Ω is a bounded Lipschitz domain in Rd, d ∈ {2, 3}, and k is the real and positive
wavenumber bounded away from zero, i.e., k ≥ k0 > 0. n is the outer normal vector to ∂Ω
and i =

√
−1 denotes the imaginary unit. We assume that the right-hand side f ∈ L2(Ω)

and g ∈ L2(∂Ω). By Hs (Ω) we denote the usual Sobolev space with norm ‖·‖Hs(Ω), [1]. The
seminorm which contains only the derivatives of order s is denoted by |·|Hs(Ω).
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The weak formulation for (1.1) is given by: Find u ∈ V := H1(Ω) such that

a (u, v) = F (v) ∀v ∈ H1(Ω), (1.3)

where

a (u, v) :=

∫
Ω

(
∇u∇v̄ − k2uv̄

)
+ i k

∫
∂Ω

uv̄, (1.4)

F (v) :=

∫
Ω

fv̄ +

∫
∂Ω

gv̄. (1.5)

Existence and uniqueness for the continuous problem have been proved in [22] for bounded
Lipschitz domains.
Problems in high-frequency scattering of acoustic or electro-magnetic waves are highly in-
definite – and the design of discretization methods that behave robustly with respect to the
amount of indefiniteness is of great importance. For our model problem, the highly indefinite
case arises for high wavenumbers k, and the solution u is highly oscillatory. It is well known for
such problems that low order finite elements suffer from the pollution effect, which mandates
very fine meshes, [20]. For example, for a P1-finite element space, the number of degrees of
freedom N should be at least N & k2d, where d is the spatial dimension. The conditions on
the mesh size are less stringent for higher order FEM. A particular example is the analysis
of [25, 26], where it has been shown in the context of high order methods that linking the
polynomial degree p logarithmically to the wavenumber can lead to a stable method with
few degrees of freedom per wavelength. While, in particular, existence of discrete solutions is
given in those circumstance, it is worth noting that a minimal resolution condition is required
to ensure their existence.

This observation motivates the use of stabilized variational formulations which always
guarantee the discrete stability of the method (existence and uniqueness of the discrete so-
lution). Prominent examples of these types of methods are those incorporating least squares
ideas, [2, 17, 18, 27], and Discontinuous Galerkin Methods, [12–14]. The Ultra Weak Vari-
ational Formulation (UWVF) of Cessenat and Després [6, 7, 9] belongs to the second class
and permits using non-standard, discontinuous local discretization spaces such as plane waves
(see [16, 19]).

The goal of this paper is to develop a theory for the UWVF that derives the convergence
behavior of abstract conforming and non-conforming generalized finite element spaces from
certain local approximation properties and local inverse estimates, which may be easy to
check, possibly even at run-time.

This paper is structured as follows: In Section 2, we recall the UWVF for the Helmholtz
problem (1.1). Section 3 is devoted to discrete stability and convergence. Particularly, the
unified theory presented in Section 3 covers two popular choices of approximation spaces,
namely, spaces consisting of piecewise plane waves and conforming as well as non-conforming
hp-finite element spaces on affine simplicial meshes. Nevertheless, we also derive an abstract
approximation criterion for general finite element spaces that implies existence and uniqueness
of the discrete solution. Based on these results, we obtain quasi-optimal convergence in the
DG-norm for general finite element spaces.

In Section 4 we apply the results of Section 3 to the hp-version of the FEM. We obtain
a convergence theory that is explicit in the wavenumber k as well as the discretization pa-
rameters; the mesh width h and the polynomial degree p. These results may be viewed as an
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extension of the results [25,26] for classical H1-conforming discretizations to the DG-setting.
In these papers, a scale resolution condition of the form

kh

p
≤ c1 and p ≥ c2 log k (1.6)

(for suitable c1, c2) is sufficient to guarantee quasi-optimality. For the hp-version of the DG-
FEM on regular meshes, or, more generally, meshes that permit sufficiently richH1-conforming
subspaces of the non-conforming DG-space, the same condition yields quasi-optimality. In the
general case, the slightly stronger condition (4.17) is a sufficient condition for quasi-optimality.
In particular, we show, for the first time for a DG-method, that quasi-optimality can be
obtained for a fixed number of degrees of freedom per wavelength.

2 The Ultra Weak Variational Formulation

2.1 Meshes and Spaces

To formulate the UWVF we first introduce some notation. Let Ω ⊂ Rd, d ∈ {2, 3}, denote a
polygonal (d = 2) or polyhedral (d = 3) Lipschitz domain. The UWVF is based on a partition
T of Ω into non-overlapping curvilinear polygonal/polyhedral subdomains (“finite elements”)
K with possibly hanging nodes. The local and global mesh width is denoted by

hK := diamK and h := max
K∈T

hK . (2.1)

In the case d = 3, the boundary of K can be split into faces and for d = 2 into edges. For
ease of notation we use the terminology “faces” in both cases. For K ∈ T , we denote the set
of faces by E (K). The subset of interior faces, i.e., the set of faces of K which are not lying
on ∂Ω, is denoted by EI (K). For instance the number ]E (K) = d+ 1 if K is a simplex. As a
convention we consider the finite elements K ∈ T always as open sets and the faces e ∈ E (K)
as relatively open sets.

The interior skeleton SIT and the boundary skeleton SBT are given by

SIT :=
⋃
K∈T

⋃
e∈EI(K)

e, SBT :=
⋃
K∈T

⋃
e∈E(K)
e⊂∂Ω

e.

Note that SIT , SBT are the union of the relative interior of the faces and, consequently, for any
point x ∈ SIT , there exist exactly two elements in T (denoted by K+

x , K−x ) with x ∈ K+
x ∩K−x .

Also define ∇T and ∆T as elementwise applications of the operators∇ and ∆, respectively.
The one-sided restrictions of some T -piecewise smooth function v for x ∈ SIT are denoted by

v+ (x) := lim
y∈K+

x
y→x

v (y) and v− (x) := lim
y∈K−x
y→x

v (y) .

We use the same notation for vector-valued functions.
We define the averages and jumps for T -piecewise smooth scalar-valued functions v and

vector-valued functions σS on SIT by

the averages: {v} :=
1

2
(v+ + v−) , {σS} :=

1

2

(
σ+
S + σ−S

)
,

the jumps: JvKN := v+n+ + v−n−, JσSKN := σ+
S .n

+ + σ−S .n
−.
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where n+ (x), n− (x) denote the (outer) normal vectors of elements K+
x , K−x .

Based on the partition T we can introduce broken Sobolev spaces in the standard way: For
s > 1, we set

Hs
pw (Ω) := L2 (Ω) ∩

∏
K∈T

Hs (K) (2.2)

In particular, the case k = 0 corresponds to discontinuous functions.

2.2 Discrete Formulation

We approximate the solution of (1.3) from an abstract finite-dimensional space S ⊂ H2
pw(Ω),

i.e., only the following two conditions are imposed:

S ⊂ L2 (Ω) and S ⊂
∏
K∈T

H2 (K) (2.3)

are imposed.
We employ the formulation of the UWVF as derived in [3–6,16,19]. We assume that Ω is a

bounded polygonal/polyhedral Lipschitz domain and that T is a shape-regular triangulation
with possibly hanging nodes.

We denote by (·, ·) the L2 inner product on Ω, i.e., (u, v) =
∫

Ω
uvdV . Let S be the discrete

space as in (2.3). Let α ∈ L∞
(
SIT

)
, β ∈ L∞

(
SIT

)
, and δ ∈ L∞

(
SBT

)
be some positive and

bounded functions on the mesh skeletons. (It will turn out that these functions can be chosen
to be piecewise constant on a certain partition of the skeleton (cf. Remark 2.2).) Then, the
UWVF can be written in the form:
Find uS ∈ S such that, for all v ∈ S,

aT (uS, v)− k2(uS, v) = (f, v)−
∫
SBT

δ
1

i k
g∇T v · ndS +

∫
SBT

(1− δ)gvdS =: FT (v) (2.4)

where aT (·, ·) is the DG-bilinear form on S × S defined by

aT (u, v) := (∇T u,∇T v)−
∫
SIT

JuKN · {∇T v}dS −
∫
SIT

{∇T u} · JvKNdS

−
∫
SBT

δu∇T v · ndS −
∫
SBT

δ∇T u · nvdS

− 1

i k

∫
SIT

βJ∇T uKNJ∇T vKNdS −
1

i k

∫
SBT

δ∇T u · n∇T v · ndS

+ i k

∫
SIT

αJuKNJvKNdS + i k

∫
SBT

(1− δ)uvdS. (2.5)

Note that aT (·, ·) can be extended to a sesquilinear form on H
3/2+ε
pw (Ω)×H3/2+ε

pw (Ω) for any
ε > 0. So far, the functions α, β, δ are arbitrary, positive L∞ functions. Our analysis will
rely on certain properties of α that depend on some trace inverse estimates for the space S.
We therefore introduce:
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Definition 2.1 (inverse trace inequality). For each element K, the constant Ctrace(S,K) is
the smallest constant such that

‖∇ (v|K) ‖L2(∂K) ≤ Ctrace(S,K)‖∇v‖L2(K) ∀v ∈ S. (2.6)

Remark 2.2. The analysis of the continuity and coercivity will lead to the condition

α (x) ≥ 4

3k
max

K∈{K+
x ,K

−
x }
C2

trace (S,K) ∀x ∈ SIT . (2.7)

For the special case that S is a conforming/nonconforming hp-finite element space, the es-
timate of the approximation property of S with respect to the ‖ · ‖DG and ‖ · ‖DG+ norms,
(cf. Section 4.2 ahead) leads to the choices

α (x) = a max
K∈{K+

x ,K
−
x }

p2

khK
, β = b

kh

p
, δ = d

kh

p
, (2.8)

where the parameter a is selected fixed but sufficiently large below; the parameters b, d are
selected to be of size O(1).

Remark 2.3. It is easy to see that x 7→ α (x) can be chosen piecewise constant with respect
to a sub-partition E of the set of all faces. More precisely, we define a subdivision of the set
of inner edges by

EI :=

{
◦
∂K ∩

◦
∂K ′ ∩ Ω | ∀K ∈ T ∀K ′ ∈ T \ {K}

}
,

where
◦
∂K :=

⋃
e∈E(K)

e. For any e′ ∈ EI, the maximum in (2.7) over x ∈ e′ can be chosen always

as one fixed element K so that the value of α is constant along e′. Hence, without loss of
generality we may assume in the following that α is chosen as an E-piecewise constant function.

Note that the assumption “α is positive” then implies the existence of some X ∈
◦
∂K ∩Ω such

that
αmin
∂K := inf

x∈∂K
α (x) = α (X) . (2.9)

In the rest of this section we will show that the discretization given by the sesquilinear
form aT is consistent as well as adjoint consistent. The latter property will prove particularly
useful for error estimates.

Lemma 2.4 (consistency). Let the exact solution u of (1.2) be in H3/2+ε(Ω) for some ε > 0.
Then u satisfies the consistency condition

aT (u, v)− k2(u, v) = FT (v) ∀v ∈ S,

where the right-hand side FT is given in (2.4).

Proof. It is enough to prove that u satisfies the equation (2.4). From the H3/2+ε-regularity of
u it follows that u and ∇u have well-defined traces on ∂K for each K ∈ T and

JuKN = 0, J∇uKN = 0, {∇u} = ∇u on SIT .
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We multiply both sides of equation (1.1) by a test function v ∈ S, integrate elementwise
and take the sum over all elements and finally apply integration by parts. We get∑

K∈T

(∫
∂K

(−∇u · n)v̄ +

∫
K

∇u · ∇v̄
)
−
∫

Ω

k2uv̄ =

∫
Ω

fv̄ (2.10)

Using the definition of the jumps on the inner faces and inserting the boundary condition
from equation (1.2), one gets

−
∑
K∈T

∫
∂K

(∇u · n)v̄dS = −
∫
SBT

δ∇u · nvdS −
∫
SBT

(1− δ)gvdS

+

∫
SBT

i k(1− δ)uvdS −
∫
SIT

∇u · JvKNdS.

The boundary condition (1.2) gives us

=−
∫
SBT

δ∇u · nvdS −
∫
SBT

(1− δ)gvdS +

∫
SBT

i k(1− δ)uvdS −
∫
SIT

∇u · JvKNdS

+
1

i k

∫
SBT

δg∇T v · ndS −
1

i k

∫
SBT

δ∇u · n∇T v · ndS −
∫
SBT

δu∇T v · ndS.

Inserting this result into equation (2.10) leads to

aT (u, v)− k2(u, v) = (f, v)−
∫
SBT

δ
1

i k
g∇T v · ndS +

∫
SBT

(1− δ)gvdS, ∀v ∈ S

In Lemma 2.7 below we will consider the consistency with respect to the following adjoint
problem.

Definition 2.5 (adjoint solution operator N∗k ). The adjoint Helmholtz problem is given by:

For w ∈ L2 (Ω) find φ ∈ H1(Ω) such that a (v, φ) = (v, w) ∀v ∈ H1 (Ω) . (2.11)

The solution operator N∗k : L2 (Ω)→ H1 (Ω) is characterized by the condition

a (v,N∗k (w)) = (v, w) . (2.12)

Problem (2.11) has Hs (Ω)-regularity for some s > 1 if for any given right-hand side
w ∈ L2 (Ω) the solution φ of (2.11) is in Hs (Ω) and satisfies

‖φ‖Hs(Ω) ≤ Creg ‖w‖L2(Ω)

for some positive constant Creg that is independent of w and φ.

Remark 2.6. The adjoint problem (2.11) is a well-posed problem, for which even k-explicit
regularity is available. For example, if Ω convex (or smooth and star-shaped), then φ ∈ H2(Ω)
and

k‖φ‖L2(Ω) + ‖∇φ‖L2(Ω) ≤ C1(Ω)‖w‖L2(Ω),

‖∇2φ‖L2(Ω) ≤ C2(Ω)(1 + k)‖w‖L2(Ω),
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with C1(Ω), C2(Ω) > 0 independent of k ≥ k0 > 0 (k0 is arbitrary but fixed), [22, Prop. 8.1.4]
for d = 2 and [8] for d = 3. For general Lipschitz domains, it was shown in [10, Thm. 2.4]
that

k‖φ‖L2(Ω) + ‖∇φ‖L2(Ω) ≤ C3(Ω)k5/2‖w‖L2(Ω)

for a constant C3(Ω) independent of k ≥ k0. If the Lipschitz domain Ω is polygonal/polyhedral,
then classical elliptic regularity theory shows φ ∈ H3/2+ε(Ω) for some ε > 0, which depends on
the geometry of Ω.

Lemma 2.7 (adjoint consistency). Let the adjoint Helmholtz problem be H3/2+ε (Ω)-regular
for some ε > 0. Then for any w ∈ L2 (Ω), the solution φ := N∗k of the adjoint problem (2.11)
satisfies

aT (v, φ)− k2(v, φ) = (v, w) ∀v ∈ H3/2+ε
pw (Ω) . (2.13)

Proof. From the H3/2+ε (Ω)-regularity of φ it follows that φ and ∇φ have well-defined traces
on ∂K for each K ∈ T and

JφKN = 0, J∇φKN = 0, {∇φ} = ∇φ on SIT .

The rest of the proof is just a repetition of the arguments in the proof of Lemma 2.4 by taking
into account the zero Robin boundary conditions for the adjoint problem.

We will use the mesh-dependent norms ‖ · ‖DG, ‖ · ‖DG+ on H
3/2+ε
pw (Ω) for ε > 0:

‖v‖2
DG :=‖∇T v‖2

L2(Ω) + k−1‖β1/2J∇T vKN‖2
L2(SIT ) + k‖α1/2JvKN‖2

L2(SIT )

+ k−1‖δ1/2∇T v · n‖2
L2(SBT ) + k‖(1− δ)1/2v‖2

L2(SBT ) + k2‖v‖2
L2(Ω),

‖v‖2
DG+ :=‖v‖2

DG + k−1‖α−1/2{∇T v}‖2
L2(SIT ).

3 Discrete Stability and Convergence Analysis

This section is devoted to the analysis of the discrete problem for the finite dimensional space
S.

3.1 Continuity and Coercivity

Proposition 3.1. Define bT (u, v) := aT (u, v) + k2(u, v). For any 0 < δ < 1
3

and α satisfying
(2.7), there exist constants ccoer, Cc > 0 independent of h, k, α, β, δ, and Ctrace (S,K) such
that

a) the sesquilinear form bT (·, ·) is coercive

|bT (v, v)| ≥ ccoer‖v‖2
DG ∀v ∈ S.

b) For any ε > 0, the sesquilinear form bT (·, ·) satisfies the following continuity estimates

|bT (v, wS)| ≤ Cc‖v‖DG+‖w‖DG+ ∀v, w ∈ H3/2+ε
pw (Ω) , (3.1)

|bT (v, wS)| ≤ Cc‖v‖DG+‖wS‖DG ∀v ∈ H3/2+ε
pw (Ω) , ∀wS ∈ S, (3.2)

|bT (wS, v)| ≤ Cc‖v‖DG+‖wS‖DG ∀v ∈ H3/2+ε
pw (Ω) , ∀wS ∈ S. (3.3)
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Proof. a) The definition of bT (., .) leads to

bT (v, v) = ‖∇T v‖2
L2(Ω) − 2 Re

(∫
SIT

JvKN · {∇T v}dS

)
− 2 Re

(∫
SBT

δv∇T v · ndS

)
+ i k−1‖β1/2J∇T vKN‖2

L2(SIT ) + i k−1‖δ1/2∇T v · n‖2
L2(SBT )

+ i k‖α1/2JvKN‖2
L2(SIT ) + i k‖(1− δ)1/2v‖2

0,SBT
+ k2‖v‖2

L2(Ω).

By using Young’s inequality for some positive function s ∈ L∞
(
SIT

)
we get for the second

term in the representation of bT (·, ·)

∣∣∣∣∣2 Re

∫
SIT

JvKN · {∇T v}dS

∣∣∣∣∣ ≤ k‖
√
s

α
α1/2JvKN‖2

L2(SIT )

+
1

k
‖ 1√

s
∇ (v|K) ‖2

L2(SIT ).

We choose s := 4α/5. By using (2.7) we get∣∣∣∣∣2 Re

∫
SIT

JvKN · {∇T v}dS

∣∣∣∣∣ ≤ 4

5
k‖α1/2JvKN‖2

L2(SIT )

+
∑
K∈T

5

4k
‖ 1

α1/2
∇ (v|K) ‖2

L2(Ω∩∂K).

For the second summand, we get with αmin
∂K as in (2.9)∑

K∈T

5

4k
‖ 1

α1/2
∇ (v|K) ‖2

L2(Ω∩∂K) ≤
∑
K∈T

5

4k

C2
trace (S,K)

αmin
∂K

‖∇v‖2
L2(K).

Let X ∈
◦
∂K ∩ Ω be defined as in Remark 2.3. Since K ∈

{
K+
X , K

−
X

}
, the condition on α (cf.

(2.6)) implies

αmin
∂K = α (X) ≥ 4

3k
max

K′∈{K+
X ,K

−
X}
C2

trace (S,K ′) ≥ 4

3k
C2

trace (S,K) . (3.4)

Hence, ∑
K∈T

5

4k
‖ 1

α1/2
∇ (v|K) ‖2

L2(Ω∩∂K) ≤
15

16
‖∇T v‖2

L2(Ω).

All in all we have derived∣∣∣∣∣2 Re

∫
SIT

JvKN · {∇T v}dS

∣∣∣∣∣ ≤ 4k

5
‖α1/2JvKN‖2

L2(SIT ) +
15

16
‖∇T v‖2

L2(Ω).

The third term in bT (·, ·) can be estimated in a similar fashion for any t > 0 by∣∣∣∣∣2 Re

∫
SBT

δv∇T v · ndS

∣∣∣∣∣ ≤ tk
δ

1− δ
‖(1− δ)1/2v‖2

L2(SBT ) +
1

tk
‖δ1/2∇T v · n‖2

L2(SBT ).
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By choosing t = 3/2 as well as 0 < δ < 1
3

we obtain

|bT (v, v)| ≥ 1√
2

(|Re(bT (v, v))|+ |Im(bT (v, v))|)

≥ 1√
2

(
1

16
‖∇T v‖2

L2(Ω) +
k

5
‖α1/2JvKN‖2

L2(SIT )

+
k

4
‖(1− δ)1/2v‖2

L2(SBT ) +
1

3k
‖δ1/2∇T v · n‖2

0,SBT

+k−1‖β1/2J∇T vKN‖2
L2(SIT ) + k2‖v‖2

L2(Ω)

)
≥ ccoer‖v‖2

DG.

b) Using Young’s inequality we get

|bT (v, w)| ≤ |(∇T v,∇T w)|+ |
∫
SIT

JvKN · {∇T w}dS|

+ |
∫
SIT

{∇T v} · JwKNdS|+ |
∫
SBT

δv∇T w · ndS|

+ |
∫
SBT

δ∇T v · nwdS|+
1

k
|
∫
SIT

(
βJ∇T vKNJ∇T wKN

)
dS|

+
1

k
|
∫
SBT

(
δ∇T v · n∇T w · n

)
dS|+ |

∫
SIT

(kαJvKNJwKN) dS|

+ k|
∫
SBT

(1− δ)vwdS|+ k2|(v, w)|.

(3.5)

For 0 < δ < 1/2 and for any v, w ∈ H3/2+ε
pw (Ω) we finally obtain

|bT (v, w)| ≤ Cc‖v‖DG+‖w‖DG+ .

Estimates in weaker norms are possible if one of these two functions is purely a finite element
function, e.g., w ∈ S. A careful inspection of equation (3.5) shows that the only term which
requires the DG+-norm instead of DG-norm for w in the continuity estimate is

∫
SIT

JvKN ·
{∇T w}dS. Using Young’s inequality we get∣∣∣∣∣

∫
SIT

JvKN · {∇T w}dS

∣∣∣∣∣ ≤∑
K∈T

{
‖JvKN‖L2(Ω∩∂K) ‖∇ (w|K)‖L2(Ω∩∂K)

}
.

We apply the trace inequality in (2.6) and also (2.7) to obtain∣∣∣∣∣
∫
SIT

JvKN · {∇T w}dS

∣∣∣∣∣ ≤∑
K∈T

{
1√
αmin
∂K

∥∥∥α 1
2 JvKN

∥∥∥
L2(Ω∩∂K)

Ctrace (S,K) ‖∇T w‖L2(K)

}
(3.4)

≤
√

3k

4

∑
K∈T

{∥∥∥α 1
2 JvKN

∥∥∥
L2(Ω∩∂K)

‖∇T w‖L2(K)

}

≤
√

3k

2

∥∥∥α 1
2 JvKN

∥∥∥
L2(SIT )

‖∇T w‖L2(Ω) .
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Hence, we finally obtain(3.2). The estimate (3.3) can be shown using the same techniques or

derived from (3.2) by observing that for v, w ∈ H3/2+ε
pw (Ω) we have

bT ,k(v, w) = bT ,−k(w, v)

where we have added the subscript k (or −k) to emphasize how the parameter k enters the
definition.

As a corollary of (3.3) we have the following continuity assertion, which is particularly
suitable for adjoint problems:

Corollary 3.2. For any ε > 0, it holds

|aT (v, u)− k2 (v, u) | ≤ Cc‖u‖DG+‖v‖DG ∀u ∈ H3/2+ε
pw (Ω) ∀v ∈ S. (3.6)

3.2 Quasi-Optimality

We start with a definition: We say that a pair (u, uS) ∈ H3/2+ε
pw (Ω) × S of functions satisfies

the Galerkin orthogonality if

aT (u− uS, v) = 0 ∀v ∈ S. (3.7)

Our starting point for the analysis of the UVWF is a quasi-optimality result which is proved
under the assumption that the above Galerkin orthogonality is valid. The existence and
uniqueness of a solution uS of the discrete problem (2.4) is then shown in a second step based
on the quasi-optimality result.

Proposition 3.3. There exists a constant C̃ > 0 depending solely on the constants Cc, ccoer

of Proposition 3.1 such that the following is true: Any pair (u, uS) ∈ H3/2+ε
pw (Ω)× S meeting

the orthogonality condition (3.7) satisfies

‖u− uS‖DG ≤ C̃

(
inf
v∈S
‖u− v‖DG+ + sup

06=wS∈S

k|(u− uS, wS)|
‖wS‖L2(Ω)

)
.

Proof. We start with a triangle inequality

‖u− uS‖DG ≤ ‖u− v‖DG + ‖v − uS‖DG ∀v ∈ S (3.8)

and employ the coercivity of bT (·, ·)

‖v − uS‖2
DG ≤

1

ccoer

|bT (v − uS, v − uS)|

≤ 1

ccoer

|bT (v − u, v − uS)|+ 1

ccoer

|bT (u− uS, v − uS)|

=
1

ccoer

|bT (v − u, v − uS)|+ 2k2

ccoer

|(u− uS, v − uS)|, (3.9)

where in the last inequality we employed the orthogonality condition (3.7). The continuity of
bT (·, ·) expressed in (3.1) together with (3.9) implies

‖v − uS‖2
DG ≤

Cc

ccoer

‖v − u‖DG+‖v − uS‖DG +
2k2

ccoer

|(u− uS, v − uS)|.
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We combine this result with (3.8) and obtain

‖u− uS‖DG ≤ ‖u− v‖DG +
Cc

ccoer

‖v − u‖DG+ +
2k

ccoer

sup
06=wS∈S

|(u− uS, wS)|
‖wS‖L2(Ω)

.

Next, we will use the adjoint problem to gauge the contribution supwS∈S
k|(u−uS ,wS)|
‖wS‖L2(Ω)

in

Proposition 3.3.

Proposition 3.4. Assume that the adjoint Helmholtz problem is H3/2+ε(Ω) regular for some
ε > 0. Let the coefficients in the definition of aT (·, ·) satisfy 0 < δ < 1

3
and (2.7). Then the

following is true: For any pair (u, uS) ∈ H3/2+ε
pw (Ω)× S that satisfies (3.7) we have

sup
0 6=wS∈S

k|(u− uS, wS)L2(Ω)|
‖wS‖L2(Ω)

≤ (1 + 3Cc) ηk(S)

(
inf
v∈S
‖u− v‖DG+ + ‖u− uS‖DG

)
,

where the adjoint approximation property is defined by

ηk(S) := sup
f∈L2(Ω)\{0}

inf
ψS∈S

k‖N∗kf − ψS‖DG+

‖f‖L2(Ω)

. (3.10)

Proof. The solution of the adjoint problem (2.12) with right-hand side wS ∈ S ⊂ L2(Ω) is de-
noted by φ. Our regularity assumption imply φ ∈ H3/2+ε(Ω) for some ε > 0 (cf. Remark 2.6).
The adjoint consistency of the method stated in Lemma 2.7 then provides

(u− uS, wS) = aT (u− uS, φ)− k2(u− uS, φ).

Using the definition of the sesquilinear form aT and the Galerkin orthogonality, we get for
any v ∈ S

|(u− uS, wS)| ≤ |aT (u− v, φ− ψS)|+ |aT (v − uS, φ− ψS)|
+ k2|(u− uS, φ− ψS)|
≤ (Cc‖u− v‖DG+ + Cc ‖v − uS‖DG
+ ‖u− uS‖DG) ‖φ− ψS‖DG+

≤ (2Cc‖u− v‖DG+ + (1 + Cc)‖u− uS‖DG) ‖φ− ψS‖DG+ .

Since v, ψS ∈ S are arbitrary, the statement follows.

The combination of the previous results leads to the following wavenumber-explicit error
estimate (still under the assumption of existence of a discrete solution).

Theorem 3.5 (quasi-optimal convergence). Assume that the adjoint Helmholtz problem is
H3/2+ε(Ω) regular for some ε > 0. Let the coefficients in the definition of aT (·, ·) satisfy
0 < δ < 1

3
and (2.7). If the condition

ηk(S) <
ccoer

4(1 + Cc)

holds, then for any pair (u, uS) ∈ H3/2+ε
pw (Ω)× S that satisfies (3.7) we have

‖u− uS‖DG ≤ C inf
v∈S
‖u− v‖DG+ , (3.11)

where C depends solely on Cc and ccoer.
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Proof. By combining the results of Propositions 3.3 and 3.4, we get the following:

‖u− uS‖DG ≤
(

1 +
Cc
ccoer

+
4Cc
ccoer

ηk(S)

)
inf
v∈S
‖u− v‖DG+ +

2(1 + Cc)

ccoer

ηk(S)‖u− uS‖DG.

The condition 2(1+Cc)
ccoer

ηk(S) < 1/2 allows us to absorb the error term on the right-hand side
in the left-hand side.

3.3 Discrete Stability

The preceding section provides an error analysis under the assumption of existence of the
discrete solution uS ∈ S of (2.4). Extra conditions have to be imposed for existence as the
following Example 3.6 shows. That is, the UWVF of the Helmholtz problem is not necessarily
stable for an arbitrary discrete space S that only satisfies the minimal condition (2.3).

Example 3.6. Let Ω := conv {(0, 0)ᵀ , (1, 0)ᵀ , (0, 1)ᵀ} and let the mesh T consists of the
single element {Ω}. A (one-dimensional) space S that satisfies condition (2.3) is defined by
the span of the squared cubic bubble function, S = span{(27λ1λ2λ3)2}, where λ1 = ξ1, λ2 =
ξ2, λ3 = 1− ξ1 − ξ2 and 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1− ξ1. In this case, equation (3.15) reduces to

(∇wS,∇vS)− k2(wS, vS) = 0 ∀vS ∈ S. (3.12)

As S is a one-dimensional space we get the following 1 × 1 system (A − k2B)w = 0, where
A =

∫
K̂
∇b1 · ∇b1 = 5.1125, B =

∫
K̂
b2

1 = 0.0843 and b1 = (27λ1λ2λ3)2. Obviously, the value

of k =
√

A
B

is a critical wavenumber where the system matrix becomes singular.

In this section, we will study conditions under which the UWVF admits a unique solution
in the discrete space S. One possible condition (3.13) is formulated in Theorem 3.7 and it is
shown that this condition is always satisfied for plane waves methods as well as for conforming
and non-conforming hp-finite element spaces on affine simplicial meshes (cf. Remark 3.8).
Thus, Theorem 3.7 presents a unified stability theory for these types of methods and shows
that a unique numerical solution always exists for these important choices of spaces. This
is in contrast to conventional Galerkin methods applied to (1.3), where a minimal resolution
condition on the finite element space, e.g., on the mesh width, has to be imposed in order to
guarantee unique solvability of the discrete equations.

Alternatively, similarly to the classical Galerkin discretization, a condition on the adjoint
approximation property on the abstract space can be employed to prove existence, uniqueness,
and quasi-optimality of the discretization. This is proved in Theorem 3.9.

Theorem 3.7. Let the discrete space S satisfy (2.3). Let β ≥ 0, 0 < δ < 1
3
, and choose α

such that (2.7) is satisfied. Then, the UWVF problem (2.4) has a unique solution uS ∈ S if

CS <
k

2 (1 + Cc)
with CS := sup

wS∈S∩H2
0 (Ω)\{0}

inf
vS∈S

‖ 〈x,∇wS〉 − vS‖DG+

‖wS‖L2(Ω)

. (3.13)

Furthermore, let the exact solution of (1.3) satisfy u ∈ H3/2+ε(Ω), and let the adjoint
Helmholtz problem be H3/2+ε(Ω) regular for some ε > 0. Assume the adjoint approximation
condition

ηk(S) <
ccoer

4(1 + Cc)
.
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Then, the quasi-optimal error estimate

‖u− uS‖DG ≤ C inf
v∈S
‖u− v‖DG+

holds, where C is independent of the choice of k, h, and the space S.

Proof. If the discrete solution uS ∈ S of (2.4) exists, then the consistency statement Lemma 2.4
implies the orthogonality condition (3.7) so that the quasi-optimality assertion follows from
Theorem 3.5. It therefore remains to assert existence of uS ∈ S. By dimension arguments,
existence of a solution uS ∈ S of (2.4) follows, if we can verify the following uniqueness
assertion:

∀wS ∈ S \ {0} ∃vS ∈ S s.t. |aT (wS, vS)− k2(wS, vS)| > 0. (3.14)

We prove (3.14) indirectly, by showing the equivalent implication:
For any wS ∈ S it holds:(

∀vS ∈ S aT (wS, vS)− k2(wS, vS) = 0
)
⇒ wS = 0. (3.15)

Our assumption in (3.15) implies for any wS ∈ S

Im
(
aT (wS, vS)− k2(wS, vS)

)
= 0 and Re

(
aT (wS, vS)− k2(wS, vS)

)
= 0. (3.16)

First we choose vS = wS in (3.16). From the equation for the imaginary part we obtain

(1) J∇T wSKN = 0 on SIT ,

(2) ∇T wS · n = 0 on SBT ,

(3) JwSKN = 0 on SIT ,

(4) wS = 0 on SBT

and this implies wS ∈ H2
0 (Ω) ∩ S (in particular that ∇T wS = ∇wS holds).

Hence, the real part of equation (3.16) gives us

‖∇wS‖2
L2(Ω) − k

2 ‖wS‖2
L2(Ω) = 0. (3.17)

Define v∗S (x) = 〈x,∇wS〉. From the real part of equation (3.16) it follows

0 = Re
(
aT (wS, v

∗
S)− k2(wS, v

∗
S)
)

+ Re
(
aT (wS, vS − v∗S)− k2(wS, vS − v∗S)

)
≥ Re

(
aT (wS, v

∗
S)− k2(wS, v

∗
S)
)
− |aT (wS, v

∗
S − vS)| − |k2(wS, v

∗
S − vS)|.

By using 2 Re(wS∇wS) = ∇(|wS|2) for the first term, and continuity of aT , and applying
Cauchy-Schwarz inequality we get (see also [22], [12])

0 ≥(2− d)‖∇wS‖2
L2(Ω) + dk2‖wS‖2

L2(Ω) − 2Cc‖wS‖DG‖v∗S − vS‖DG+

− 2k2‖wS‖L2(Ω)‖v∗S − vS‖L2(Ω)

≥(2− d)‖∇wS‖2
L2(Ω) + dk2‖wS‖2

L2(Ω) − 2CcCS‖wS‖DG‖wS‖L2(Ω)

− 2CSk‖wS‖2
L2(Ω). (3.18)
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By using the definition of DG-norm and taking into account that wS ∈ H2
0 (Ω) ∩ S it follows

‖wS‖DG = ‖wS‖H, where ‖wS‖2
H := ‖∇wS‖2

L2(Ω) + k2‖wS‖2
L2(Ω). For d = 1, we get

0 ≥ ‖wS‖2
H − 2CcCS‖wS‖H‖wS‖L2(Ω) − 2CSk‖wS‖2

L2(Ω)

≥
(

1− 2CcCS
k
− 2CS

k

)
‖wS‖2

H.

If CS <
k

2(1+Cc)
then it follows wS = 0 in Ω. For d = 2, 3 we add (3.17) to the equation

(3.18) and then we do the same argument as in 1d.

Remark 3.8. For general finite-dimensional spaces S, condition (3.13) could be interpreted
as a condition on the scale resolution. However, the condition (3.13) is always satisfied in the
following two important cases:

• Typically in the UWVF, the discrete space S consists of systems of (discontinuous) plane
waves. In that setting, condition (3.13) is not imposed since it is trivially satisfied as
then S ∩H2

0 (Ω) = {0} (this equality follows from the unique continuation principle for
elliptic PDEs—see, e.g., the discussion in [10, Sec. 6.3] for details).

• DG-methods based on classical piecewise polynomials on affine triangulations (consisting
of simplices) satisfy (3.13) automatically as 〈x,∇T wS〉 ∈ S.

For new generalized finite element spaces, it might be complicated to verify condition
(3.13). In the following theorem, we present a different criterion which also implies discrete
stability.

Theorem 3.9. Let the exact solution of (1.3) satisfy u ∈ H3/2+ε(Ω) and let the adjoint
Helmholtz problem be H3/2+ε(Ω) regular for some ε > 0. Assume that the coefficients in the
definition of aT (·, ·) satisfy 0 < δ < 1

3
and (2.7). If the condition

ηk(S) <
ccoer

4(1 + Cc)

holds then the UWVF problem (2.4) has a unique solution uS ∈ S and satisfies the quasi-
optimality property (3.11).

Proof. The proof follows the lines in [21, Thm. 3.9]. We merely have to show existence of uS.
Since the (2.4) corresponds to a linear system of equations, it suffices to show uniqueness.
Therefore, let uS ∈ S be in the kernel of the discrete operator, i.e., aT (uS, v)− k2 (uS, v) = 0
for all v ∈ S. Then the pair (0, uS) ∈ H3/2+ε(Ω)×S satisfies the orthogonality condition (3.7).
Hence, Theorem 3.5 implies ‖0− uS‖DG ≤ C infv∈S ‖0− v‖DG+ = 0, which shows uS = 0.

Again, the quasi-optimality follows as a combination of Theorem 3.5 and Lemma 2.4.

4 Application to hp-Finite Elements

Theorem 3.5 provides a quasi-optimal error estimate for abstract approximation spaces S that
satisfy the conditions (2.3) and (3.13). The concrete choice of the space S enters the analysis
via a) the constant Ctrace (S,K), b) the estimate of the approximation error infv∈S ‖u−v‖DG+ ,
c) the adjoint approximation property ηk (S), and d) the constant CS in (3.13) – however,
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as explained in Remark 3.8 the condition on CS is “automatically” satisfied for the hp-finite
element spaces considered in this section. Further, we derive explicit estimates for these
quantities in the context of hp-finite element space which are explicit with respect to the
polynomial degree p and the mesh size h.

4.1 Preliminaries

The simplicial finite element mesh T consists of elements K which are the images of the
reference element K̂, i.e., the reference triangle (in 2D) or the reference tetrahedron (in 3D),

under the element map FK : K̂ → K. The mesh width is denoted by h := maxK∈T diamK
(cf. (2.1)).

We use the symbol ∇n to denote derivatives of order n; more precisely, for a function
u : Ω→ R,Ω ⊂ Rd, we set

|∇nu(x)|2 =
∑

α∈Nd
0: |α|=n

n!

α!
|Dαu(x)|2.

We will need some conditions on the element maps FK of the triangulations in order to
capture the approximation properties of the hp-FEM spaces. The following assumption will
make this more precise. We emphasize that, in contrast to the case of conforming subspaces,
we do not require in the present context of DG-methods a “compatibility” condition for
element maps of neighboring elements.

Assumption 4.1. (simplicial finite element mesh). Each element map FK can be written
as FK = RK ◦ BK, where BK is an affine map (containing the scaling by hK) and RK is

analytic. Let K̃ := BK(K). The maps RK and BK satisfy for shape regularity constants
Caffine, Cmetric, γ > 0 independent of h:

‖B′K‖L∞(K̂) ≤ CaffinehK , ‖(B′K)−1‖L∞(K̂) ≤ Caffineh
−1
K

‖(R′K)−1‖L∞(K̃) ≤ Cmetric, ‖∇nRK‖L∞(K̃) ≤ Cmetricγ
nn! ∀n ∈ N0.

Remark 4.2. If the mapping RK in Assumption 4.1 are affine we say that T is an affine
triangulation.

The constants C in the estimates below may depend on the shape regularity constants in a
continuous way and, possibly, increase with increasing values of Caffine, Cmetric, and γ.

For meshes T satisfying Assumption 4.1 we define the following nonconforming space of
piecewise polynomials by

Sp,0 := {u ∈ L2(Ω)| ∀K ∈ T : u|K ◦ FK ∈ Pp}, (4.1)

where Pp denotes the space of polynomials of degree p. The mesh size function hT is defined
by hT |K := diamK for all K ∈ T . The estimate of Ctrace (S,K) in these cases is a local trace
estimate for multivariate polynomials:

Lemma 4.3. Let T satisfy Assumption 4.1. Then there exists cinv > 0 independent of K ∈ T
and p such that for the hp-finite element space Sp,0(T ) we have (cf. (2.6))

Ctrace (S,K) ≤ cinvp√
hK
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Furthermore, for

a >
4

3
c2

inv (4.2)

which is independent of K, p, and k, the choice of α given in (2.8) implies the condition (2.7).

Proof. We merely prove the inverse estimate. On the reference element K̂, we have with
the multiplicative trace inequality and a standard polynomial inverse estimate (see, e.g., [29,
Thm. 4.76], where the case d = 2 is covered) for any v ∈ Pp

‖v‖2
L2(∂K̂)

≤ C‖v‖L2(K̂)‖v‖H1(K̂) ≤ Cp2‖v‖2
L2(K̂)

.

The assumptions on the element maps FK are such that the same h-dependence as in classical
scaling argument are obtained, i.e., for v ∈ Sp,0(T ) we get for each K ∈ T

‖v‖L2(∂K) ≤ Cph−1/2‖v‖L2(K). (4.3)

For the actual estimate of interest, we let v ∈ Sp,0(T ), fix K, and set v̂ := v|K ◦ FK . We note
∇v = (∇v̂) ◦ FK ◦ (F ′K)−1 with, by the assumptions on the properties of BK and RK ,

‖(F ′K)−1‖L∞(K̂) ≤ Ch−1
K , ‖(F ′K)‖L∞(K̂) ≤ ChK . (4.4)

Applying the estimate (4.3) to the components of ∇v̂ ◦FK and observing (4.4), one can show
the desired result.

The trace inequality of Lemma 4.3 shows that the constant a in (2.8) can be selected such
that (2.7) is satisfied. This observation implies the following result:

Theorem 4.4. Let α, β, and δ be chosen according to (2.8) with a sufficiently large. Let
S = Sp,0(T ) be the hp-finite element space based on a mesh T that satisfies Assumption 4.1.

• If CS satisfies condition (3.13) then the UWVF has a unique solution in S.

• If T is an affine triangulation of Ω and satisfies Assumption 4.1, then the UWVF has
a unique solution in S.

4.2 Convergence Analysis

In this section we will show that the solution u of the model boundary value problem (1.1),
(1.2) can be approximated from the finite element space Sp,0(T ) provided that kh/

√
p is small

enough and p ≥ c log k (with c sufficiently large independent of h, k, p). Under more stringent
conditions on the mesh, we will show that this condition can be relaxed to the condition that
kh/p be small enough and p ≥ c log k.

The proof of this approximation property is based on the following decomposition lemma,
which is a generalization of [25, Theorem 4.10], where the special case s = 0 is covered:

Theorem 4.5 (Decomposition Lemma). Let Ω ∈ Rd, d ∈ {2, 3} be a bounded Lipschitz
domain. Assume additionally that Ω has an analytic boundary. Assume furthermore that the
solution operator (f, g) 7→ u := Sk(f, g) for the Helmholtz boundary value problem (1.1), (1.2)
satisfies

‖u‖H,Ω ≤ Cstabk
ϑ
(
‖f‖L2(Ω) + ‖g‖L2(∂Ω)

)
(4.5)
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for some Cstab and ϑ ≥ 0 independent of k. Fix s ∈ N0. Then there exist constants C,
λ > 0 independent of k ≥ k0 such that for every f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω) the solution
u = Sk(f, g) of the Helmholtz problem (1.3) can be written as u = uHs+2 + uA, where, for all
n ∈ N0

‖uA‖H,Ω ≤ Ckϑ
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
(4.6)

‖∇n+2uA‖L2(Ω) ≤ Cλnkϑ−1 max{n, k}n+2
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
(4.7)

‖uHs+2‖Hs+2(Ω) + ks+2‖uHs+2‖L2(Ω) ≤ C
(
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
. (4.8)

Proof. The proof follows the lines of [25, Theorem 4.10]. The key modifications are collected
in the Appendix.

Remark 4.6. For the present model problem (1.1), (1.2) the assumption (4.5) holds with
ϑ = 5/2 by [10, Thm. 2.4]. For star-shaped domains, ϑ = 0 is possible as shown in [22,
Prop. 8.1.4] for d = 2 and subsequently for d = 3 in [8].

4.2.1 Convergence analysis for general non-conforming hp-finite elements

In this section we consider general non-conforming hp-finite elements. We stress that no
conditions are imposed on the element maps FK that relate element maps of neighboring
elements to each other. Hence, the conforming subspace S ∩H1(Ω) ⊂ S may be small. As we
will discuss in more detail in Section 5 below, better results can be expected if the conforming
subspace S ∩H1(ω) ⊂ S is sufficiently rich.

We start with a lemma that takes the role of the standard scaling argument:

Lemma 4.7. Let T be a shape-regular mesh in the sense of Assumption 4.1. Fix s ∈ N0.
Then for each K ∈ T and every sufficiently smooth v the following relations between v and
v̂ := v|K ◦ FK are true:

‖v‖L2(K) ∼ hd/2‖v̂‖L2(K̂),

‖∇v‖L2(K) ∼ hd/2−1‖∇v̂‖L2(K̂),

‖∇s+2v̂‖L2(K̂) ≤ Chs+2−d/2‖v‖Hs+2(K),

where C and the implied constants depend solely on the constants appearing in Assumption 4.1.

Proof. We will only consider the case of the (s+ 2)nd derivatives. We note the form FK =
RK ◦BK , where BK is affine. This implies the estimates

‖F ′K‖L∞(K̂) ≤ ChK ,
∑

α∈N2
0:|α|=s+2

‖DαFK‖L∞(K̂) ≤ Chs+2
K ,

where the constants depend only on s and the shape regularity constants appearing in As-
sumption 4.1. The chain rule then implies the estimates for ‖∇s+2v̂‖L2(K̂).

Proof. We will only consider the case of the (s+ 2)nd derivatives. We note the form FK =
RK ◦ AK , where AK is affine. This implies the estimates

‖F ′K‖L∞(K̂) ≤ ChK ,
∑

α∈N2
0:|α|=s+2

‖DαFK‖L∞(K̂) ≤ Chs+2
K ,
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where the constants depend only on the constants appearing in Assumption 4.1. The chain
rule then implies the estimates for ‖∇s+2v̂‖L2(K̂).

For shape-regular triangulations with possibly hanging nodes we have the following result:

Theorem 4.8. Let Ω ⊂ Rd, d ∈ {2, 3} be a bounded Lipschitz domain with analytic boundary.
Fix s ∈ N0. Let α, β, δ be chosen according to (2.8). Fix C > 0 and assume p ≥ s + 1 as
well as kh/p ≤ C. Then the exist constants C, σ > 0 independent of h, p, and p such that,
for every f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω), there holds

inf
v∈S

k‖u− v‖DG+ ≤ Cf,g

((
h

p

)s
kh
√
p

+ kϑ
{(

h

h+ σ

)p
+ k

(
kh

σp

)p})
, (4.9)

where Cf,g := ‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω) and ϑ ≥ 0 is given by (4.5) (note also Remark 4.6).

Proof. We employ the splitting u = uHs+2 + uA of Theorem 4.5 with uHs+2 ∈ Hs+2(Ω) and
the analytic part uA.

Following [26, Thm. 5.5], we approximate uHs+2 and vA separately in the ensuing steps 1
and 2.

1. step: From, e.g., [26, Lemma B.3], we know that for every s′ > d/2 and every p ≥ s′−1

there exists a bounded linear operator πp : Hs′(K̂)→ Pp such that

‖u− πpu‖Ht(K̂) ≤ Cp−(s′−t)|u|Hs′ (K̂), for 0 ≤ t ≤ s′, (4.10)

‖u− πpu‖Ht(ê) ≤ Cp−(s′−1/2−t)|u|Hs′ (K̂) for 0 ≤ t ≤ s′ − 1/2. (4.11)

Here, the constant C > 0 depends only on t, s′. By K̂ we denote the reference element and by
ê one of its edges (in 2D) or faces (in 3D). We apply this approximation result with s′ = s+2.
The elementwise application of the operator πp to uHs+2 (pulled back to the reference element

K̂) defines an approximation wHs+2 ∈ Sp,0(T ). By a scaling argument and summation over
all elements, the bound (4.10) with s′ = s+ 2 implies that wHs+2 satisfies

k
(
k‖uHs+2 − wHs+2‖L2(Ω) + ‖∇T (uHs+2 − wHs+2)‖L2(Ω)

)
≤

C

(
k

(
h

p

)s+1

+ k2

(
h

p

)s+2
)(
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
.

In order to estimate the terms of the DG+-norm associated with the skeleton, we employ the
choice of the parameters α, β, δ given in (2.8), viz.,

α (x) =
4

3
max

K∈{K+
x ,K

−
x }

p2

khK
∀x ∈ SIT and β = O(

kh

p
), δ = O(

kh

p
). (4.12)

Recall the definition of αmin
∂K as in Remark 2.3 and estimate (3.4). On the inner skeleton SI

T
we get

k‖α−1/2{∇T (uHs+2 − wHs+2)}‖2
L2(SI

T ) ≤
∑
K∈T

k

αmin
∂K

‖{∇T (uHs+2 − wHs+2)}‖2
L2(Ω∩∂K).

Let X denote the minimizer as in (3.4). Then, with the definition (4.12) we get

αmin
∂K = α (X) =

4

3
max

K′∈{K+
X ,K

−
X}

p2

khK′
≥ 4

3

p2

khK
. (4.13)
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so that

k‖α−1/2{∇T (uHs+2 − wHs+2)}‖2
L2(SI

T )

≤
∑
K∈T

3k2hK
4p2

‖∇((uHs+2 − wHs+2)|K)‖2
L2(Ω∩∂K).

Thus, we get by scaling (4.10), (4.11) to the mesh T

k‖α−1/2{∇T (uHs+2 − wHs+2)}‖2
L2(SI

T ) ≤ C
∑
K∈T

k2h

p2

(
hK
p

)2s+1 ∑
e∈EI(K)

‖uHs+2‖2
Hs+2(K)

≤ C
k2

p

(
h

p

)2s+2

‖uHs+2‖2
Hs+2(Ω) ≤ C

k2

p

(
h

p

)2s+2 (
‖f‖2

Hs(Ω) + ‖g‖2
Hs+1/2(∂Ω)

)
.

The following estimates can be obtained by similar arguments:

k1/2‖β1/2J∇T (uHs+2 − wHs+2)KN‖L2(SIT ) ≤ Ck

(
h

p

)s+1 (
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
,

k3/2‖α1/2JuHs+2 − wHs+2KN‖L2(SIT ) ≤ Ck
√
p

(
h

p

)s+1 (
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
,

k1/2‖δ1/2∇T (uHs+2 − wHs+2) · n‖Hs(SBT ) ≤ Ck

(
h

p

)s+1 (
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
,

k3/2‖(1− δ)1/2(uH2 − wH2)‖L2(SBT ) ≤ Ck3/2

(
h

p

)s+3/2 (
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
.

In total, we get the following approximation property for the Hs+2-part:

k‖uHs+2 − wHs+2‖DG+ ≤ C

(
h

p

)s(
kh
√
p

+

(
kh

p

)3/2

+

(
kh

p

)2
)(
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
.

Using the assumption kh/p ≤ C, this can be simplified to

k‖uHs+2 − wHs+2‖DG+ ≤ C

(
h

p

)s
kh
√
p

(
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
.

2. step: For the approximation of the analytic part uA, we construct an element wA ∈ Sp,0(T )
as follows. For each K ∈ T , let the constant CK by defined by

C2
K :=

∑
n∈N0

‖∇nuA‖2
L2(K)

(2λmax {n, k})2n
.

Then, we have

‖∇nuA‖L2(K) ≤ (2λmax {n, k})nCK ∀n ∈ N0,∑
K∈T

C2
K ≤ C

(
1

λk

)2

k2ϑ
(
‖f‖2

L2(Ω) + ‖g‖2
H1/2(∂Ω)

)
. (4.14)
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For q ∈ {0, 1, 2} we get the following estimate (see [26, Proof of Theorem 5.5]) for suitable
σ > 0:

‖uA − wA‖Hq(K) ≤ Ch−qK CK

{(
hK

hK + σ

)p+1

+

(
khK
σp

)p+1
}
. (4.15)

It is convenient to define the abbreviations:

E(σ) :=

(
h

h+ σ

)p
+ k

(
kh

σp

)p
,

M :=kϑ
(
‖f‖L2(Ω) + ‖g‖H1/2(∂Ω)

)
.

By summing over all elements, it follows as in [26] by suitably adjusting the constant σ

k‖uA − wA‖H ≤ C

(
1

p
+
kh

p

)
E(σ)M. (4.16)

In order to treat the terms associated with the skeleton SIT ∪ SBT we use the multiplicative
trace inequality

‖v‖2
L2(∂K) ≤ C

(
‖v‖L2(K)|v|H1(K) + h−1

K ‖v‖
2
L2(K)

)
to obtain

k‖α−1/2{∇T (uA − wA)}‖2
L2(SI

T ) ≤
∑
K∈T

k

αmin
∂k

‖∇T ((uA − wA)|K)‖2
L2(Ω∩∂K).

By using the estimate (4.13) we obtain

k
∥∥α−1/2{∇T (uA − wA)}

∥∥2

L2(SI
T )

≤
∑
K∈T

3k2hK
4p2

‖∇((uA − wA)|K)‖2
L2(Ω∩∂K)

≤
∑
K∈T

3

4

(
k2hK
p2

)(
‖∇ (uA − wA)‖L2(K) |∇ (uA − wA)|H1(K) + h−1

K ‖∇ (uA − wA)‖2
L2(K)

)
.

By using the estimates in equation (4.15) we get

k‖α−1/2{∇T (uA − wA)}‖2
L2(SI

T ) ≤
∑
K∈T

3Ck2

4p2

{
hK

(
hK

hK + σ

)p−1

+
k

p

(
khK
σp

)p}2

C2
K .

Finally equation (4.14) gives us after suitably adjusting the constant σ

k1/2‖α−1/2{∇T (uA − wA)}‖L2(SIT ) ≤ C
1

p2
E(σ)M.

By the similar arguments we obtain the following estimates

k1/2‖β1/2J∇T (uA − wA)KN‖L2(SIT ) ≤ C
1

p3/2
E(σ)M,

k3/2‖α1/2JuA − wAKN‖L2(SIT ) ≤ CE(σ)M,

k1/2‖δ1/2∇T (uA − wA) · n‖L2(SBT ) ≤ C
1

p3/2
E(σ)M,

k3/2‖(1− δ)1/2(uA − wA)‖L2(SBT ) ≤ C
(kh)1/2

p
E(σ)M.
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The approximation property for the analytic part uA with respect to the DG+ norm is then

k‖uA − wA‖DG+ ≤ C

(
1 +

1

p
+
kh

p
+

√
kh

p

)
E(σ)M ≤ CE(σ)M,

where, in the last estimate we used the assumption kh/p ≤ C. The combination of the
estimates of steps 1 and 2 leads to the assertion.

The approximation result Theorem 4.8 permits us to estimate the adjoint approximation
property η(S) of (3.10):

Corollary 4.9. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz domain with analytic boundary.
Let α, β, δ be chosen according to (2.8). Fix C > 0 and assume kh/p ≤ C. Then there exist
constants C, σ > 0 such that ηk(S) defined in (3.10) satisfies

ηk(S) ≤ C

[
kh
√
p

+ kϑ
((

h

h+ σ

)p
+ k

(
kh

σp

)p)]
.

Proof. We apply Theorem 4.8 with s = 0 and g = 0. Given f ∈ L2(Ω) let v = N∗kf = Nkf .
Hence, the regularity estimates of Theorem 4.5 (with g = 0) are applicable. The assumption
kh/p ≤ C allows us to estimate (kh/p)2 ≤ Ckh/

√
p.

Finally, the convergence estimate for hp-FEM can be stated in the following theorem:

Theorem 4.10 (Convergence Estimate). Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded Lipschitz
domain with analytic boundary. Fix s ∈ N0. Let α, β, δ be chosen according to (2.8) with
a sufficiently large. Moreover, let 0 < δ < 1

3
. Then, there exist constants c1, c2, C > 0

independent of k, h and p such that under the assumptions

kh
√
p
≤ c1 together with p ≥ c2 log(k) as well as p ≥ s+ 1 (4.17)

there holds for f ∈ Hs(Ω) and g ∈ Hs+1/2(∂Ω) the a priori estimate

‖u− uS‖DG ≤ C

[
√
p

(
h

p

)s+1

+ kϑ−1

{(
h

h+ σ

)p
+ k

(
kh

σp

)p}](
‖f‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω)

)
.

In particular, under the additional assumption that b and d satisfy b, d ≥ c0 > 0, there holds

‖∇T (u− uS)‖L2(Ω) +

√
h

p
‖J∇T (u− uS)KN‖L2(SIT ) +

p√
h
‖Ju− uSKN‖L2(SIT ) ≤ C‖u− uS‖DG.

Proof. By taking the constant a in (2.8) sufficiently large, we can ensure by Lemma 4.3 the
condition (2.7). Hence the assertion is a combination of Theorems 3.9, 4.8, and Corollary 4.9.
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5 Conclusions

In this paper, we have formulated the ultra-weak variational formulation for abstract finite
dimensional test and trial spaces (conforming and non-conforming ones). The concrete choice
of the space S enters the stability and convergence analysis via the following four quantities.

(a) Trace constant Ctrace (S,K). Due to the formulation as a discontinuous Galerkin method,
which contains integral jump terms across element faces, it is quite natural that local
trace estimates for the space S are required for the error analysis.

(b) Approximation property infv∈S ‖u−v‖DG+ . In order to derive quantitative error estimates
it is obvious that approximation results of S for functions with higher Sobolev regularity
are required. The trace estimate (cf. (a)) allows us to “transfer” the local approximation
results for the elements K ∈ T to the skeleton norm.

(c) Adjoint approximation property ηk (S). The decomposition lemma (Lemma 4.5) provides
the regularity for the split solution so that, e.g., for hp-finite elements, interpolation
operators can be constructed for the derivation of quantitative error estimates that are
explicit in k, h, and p.

(d) The constant CS of (3.13). This condition ensures unique solvability of the discrete system
(2.4) (see Theorem 3.7). For the important cases of hp-finite elements on affine, simplicial
triangulations or plane wave approximation spaces, the condition (3.13) is automatically
satisfied. If the adjoint approximation property can be controlled, then Theorem 3.9
provides an alternative way of ensuring unique solvability for (2.4).

As an application of our abstract theory we have derived sharp stability and convergence
estimates for non-conforming hp-finite element spaces. The a priori estimate in Theorem 4.10
is optimal in h (note that f ∈ Hs(Ω) with g ∈ Hs+1/2(∂Ω) implies u ∈ Hs+2(Ω) by the
assumed smoothness of ∂Ω) but suboptimal in p by half an order. This suboptimality is also
present in the scale resolution condition (4.17). This is typical of p-explicit DG methods.
While this suboptimality is sharp in the general case, [15], it can be removed (in both the
scale resolution condition (4.17) as well as the a priori estimate of Corollary 4.9) by assuming
that the approximation space either is conforming, i.e., S ⊂ H1 (Ω), or contains an H1-
conforming subspace that is sufficiently rich. The essential point in the argument is that in
the conforming case the approximants wHs+2 and wA in Theorem 4.8 can be chosen to be
in H1(Ω) (see, e.g., [26, Proof of Thm. 5.5]). As a consequence the following skeleton terms
vanish

k3/2‖α1/2JuHs+2 − wHs+2KN‖L2(SIT ) = 0

k3/2‖α1/2JuA − wAKN‖L2(SIT ) = 0.

We do not work out these arguments here but refer to [28] for the details. This result can
be generalized to non-conforming subspaces S which are “close to a conforming subspace” in
the sense that there exists a conforming subspace S ′ ⊂ S ∩H1 (Ω) which is sufficiently rich,
i.e., allows for a conforming interpolant of the solution and has comparable mesh width. Such
a situation arises, e.g., if a conforming hp-finite element mesh is further refined locally in a
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non-conforming way (allowing for hanging nodes) without affecting the global mesh width h.
Also here, we refer for the details to [28].

We have restricted the convergence analysis for hp-finite element spaces in Section 4 to
Lipschitz domains with analytic boundaries in order not to further increase the technicalities
in this paper. In [25], the case of polygonal domains for the standard variational formulation
of the Helmholtz equation with conforming hp-finite element spaces has been considered and
regularity estimates in weighted Sobolev spaces have been derived. We expect that the gener-
alization of our theory for the UWVF for non-conforming finite element spaces to polygonal
domains is possible along those lines.

A Details for the proof of Theorem 4.5

We start with an extension of [25, Lemma 4.6] for the modified Helmholtz equation.

Lemma A.1. Let Ω be a bounded Lipschitz domain with a smooth boundary. Let S∆
k be the

solution operator for the boundary value problem

−∆u+ k2u = 0 in Ω, ∂nu+ i ku = g on ∂Ω.

Then, for every s ∈ N0 there exists C > 0 independent of k ≥ k0 such that

‖S∆
k (g)‖Hs+2(Ω) ≤ C

[
‖g‖Hs+1/2(∂Ω) + ks+1/2‖g‖L2(∂Ω)

]
, (A.1)

‖S∆
k (g)‖H1(Ω) + k‖S∆(g)‖L2(Ω) ≤ Ck−1/2‖g‖L2(∂Ω). (A.2)

Proof. The case s = 0 in (A.1) as well as the estimate (A.2) is given in [25, Lemma 4.6]. For
s ≥ 1, we employ induction and the standard shift theorem for the Laplacian: Since u solves

−∆u = −k2u in Ω, ∂nu = g − i ku on ∂Ω,

we have

‖u‖Hs+2(Ω) ≤ C
[
k2‖u‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω) + k‖u‖Hs+1/2(∂Ω)

]
≤ C

[
k2‖u‖Hs(Ω) + ‖g‖Hs+1/2(∂Ω) + k‖u‖Hs+1(Ω)

]
,

where we used a trace inequality. Using the induction hypothesis then leads to an estimate
that involves norms of g other than ‖g‖Hs+3/2(∂Ω) and ‖g‖L2(∂Ω). These can be removed by
an interpolation inequality (see, e.g., [11, Thm. 1.4.3.3]) and an appropriate use of the Young
inequality.

The analog of [25, Lemma 4.7] is the following (we use the operator HN
∂Ω defined in [25,

(4.1c)]):

Lemma A.2. Let Ω be a bounded Lipschitz domain with a smooth boundary. Fix q ∈ (0, 1)
and s ∈ N0. Then, the operator HN

∂Ω can be selected such that the operator S∆
k ◦HH

∂Ω satisfies
for some C > 0 independent of k

ks+2‖S∆
k (HN

∂Ωg)‖L2(Ω) + k2‖S∆
k (HN

∂Ωg)‖Hs(Ω) ≤ q‖g‖Hs+1/2(∂Ω) (A.3)

‖S∆
k (HN

∂Ωg)‖Hs+2(Ω) ≤ C‖g‖Hs+1/2(∂Ω). (A.4)
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Proof. Estimates (A.3) and (A.4) are shown in [25, Lemma 4.7] for the special case s = 0.
For s ≥ 1, these estimates are derived as in [25, Lemma 4.7] by combining Lemma A.1
with [25, Lemma 4.2]. We illustrate the procedure for the second term of the left-hand side
of (A.3i) for the case s ≥ 2: Lemma A.1 yields

‖S∆
k (HN

∂Ω)‖Hs(Ω) ≤ C
[
‖HN

∂Ωg‖Hs−3/2(∂Ω) + ks−3/2‖HN
∂Ωg‖L2(Ω)

]
≤ C

[
(q/k)2‖g‖Hs+1/2(∂Ω) + ks−3/2(q/k)s+1/2‖g‖Hs+1/2(∂Ω)

]
,

where we used [25, Lemma 4.2]. Rearranging terms yields the result.

We also need properties of the Newton potential Nk, which generalize [25, Lemma 4.5]:

Lemma A.3. Let Ω be a bounded Lipschitz domain. Fix s ∈ N0 and q ∈ (0, 1). Then the
operator HΩ of [25, (4.1b)] can be selected such that for 0 ≤ s′ ≤ s+ 2

‖Nk(HΩf)‖Hs′ (Ω) ≤ C(q/k)s+2−s′‖f‖Hs(Ω) (A.5)

Proof. Follows from the procedure in [25]; see also [24, Lemma 4.2]. The essential point is
that [26, (3.35)] can be generalized (by using the notation therein) to

‖∂αvµ,H2‖
L2(Rd) = (2π)d/2

∥∥∥Pα−βĜkM (1− χλk) ∂̂βf
∥∥∥
L2(Rd)

for all α ∈ Nd
0 and β ∈ Nd

0. By selecting |α| = s′ and |β| = s′ − 2, we see that |α− β| = 2
and this case is considered in [26, (3.35)]. By performing the same estimates as in [26, after
(3.35)], we derive for |α− β| = 2 the estimate

‖∂αNk(HΩf)‖L2(Ω) ≤ C
∥∥∂βHΩf

∥∥
L2(Ω)

so that
‖Nk(HΩf)‖Hs′ (Ω) ≤ C‖HΩf‖Hs′−2(Ω)

follows. The combination with [25, Lemma 4.2] leads to the assertion (A.5).

The next lemma generalizes [25, Lemma 4.15]

Lemma A.4. Let Ω be a bounded Lipschitz domain with a smooth boundary. Fix s ∈ N0.
Assume that the solution operator (f, g) 7→ Sk(f, g) for (1.1), (1.2) satisfies (4.5). Then Sk
admits the following decomposition: u = Sk(f, 0) = uA + uHs+2 + ũ, where

‖uA‖H1(Ω) + k‖uA‖L2(Ω) ≤ Ckϑ‖f‖L2(Ω),

‖∇n+2uA‖L2(Ω) ≤ Ckϑ−1γn max{k, n}n+2‖f‖L2(Ω) ∀n ∈ N0,

ks+2‖uHs+2‖L2(Ω) + ‖uHs+2‖Hs+2(Ω) ≤ C‖f‖Hs(Ω)

for constants C, γ > 0 independent of k and n, and the remainder ũ = Sk(f̃ , 0) satisfies the
boundary value problem

−∆ũ− k2ũ = f̃ in Ω, ∂nũ− i kũ = 0 on ∂Ω

for a right-hand side f̃ ∈ Hs(Ω) with

‖f̃‖Hs(Ω) ≤ q‖f‖Hs(Ω), ‖f̃‖L2(Ω) ≤ q‖f‖L2(Ω).
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Proof. The proof follows that of [25, Lemma 4.15]. We only need to show the additional
bound ‖uHs+2‖Hs+2(Ω) ≤ C‖f‖Hs(Ω). To that end, we have to consider, in the notation of [25,
Lemma 4.15] the terms

uIH2 = Nk(HΩf), (A.6)

uIIH2 = S∆
k (HN

∂Ω(i kuIH2 − ∂nuIH2)). (A.7)

For (A.6), we use Lemma A.3 to get

ks+2‖Nk(HΩf)‖L2(Ω) + k‖Nk(HΩf)‖Hs+1(Ω) + ‖Nk(HΩf)‖Hs+2(Ω) ≤ C‖f‖Hs(Ω)

‖Nk(HΩf)‖Hs(Ω) ≤ C(q/k)2‖f‖Hs(Ω).

This implies in particular with a trace inequality that

‖ i kuIH2 − ∂nuIH2‖Hs+1/2(∂Ω) ≤ Ck‖uIH2‖Hs+1(Ω) + C‖uIH2‖Hs+2(Ω) ≤ C‖f‖Hs(Ω),

so that also for (A.7), we can obtain, with the aid of Lemma A.2, the bounds

‖S∆
k (HN

∂Ω(i kuIH2 − ∂nuIH2))‖Hs+2(Ω) ≤ C‖f‖Hs(Ω),

ks+2‖S∆
k (HN

∂Ω(i kuIH2 − ∂nuIH2))‖L2(Ω) + k2‖S∆
k (HN

∂Ω(i kuIH2 − ∂nuIH2))‖Hs(Ω) ≤ q‖f‖Hs(Ω).

From the above estimates follows the bound for ‖uHs+2‖Hs+2(Ω). The estimate for f̃ follows

also from the above observations by noting that we have to set f̃ := 2k2uIIH2 and then suitably
adjust q as in the proof [25, Lemma 4.15].

Finally, we formulate the analog of [25, Lemma 4.16]:

Lemma A.5. Assume the hypotheses of Lemma A.4. Fix q ∈ (0, 1) and s ∈ N0. Then the
solution u = Sk(0, g) can be written as u = uA + uHs+2 + ũ, where

‖uA‖H1(Ω) + k‖uA‖L2(Ω) ≤ Ckϑ‖g‖H1/2(∂Ω), (A.8)

‖∇n+2uA‖L2(Ω) ≤ Ckϑ−1γn max{n, k}n+2‖g‖H1/2(∂Ω) ∀n ∈ N0, (A.9)

ks+2‖uHs+2‖L2(Ω) + ‖uHs+2‖Hs+2(Ω) ≤ C‖g‖Hs+1/2(∂Ω), (A.10)

where the constants C, γ > 0 are independent of k and n. The remainder ũ satisfies the
boundary value problem

−∆ũ− k2ũ = 0 in Ω, ∂nũ− i kũ = g̃ on ∂Ω

for data g̃ ∈ Hs+1/2(∂Ω) with

‖g̃‖Hs+1/2(∂Ω) ≤ q‖g‖Hs+1/2(∂Ω).

Proof. The proof follows [25, Lemma 4.16], and we will only discuss (A.8). To that end, we
have to consider, in the notation of [25, Lemma 4.16], the terms

uIH2 = S∆
k (HN

∂Ωg), (A.11)

uIIH2 = Nk(HΩ(2k2uIH2)). (A.12)

25



For the term in (A.11), we use Lemma A.2 to get

ks+2‖uIH2‖L2(Ω) + ‖uIH2‖Hs+2(Ω) ≤ C‖g‖Hs+1/2(∂Ω)

k2‖uIH2‖Hs(Ω) ≤ q‖g‖Hs+1/2(∂Ω).

For the term in (A.12), we use Lemma A.3 to arrive at

k‖uIIH2‖Hs+1(Ω) + ks+2‖uIIH2‖L2(Ω) + ‖uIIH2‖Hs+2(Ω) ≤ Ck2‖uIH2‖Hs(Ω) ≤ Cq‖g‖Hs+1/2(∂Ω).

As in the proof of [25, Lemma 4.16], we then set g̃ := i kuIIH2 − ∂nu
II
H2 and use the above

estimates to get with the trace inequality

‖g̃‖Hs+1/2(∂Ω) ≤ C
[
k‖uIIH2‖Hs+1(Ω) + ‖uIIH2‖Hs+2(Ω)

]
≤ Cq‖g‖Hs+1/2(∂Ω).

Suitably adjusting the constant q yields the result.
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