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Abstract

Recently, a refined finite element analysis for highly indefinite Helmholtz problems was in-
troduced by the second author. We generalise the analysis to the Galerkin method applied to an
abstract, highly indefinite variational problem. In the refined analysis, the condition for stability
and a quasi-optimal error estimate is expressed in terms of approximation properties T (S) ≈ S
and T (u + S) ≈ S. Here, u is the solution of the original variational problem, T is a certain
continuous solution operator, and S is the finite dimensional test and trial space.

The abstract analysis can be applied to both finite and boundary element solutions of high-
frequency Helmholtz problems. We apply the analysis to investigate the properties of the
Brakhage-Werner boundary integral formulation of the Helmholtz problem, discretised by a
standard Galerkin boundary element method. In the case of scattering by the unit sphere, we
derive the explicit dependence of the error and of the stability condition on the wave number
k. We show that hk . 1 is a sufficient condition for stability and a quasi-optimal error esti-
mate. Further, we show that the constant of quasi-optimality is independent of k, which is an
improvement over previously available results. Thus, the boundary element method does not
suffer from the pollution effect.

1 Introduction

The numerical solution of high-frequency Helmholtz problems has attracted much interest in recent
years; see for example [3, 4, 7, 10, 11, 12, 16, 27, 28]. The main aim of this paper is to develop
a refined analysis for the error and the stability of the Galerkin discretisation of high-frequency
Helmholtz problems. The analysis should be general enough to include both boundary and finite
element methods and allow for discussion of standard and special finite/boundary elements such as
the ones used in [22, 26, 28]. Most importantly, it should be possible to obtain optimal results on
the dependence of the error bounds and the stability condition on the wave number k. The explicit
dependence on k is rarely given in existing literature; for exceptions see [8, 11, 13].

It is well known that the Galerkin finite element method with standard piecewise polynomial
basis functions suffers from the so called pollution effect [3]. If piecewise linear basis functions are
used, the stability condition in the mesh width h is very strong: hk2 . 1. In [3], a generalised finite
element method was presented in one dimension, with the stability condition reduced to hk . 1;
see also [16]. The proofs rely on the explicit knowledge of the Green’s function and, hence, do
not carry over to higher dimensions. Further, the general stability and convergence analysis given
in [22] does not yield the improved stability condition. With this in mind, in [28] a refined finite
element analysis was developed that gives improved stability and error estimates.

In this paper, we generalise the results of [28] to an abstract theory applicable to a general
indefinite variational problem. We prove that the condition T (S) ≈ S, of approximate invariance
of the test and trial space S under a certain continuous solution operator T , is sufficient for stability.
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The quasi-optimal error estimate is proved under a similar condition T (u + S) ≈ S, where u is
the solution of the continuous variational problem. This new concept is the crux of the abstract
analysis we develop. We describe how the abstract analysis can be used to prove the results of
[28] for the finite element method. As a further example of its use, we consider the boundary
element method for the solution of high-frequency Helmholtz problems using the Brakhage-Werner
boundary integral formulation. This problem has already been considered in [13] and recently in
[11]. There, the stability condition hk . 1 and a quasi-optimal error estimate, with the constant
of quasi-optimality proportional to k1/3, was proved for the case of the unit sphere. In [11], the
authors consider the problem of high-frequency scattering by a convex object in two dimensions.
Known asymptotics of the scattered wave were used to reduce the problem to the computation of
unknown amplitudes, which are less oscillatory than the original scattered wave. These were then
computed using a Galerkin method for which the quasi-optimal error with constant of O(k1/3) was
proved in the case of the unit disk and sphere.

We obtain a sharper error estimate, with the quasi-optimality constant independent of k. More
importantly, our paper provides a framework in which to investigate the properties of boundary
element methods with special basis elements such as plane waves [26]. For special finite element
methods, it was already shown in [28] that the refined analysis obtains results outside the reach of
standard analyses. We give reasons to expect the same to be true for boundary element methods.
Further, the condition of the approximability of T (S) and T (u+S) by the boundary element space,
can give guidelines for the construction of special boundary elements.

2 A highly indefinite variational problem

Let H and V be Hilbert spaces such that H is continuously imbedded in V , and hence, V ′ is
continuously imbedded in H ′, where V ′ and H ′ are the dual spaces; see [31]. Denote by (·, ·)H and
(·, ·)V the respective inner products, and by ‖ · ‖H and ‖ · ‖V the induced norms.

We are interested in the following abstract variational problem: Given f ∈ H ′, find u ∈ H such
that

a(u, v) = 〈f, v〉, for all v ∈ H, (1)

where a(·, ·) : H ×H → C and we have written 〈f, v〉 = f(v) for the value of the functional f at v.
Naturally, we need to place some conditions on the above problem.

Assumptions:

A1: a(·, ·) : H × H → C is a bounded sesquilinear form. Thus, a(u, v) is linear in u, conjugate
linear in v, and

|a(u, v)| ≤ Cc‖u‖H‖v‖H .

A2: There exist bounded sesquilinear forms aH(·, ·) : H ×H → C and aV (·, ·) : V × V → C such
that

a(u, v) = aH(u, v) + aV (u, v)

and
|aH(u, u)| ≥ αH‖u‖2

H , |aV (u, v)| ≤ CV ‖u‖V ‖v‖V , for any u, v ∈ H.

A3: Problem (1) and its adjoint have a unique solution u ∈ H. Further,

‖u‖H ≤ Creg‖f‖H′ .

The sesquilinear forms a(·, ·), aH(·, ·), and aV (·, ·), define the corresponding bounded, linear
operators:

A : H → H ′, AH : H → H ′, and AV : V → V ′. (2)

In view of A3, the inverses of A and the adjoint A∗ are also bounded linear operators:

A−1 : H ′ → H and A∗−1 : H ′ → H. (3)

We now investigate the properties of the Galerkin discretisation of (1).
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2.1 Abstract stability and convergence analysis of the Galerkin method

Let S ⊂ H be a finite dimensional subspace of H. We wish to consider the Galerkin discretisation
of problem (1): Given f ∈ H ′ find uS ∈ S such that

a(uS, v) = 〈f, v〉, for all v ∈ S. (4)

We now derive a condition on S that guarantees the existence and uniqueness of uS and a quasi-
optimal error estimate.

2.1.1 Stability and convergence

For our analysis of the stability and convergence of (4), the following continuous dual problem will
be crucial: Given w ∈ H, let z ∈ H be such that

a(v, z) = −aV (w, v), for all v ∈ H.

From (A2) it follows that aV (w, ·) defines a bounded linear functional on V . Since H is continuously
imbedded in V , i.e., the identity mapping I : H → V is continuous, aV (w, ·) defines also a bounded
linear functional on H. Therefore, we can apply (A3) to obtain that the solution z ∈ H of the
above adjoint problem exists and is unique. Consequently, we can define a solution operator by
T w := z. Using again the fact that H is continuously imbedded in V and the properties of the
operators in (2) and (3), we conclude that the solution operator T = −A∗−1AV is a bounded linear
operator mapping from H to H. Hence, there exists a constant CT such that

‖T u‖H ≤ CT ‖u‖H , for all u ∈ H. (5)

Remark 1. In applications, the operator T will be a compact operator. Usually, it is also a
smoothening operator; see Remark 4 and [28].

Let us now define a measure of approximability in the space S. This measure depends on some
subset H̃ ⊆ H, which satisfies S ⊂ H̃ and u + S ⊂ H̃, where u is the exact solution of (1). The
measure is defined by

η(S) := sup
w∈ eH\{0}

inf
v∈S

‖T w − v‖H

‖w‖H

. (6)

Remark 2.

1. For a dense sequence (Sl)l≥1 of spaces, i.e. ∪lSl
‖·‖H = H, we have lim

l→∞
η(Sl) = 0.

2. We will prove stability of (4) and a quasi-optimal error estimate, under the condition that
η(S) is small enough.

3. Note that the choice H̃ = H is always possible. However, a choice of a smaller set H̃ ( H
might result in a smaller value of η(S) and a less restrictive stability condition.

Theorem 1. Let S be such that
η(S) ≤ αH

2Cc
, (7)

and let u ∈ H be the solution of (1). Then there exists a unique solution uS ∈ S of the discrete
problem (4). Moreover,

‖u− uS‖H ≤ 2Cc

αH

inf
v∈S

‖u− v‖H .
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Proof. Since S is finite dimensional, it suffices to prove uniqueness. Given wS ∈ S, let zS be the
best approximation to z = T wS with respect to the H-norm. Then,

|a(wS, wS + zS)| = |aH(wS, wS) − a(wS, z − zS)| ≥ αH‖wS‖2
H − Cc‖wS‖H‖z − zS‖H

≥ αH‖wS‖2
H − Ccη(S)‖wS‖2

H .

From (5) we have that
‖z‖H ≤ CT ‖wS‖H

and hence
‖wS + zS‖H ≤ ‖wS‖H + ‖z‖H + ‖z − zS‖H ≤ (1 + CT + η(S))‖wS‖H .

Using (7), we have that

|a(wS, wS + zS)| ≥ αH

2
‖wS‖2

H ≥ αH

2 + 2CT + 2η(S)
‖wS‖H‖wS + zS‖H .

Hence, we have the discrete inf-sup condition:

inf
u∈S\{0}

sup
v∈S\{0}

|a(u, v)|
‖u‖H‖v‖H

≥ αH

2 + 2CT + 2η(S)
> 0,

and we have proved that the discrete solution uS exists and is unique.
Next, let z′ = T e, where e = u − uS, and again let z′S be the best approximation to z′ in the

H-norm. Then,
|aV (e, e)| = |a(e, z′)| = |a(e, z′ − z′S)| ≤ Ccη(S)‖e‖2

H .

Hence, for any v ∈ S,

αH‖e‖2
H ≤ |aH(e, e)| = |a(e, e) − aV (e, e)| = |a(e, u − v) − aV (e, e)|

≤ Cc‖e‖H‖u− v‖H + Ccη(S)‖e‖2
H .

Therefore, using (7)

‖e‖H ≤ 2Cc

αH

‖u− v‖H , for any v ∈ S.

Thus, we have also proved the quasi-optimality of the Galerkin method.

Remark 3. A result on the stability and convergence of the Galerkin finite element method applied
to an indefinite PDE can be found in Theorem 5.7.6 of [6]. The same constant of quasi-optimality
2Cc/αH , as above, is also given in [6]; this is an improvement over the usual estimate given by Céa’s
lemma, see Remark 5. The essential novelty of our concept, is that for stability and convergence
it is sufficient to have T (S) ≈ S and T (u + S) ≈ S. On the contrary, the approach taken in [6]
requires that the adjoint problem has full regularity. Theorem 1 is a stronger result, that implies the
result of [6]. In particular, the kind of condition given in [6] does not allow for improved stability
estimates of [28]; for details see [28].

2.1.2 Error estimate in the V -norm

By using the Aubin-Nitsche technique, we can bound the V -norm of the error by the H-norm of
the error. Let ψ ∈ H be such that

a(v, ψ) = (e, v)V , for all v ∈ H.

Let S : H → H be the solution operator defined by Se := ψ, and let

µ(S) := sup
w∈ eH\{0}

inf
v∈S

‖Sw − v‖H

‖w‖V

.
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If ψS is the best approximation to ψ with respect to the H-norm, then

‖e‖2
V = a(e, ψ) = a(e, ψ − ψS) ≤ Ccµ(S)‖e‖H‖e‖V .

Hence, we have an estimate of the V -norm of the error in terms of the H-norm of the error. We
proceed now to obtain an alternative condition, to the one given in Theorem 1, for the existence
of a quasi-optimal error estimate. For any v ∈ H,

αH‖e‖2
H ≤ |aH(e, e)| = |a(e, e) − aV (e, e)| ≤ Cc‖e‖H‖u− v‖H + CV ‖e‖2

V

≤ Cc‖e‖H‖u− v‖H + CV (Ccµ(S))2 ‖e‖2
H .

Hence, under the alternative condition

CV (Ccµ(S))2 < αH/2,

we have obtained the same quasi-optimal estimate as before. The results are collected in the
following theorem.

Theorem 2. Let u ∈ H be the solution of (1) and uS ∈ S be a solution of (4). Then

‖u− uS‖V ≤ Ccµ(S)‖u− uS‖H .

Further, if S is such that CV (Ccµ(S))2 < αH/2, then

‖u− uS‖H ≤ 2Cc

αH

inf
v∈S

‖u− v‖H .

2.2 An example application in a finite element setting

The abstract analysis given here is a generalisation of the finite element analysis for highly indefinite
Helmholtz problems introduced in [28]. The appropriate choice of spaces H and V for the finite
element method in [28] is

H = H1(Ω), V = L2(Ω),

where the space H is equipped with a weighted norm (cf. [22]):

‖u‖H :=
(
|u|21,Ω + k2‖u‖2

0,Ω

)1/2
.

With this choice of spaces, the assumptions A1–A3 are proved in [28]. Theorem 2.2 and Theorem 2.5
of [28] are then implied by Theorem 1 and Theorem 2, respectively. For details we refer the reader
to [28].

We now turn to another case to which the abstract theory can be applied. Namely, we consider
the solution of a Helmholtz problem by a Galerkin boundary element method.

3 A Helmholtz scattering problem

Let Ω be a bounded domain in Rd, d = 2, 3, with a smooth boundary Γ. We consider the following
exterior Helmholtz problem: Given g ∈ H1/2(Γ) find u ∈ H1

loc(Ω
c) such that

−∆u− k2u = 0, in Ωc,

u = g, on Γ, (8)

lim
r→∞

r(d−1)/2

(
∂u

∂r
− iku

)
= 0, where r := ‖x‖,

is satisfied in a weak sense. The equation governs the process of acoustic scattering by a sound soft
object; see [24].
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Let Gk(·) be the fundamental solution of the Helmholtz equation:

Gk(r) =
i

4
H0(kr), for d = 2,

Gk(r) =
1

4π

eikr

r
, for d = 3,

with r > 0. Throughout the paper Hν is the Hankel function of the first kind of order ν defined by

Hν(x) := Jν(x) + i Yν(x), x > 0,

where Jν and Yν are the Bessel functions of the first and second kind. Employing the fundamental
solution, we define, respectively, the single layer and the double layer integral operators:

(Skϕ) (x) :=

∫

Γ
Gk(‖x− y‖)ϕ(y)dΓy , x ∈ Rd \ Γ, (9)

(Dkϕ) (x) :=

∫

Γ

∂

∂ny
Gk(‖x− y‖)ϕ(y)dΓy , x ∈ Rd \ Γ, (10)

where ny is the unit normal to the surface Γ at the point y ∈ Γ. The corresponding boundary
integral operators are defined by

(Vkϕ) (x) :=

∫

Γ
Gk(‖x− y‖)ϕ(y)dΓy , x ∈ Γ, (11)

(Kkϕ) (x) :=

∫

Γ

∂

∂ny
Gk(‖x− y‖)ϕ(y)dΓy , x ∈ Γ. (12)

We state now the well-known mapping properties of the above operators; see [9, 29].

Proposition 3. Let Ω ⊂ Rd, d = 2 or 3, be a bounded domain with smooth boundary Γ. Then for
any s ∈ R the following are bounded linear operators:

(a) Vk : Hs(Γ) → Hs+1(Γ),

(b) Kk : Hs(Γ) → Hs+1(Γ).

It is well known that every solution ϕ ∈ H−1/2(Γ) of Vkϕ = g, has the property that u = Skϕ
satisfies the exterior Helmholtz problem (8). However, for countable many wave numbers k the
operator Vk is not injective. To avoid this problem Brakhage and Werner [5], Leis [21], and Panich
[25], independently suggested to represent the solution as a combination of the single and double
layer potentials:

u = Dkϕ− iαSkϕ, (13)

for some coupling parameter α > 0. The unknown density ϕ in (13) satisfies the boundary integral
equation

g =

(
1

2
I +Kk − iαVk

)
ϕ, (14)

where I is the identity operator. We denote by (·, ·)0 the L2(Γ) inner product and by ‖ · ‖0 the
corresponding norm, and define

a(ϕ, v) := (Rkϕ, v)0, where Rk :=
1

2
I +Kk − iαVk. (15)

To be able to apply the abstract theory developed in Section 2, we need to prove that the assump-
tions A1–A3 hold in this case. Proposition 3 implies that the condition A1 is satisfied with the
choice H = L2(Γ). We can then define

aH(ϕ, v) :=
1

2
(Iϕ, v)0 and aV (ϕ, v) := (R̃kϕ, v)0, where R̃k := Kk − iαVk.

Therefore, A := Rk, AH := 1
2I, and AV := R̃k. Again by Proposition 3, it follows that the condition

A2 holds with the choice V = L2(Γ); trivially, V is then continuously imbedded in H. Furthermore,
we can clearly set αH = 1/2. The following proposition deals with assumption A3.
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Proposition 4. Let Ω ⊂ Rd be a bounded domain with smooth boundary Γ. Then, for any g ∈ L2(Γ)
there exists a unique ϕ ∈ L2(Γ) such that

a(ϕ, v) = (g, v)0, for all v ∈ L2(Γ), (16)

and there exists a constant Creg > 0, which depends on both k and Ω, such that

‖ϕ‖0 ≤ Creg‖g‖0.

Moreover,
u = (Dkϕ) − iα (Skϕ) ,

is the solution of the Helmholtz problem (8).

Proof. In the original paper of Brakhage and Werner [5], the existence and uniqueness have been
proved for the classical formulation. To extend the proof to the variational formulation we proceed
as in [13]1. Since R̃k is a continuous operator from L2(Γ) to H1(Γ), and H1(Γ) is compactly
imbedded in L2(Γ), we have that R̃k is a compact operator from L2(Γ) to L2(Γ). Therefore we can
apply the Fredholm-Riesz-Schauder theory to the operator Rk = I/2 + R̃k, which implies that to
prove invertibility it suffices to prove injectivity, i.e., it suffices to prove that KerRk = {0}.

Let Rkϕ = 0, then ϕ = −2R̃kϕ. Applying the mapping property R̃k : Hs(Γ) → Hs+1(Γ) twice,
we have that ϕ ∈ H2(Γ) and is hence continuous. For continuous functions the proof of uniqueness
given in [5] is applicable, therefore ϕ = 0.

To find an approximation to the solution ϕ numerically, we use the Galerkin discretisation. Let
S be a finite dimensional subset of L2(Γ). Then, find a ϕS ∈ S such that

a(ϕS, v) = (g, v)0, for all v ∈ S. (17)

Since we have checked that all the assumptions of the abstract theory hold, from Theorem 1
we immediately obtain the following result.

Corollary 5. Let S be such that Ccη(S) ≤ 1/4. Then (17) has a unique solution ϕS ∈ L2(Γ) and

‖ϕ− ϕS‖0 ≤ 4Cc inf
v∈S

‖ϕ − v‖0,

where ϕ ∈ L2(Γ) is the solution of (16).

Remark 4. Recall the definition of T from the previous section. Since T = R∗k
−1R̃k, from Propo-

sition 3 we have that T : L2(Γ) → H1(Γ); therefore, T is a smoothening operator. To emphasise
the dependence of T on k, for the rest of the paper we denote it by Tk := T .

We will later show that for the case of Ω = S2 and a particular choice of the coupling parameter
α, the constant Cc is independent of k. The result of Theorem 2 brings little new in this setting,
since V = H. For the finite element method of [28], Theorem 2 is of more interest.

So far we have made no specification for the set S except that it is a finite dimensional subspace
of L2(Γ). Next, we consider the special case of the usual piecewise polynomial boundary elements.

1In [13] a weaker assumption is made on the smoothness of Γ but stronger on the spaces: Γ ∈ C2,λ, 0 < λ < 1,
and u, f ∈ H1/2(Γ).
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3.1 Piecewise polynomial boundary elements

Let G be a shape-regular triangulation of Γ. We assume that no approximation of the boundary
occurs, namely:

Γ =
⋃

τ∈G

τ.

The mesh width h is defined to be

h := max{hτ : τ ∈ G}, where hτ := sup
x,y∈τ

‖x− y‖.

The set S is then defined to be a space of piecewise polynomial functions on the triangulation G.
In particular we are interested in the space S0,−1

G,h of functions constant on each triangle τ ∈ G.
Next we give the well-known approximation property of the piecewise-constant finite element

spaces.

Theorem 6. Let ϕ ∈ H1(Γ) and S = S0,−1
G,h . There exists a constant CA, that depends only on the

minimal angle of the triangulation G, such that

inf
v∈S

‖ϕ − v‖0 ≤ CAh‖ϕ‖1.

We now proceed to investigate the dependence of the stability and the Galerkin error on the
wave number. To do this, we make the assumption that the derivatives of the solution grow
proportionally with the wave number k.

Definition 1. For a given ρ > 0, the set Oρ,k,l contains functions ϕ ∈ H l(Γ) such that

‖ϕ‖l ≤ ρkl‖ϕ‖0.

The conditions under which the solution of (16) belongs to a class Oρ,k,l are discussed in [8].

Corollary 7. Let S = S0,−1
G,h and let ϕ ∈ L2(Γ) be the solution of (16). If

CcCAh‖Tk‖H1(Γ)←L2(Γ) < 1/4,

the discrete problem (17) has a unique solution ϕS ∈ S. If further ϕ ∈ Oρ,k,1 and ϕ 6= 0, then the
relative error is bounded as

‖ϕ− ϕS‖0

‖ϕ‖0
≤ 4CcCAhk.

Proof. Using the approximation property of the piecewise-constant space and choosing H̃ = H =
L2(Γ), we have that

η(S) = sup
ϕ∈L2(Γ)\{0}

inf
v∈S

‖Tkϕ− v‖0

‖ϕ‖0
≤ CA sup

ϕ∈L2(Γ)\{0}

h‖Tkϕ‖1

‖ϕ‖0
≤ 1

4Cc
.

Hence, by Corollary 5, we have the required stability condition.
Let us now assume that ϕ ∈ Oρ,k,l. Using Corollary 5 again,

‖ϕ− ϕS‖0 ≤ 4Cc inf
v∈S

‖ϕ− v‖0 ≤ 4CcCAh‖ϕ‖1 ≤ 4CcCAhk‖ϕ‖0.

In the next section we investigate the dependence of Cc and of ‖Tk‖H1(Γ)←L2(Γ) on the wave
number k. Our goal is to state the dependence on k of all the constants in Corollary 7 in the case
of the sphere.
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3.2 The special case of the unit sphere

In this section we restrict to the case Γ = S2. This case was investigated by Giebermann in [13]
and by Domı́nguez et al. in [11]. Our final result will be a slight improvement on the results of
[13] and [11]. The improvement is in part due to the abstract theory developed at the start of the
paper and in part due to some stronger bounds on the eigenvalues that we prove; the details are
stated in Remark 5. In this section we draw heavily on results stated in [1] and [14]. We denote
these two references by [AS] and [GR] for the rest of the paper.

The Fourier coefficients of a function f ∈ L2(S2) are defined by

fmn :=

∫

S2

Y m
n (x̂)f(x̂)dsx, (18)

where Y m
n are the spherical harmonics; see [AS]. Equivalent spaces to the usual Sobolev spaces on

S2 can be defined through the Fourier coefficients.

Definition 2. For any s ≥ 0, let Hs(S2) be the space containing all functions f ∈ L2(S2) whose
Fourier coefficients satisfy

∞∑

n=0

n∑

m=−n

|fmn |2(1 + n2)s <∞.

The inner product is defined by

〈f, g〉s :=

∞∑

n=0

(1 + n2)s
n∑

m=−n

fmn g
m
n .

For negative s, Hs(S2) is the dual space of H−s(S2).

In the following jn, yn, and h
(1)
n are spherical Bessel functions of the first, second, and third

kind respectively; see [AS]. These can be defined through the Bessel functions:

jn(x) :=

√
π

2x
Jn+ 1

2

(x),

yn(x) :=

√
π

2x
Yn+ 1

2

(x), (19)

h(1)
n (x) := jn(x) + iyn(x) =

√
π

2x
Hn+ 1

2

(x).

Lemma 8.

(a) The space Hs(S2) is a Hilbert space and is equivalent to Hs(S2). Namely, the norms induced
by the inner products are equivalent and the sets Hs(S2) and Hs(S2) coincide.

(b) The spherical harmonics form a complete orthogonal system in Hs(S2) and are the eigenfunc-
tions of operators Vk, Kk, Rk, and Tk. We have that

VkY
m
n = λ

(V )
n,k Y

m
n , with λ

(V )
n,k := 2ikh(1)

n (k)jn(k),

KkY
m
n = λ

(K)
n,k Y

m
n , with λ

(K)
n,k := −1/2 + ik2h(1)

n (k)j′n(k),

RkY
m
n = λ

(R)
n,kY

m
n , with λ

(R)
n,k := 1/2 + λ

(K)
n,k − iαλ

(V )
n,k = ik2h(1)

n (k)j′n(k) + 2αh(1)
n (k)jn(k).

TkY n
m = R∗k

−1R̃kY
n
m = λ

(T )
n,kY

m
n , with λ

(T )
n,k :=

(
λ

(K)
n,k − iαλ

(V )
n,k

) / (
1/2 + λ

(K)
n,k + iαλ

(V )
n,k

)
.

(c) For s ≥ 0,

‖Rk‖Hs(S2)←Hs(S2) = sup
n∈N0

|λ(R)
n,k |, ‖Tk‖Hs+1(S2)←Hs(S2) = sup

n∈N0

√
1 + n2|λ(T )

n,k |.

9



Proof. For (a) see [8]. The eigenvalues of the operators Vk and Kk are given in [18]. From these
it is easy to derive the eigenvalues of the remaining two operators. A proof of (c) can be found in
[13]; see also [23].

The above result justifies us writing Hs(S2) for both Hs(S2) and Hs(S2). We now prove some
results on the Bessel functions that, in view of (19) and Lemma 8, have direct use in bounding

eigenvalues λ
(R)
n,k . Recall that the Bessel functions Jν(x) and Yν(x) are real valued for ν ∈ R and

x ≥ 0.

Lemma 9.

(a) Jν(x), J
′
ν(x), Y

′
ν(x) > 0, Yν(x) < 0, for 0 < x < ν ,

(b) Jν(x) and xJ ′ν(x) are positive increasing functions of x, for 0 < x < ν ,

(c) for x > 0 the product x
[
J2
ν (x) + Y 2

ν (x)
]
, as a function of x, decreases monotonically, if

ν > 1/2, and increases monotonically if ν < 1/2.

Proof. Parts (a) and (b) are proved in Watson [30, §15.3]. A proof of part (c) can found in Watson
[30, §13.74].

Proposition 10. There exists a constant C > 0, such that for any x ≥ 1 and ν ∈ [1/2,∞) ∪ {0}

(a) |Jν(x)Hν(x)| ≤ Cx−2/3,

(b) |xJ ′ν(x)Hν(x)| ≤ C.

Proof. A proof of part (a) for ν > 1/2 is given in [13] and [11], where also a bound that is less
sharp than what we prove here is given for part (b).

In the proof we make use of the following asymptotic expansions [AS, (9.3.31)–(9.3.34)] :

Jν(ν) = aν−1/3 +O(ν−5/3),

Yν(ν) = −
√

3aν−1/3 +O(ν−5/3),

J ′ν(ν) = bν−2/3 − cν−4/3 +O(ν−8/3),

Y ′ν(ν) =
√

3
(
bν−2/3 + cν−4/3

)
+O(ν−8/3),

(20)

where a, b, and c are certain positive constants.
We divide the proof into two cases:

Case 1: ν > x ≥ 0
Using the identity Jν(x)Y

′
ν(x) − J ′ν(x)Yν(x) = 2/(πx) [AS, (9.1.16)] we have that

0
Lemma 9a

≤ Jν(x)Y
′
ν(x)

[AS, (9.1.16)]
=

2

πx
+ J ′ν(x)Yν(x).

Therefore,

|xJ ′ν(x)Yν(x)|
Lemma 9a

= −xJ ′ν(x)Yν(x) ≤
2

π
.

Also,

|xJ ′ν(x)Jν(x)| = xJ ′ν(x)Jν(x)
Lemma 9b

≤ νJ ′ν(ν)Jν(ν)
(20)

≤ C,

where C is independent of x and ν. Combining the last two results we have that

|xJ ′ν(x)Hν(x)| ≤ |xJ ′ν(x)Jν(x)| + |xJ ′ν(x)Yν(x)| ≤ C +
2

π
, for x < ν. (21)

Case 2: 1/2 < ν ≤ x

10



We use the following definitions:

Mν(x) := |Hν(x)| and Nν(x) := |H ′ν(x)|.

We have that

x2|J ′ν(x)Hν(x)|2 ≤ x2N2
ν (x)M

2
ν (x)

[AS, (9.2.22)]
= x2M ′ν

2
(x)M2

ν (x) +
4

π
. (22)

Next,

x
d

dx
{−xM ′ν(x)}

[AS, (9.2.25)]
= (x2 − ν2)Mν(x) −

4

π2

1

M3
ν (x)

= Mν(x)(x
2 − ν2 − 4

π2
M−4
ν (x))

[GR,(8.479)]

≤ Mν(x)(x
2 − ν2 − x2) ≤ 0.

Hence, −xM ′ν(x) is a monotonically decreasing function. From Lemma 9c we have that, for ν > 1/2,
xM2

ν (x) is monotonically decreasing, and hence M ′ν(x) ≤ 0. It is now not difficult to see that
xM ′ν

2(x) is also a monotonically decreasing function. Therefore,

xM ′ν
2
(x)xM2

ν (x) ≤ ν2M ′ν
2
(ν)Mν(ν)

2
(20)

≤ C, for x ≥ ν >
1

2
. (23)

Combining this last result with (21) and (22) gives the required bound for ν > 1/2. The result for
ν = 1/2 is obtained by the continuity of Bessel functions in the argument ν.

Finally we prove (a) and (b) for ν = 0.

|J0(k)H0(k)| ≤
1

k
kM2

0 (k)
Lemma 9c

≤ 1

k
lim
k→∞

kM2
0 (k)

[AS, (9.2.3)]

≤ C
1

k
≤ Ck−2/3.

Similarly,

k|J ′0(k)H0(k)| = k|J1(k)H0(k)| ≤
√
kM1(k)

√
kM0(k)

Lemma 9c
≤ M1(1) lim

k→∞

√
kM0(k)

[AS, (9.2.3)]

≤ C.

Corollary 11. Let Rk : L2(S2) → L2(S2) be the operator defined, as in (15), by

Rk = I/2 +Kk − iαVk.

Then Rk is bounded and there exists a constant C > 0 independent of k such that

‖Rk‖L2(S2)←L2(S2) ≤ C(1 + αk−2/3).

Proof. In view of Lemma 8, to prove the statement we need to find bounds on the eigenvalues of
the operator Rk. Using the definition of spherical Bessel functions (19) and Proposition 10 we have
that ∣∣∣λ(V )

n,k

∣∣∣ =
∣∣∣2kh(1)

n (k)jn(k)
∣∣∣ =

∣∣∣πHn+ 1

2

(k)Jn+ 1

2

(k)
∣∣∣ ≤ Ck−2/3,

and
∣∣∣∣
1

2
+ λ

(K)
n,k

∣∣∣∣ =
∣∣∣k2h(1)

n (k)j′n(k)
∣∣∣ =

∣∣∣∣
π

2
kHn+ 1

2

(k)

(
J ′
n+ 1

2

(k) +
1

2k
Jn+ 1

2

(k)

)∣∣∣∣

≤
∣∣∣
π

2
kHn+ 1

2

(k)J ′
n+ 1

2

(k)
∣∣∣ +

∣∣∣
π

4
Hn+ 1

2

(k)Jn+ 1

2

(k)
∣∣∣ ≤ C(1 + k−2/3).

The result now follows from the identity

‖Rk‖Hs(S2)←Hs(S2) = sup
n∈N0

∣∣∣λ(R)
n,k

∣∣∣ = sup
n∈N0

∣∣∣1/2 + λ
(K)
n,k − iαλ

(V )
n,k

∣∣∣ .

11



Note that for α ≤ k2/3, ‖Rk‖L2(S2)←L2(S2) is bounded by a constant independent of k. Numerical

experiments suggest Cc = ‖Rk‖L2(S2)←L2(S2) ≤ 1.76, for α = k2/3.

Definition 3. Let α := k2/3 in the definition of Rk; see (15).

Remark 5. The choice α ∝ k is prevalent in the literature; see [2, 11, 13, 20]. In [2] and [20] the
choice was made to minimise the condition number of the matrices arising from the discretisation
of boundary integral operators in the case of the unit sphere and the unit disk. The same choice
maximises the inf-sup constant and hence optimises the error estimate given by Céa’s lemma; see
[13]. The error estimate in Corollary 5 is not affected by the inf-sup constant and with the choice
α = k2/3 the constant of quasi-optimality Cc is independent of k. Céa’s lemma gives a more
pessimistic bound, with quasi-optimality constant growing as k1/3; see [11, 13].

It remains now to find the dependence on k of the continuity constant of the operator Tk =
R∗k
−1R̃. From Lemma 8 we have that

‖Tk‖H1(S2)←L2(S2) = sup
n

√
1 + n2|λTn,k| = sup

n

√
1 + n2

∣∣∣∣∣∣
λ

(K)
n,k − iαλ

(V )
n,k

1/2 + λ
(K)
n,k + iαλ

(V )
n,k

∣∣∣∣∣∣
.

By taking into account the properties of the zeros of Bessel functions, see [AS, (9.5)], it can be
seen that the denominator in the above expression is never zero, however a proof of a useful upper
bound for the whole expression is beyond the scope of this paper. Instead, we consider the three
asymptotic cases: k fixed and n→ ∞, n ≈ k, and n fixed and k → ∞.

Proposition 12. (a) For fixed ν, and k → ∞ we have, for α ≤ k,

∣∣λTν,k
∣∣ =

∣∣∣∣∣1 − 1

2eiχ
(
−2α

k cosχ+ i sinχ
) +O(k−1)

∣∣∣∣∣ ,

where χ = k − νπ/2 − π/2.

(b) For ν + 1/2 = k and α ≤ k4/3 we have

|λTν,k| = 1 +
∣∣∣iπab(1 +

√
3i) + 2πa2(1 −

√
3i)αk−2/3 +O(k−2/3)

∣∣∣
−1
,

where a and b are constants from the asymptotic expansions (20).

(c) For fixed k and ν → ∞ we have
λTν,k = O(ν−1).

Proof. Part (a): We first use the definition of spherical functions to write the eigenvalues in terms
of Bessel functions and then make use of asymptotic expansions given in [AS, (9.2)]. From (19), as
in proof of Corollary 11, we have for ν fixed and k → ∞, that

∣∣λTν,k
∣∣ =

∣∣∣∣∣∣

−1/2 + iπ2kHν+ 1

2

(k)J ′
ν+ 1

2

(k) − π
2 (i/2 − 2α)Hν+ 1

2

(k)Jν+ 1

2

(k)

iπ2kHν+ 1

2

(k)J ′
ν+ 1

2

(k) − π
2 (i/2 − 2α)Hν+ 1

2

(k)Jν+ 1

2

(k)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1 − 1

iπkHν+ 1

2

(k)J ′
ν+ 1

2

(k) − π(i/2 − 2α)Hν+ 1

2

(k)Jν+ 1

2

(k)

∣∣∣∣∣∣

[AS, (9.2)]
=

∣∣∣∣∣1 − 1

2eiχ
(
−2α

k cosχ+ i sinχ
)
− α

kO(k−1) +O(k−1)

∣∣∣∣∣ ,

12



where χ = k− (ν + 1/2)π/2 − π/4 = k− νπ/2− π/2. The result now follows from the assumption
α ≤ k.
Part (b): Using the asymptotic expansions (20) we obtain that

λTν,k = 1 +
∣∣∣iπkab

(
(1 +

√
3i)k−1 +O(k−5/3)

)
− πa2(i/2 − 2α)

(
(1 −

√
3i)k−2/3 +O(k−2)

)∣∣∣
−1

= 1 +
∣∣∣iπab(1 +

√
3i) + 2πa2(1 −

√
3i)αk−2/3 +O(k−2/3) + αO(k−2)

∣∣∣
−1
.

Part (c). For the proof, we use the asymptotic expansions given in [AS, (9.3)].

Jν(k)Hν(k)
[AS, (9.3.1)]∼ 1

2πν

(
ek

2ν

)2ν

− i
1

πν
= O(ν−1). (24)

We also make use of Stirling’s approximation to the Gamma function [AS, (6.1.39)]:

J ′ν(k)
[AS, (9.1.10)]

= ν
(1
2k)

ν

Γ(ν + 1)

(
1

k
− 2 + ν

2ν

(
1

2
k

)
1

ν + 1
+ . . .

)

[AS, (6.1.39)]∼
√

ν

2π

(
ke

2ν

)ν (
1

k
+O(ν−1)

)
.

Hence,

J ′ν(k)Hν(k)
[AS, (9.3.1)]∼ −i 1

πk
+O(ν−1). (25)

Finally,

λTν,k
(24), (25)∼ −1/2 + 1/2 +O(ν−1)

1/2 +O(ν−1)
= O(ν−1).

Part (c), in the above proposition merely confirms that Tk is a pseudo-differential operator of
order −1. From part (b) we conclude that for n+ 1/2 = k

√
1 + n2|λTn,k| ∼ O(k). (26)

The denominator in the expression of part (a) is clearly never 0, however it becomes arbitrarily
close to zero for certain, large enough values of k and for α < k. Nevertheless, note that
| − 2α

k cosχ+ i sinχ| ≥ 2α/k, for k > 2α. So that,

|λTν,k| = O(k/α), for k > 2α.

Since α = k2/3, the condition k > 2α is equivalent to k > 8.
To see how relevant these asymptotic cases are for estimating the continuity constant, we plot√

1 + n2|λTn,k| for different values of k and n in Figure 1. The picture suggests that the maximum
occurs for n+ 1/2 ≈ k. Hence, in view of (26), we are lead to the following heuristic:

‖Tk‖H1(S2)←L2(S2) ≤ CXk, (27)

for some constant CX > 0 independent of k. Numerical experiments suggest that CX ≤ 1.7. In
[11], it is proved that, in two dimensions with the coupling parameter α = k and large enough k,
the eigenvalues of Rk are bounded below by 1/2. This supports further our claim (27).

Now we are in a position to give estimates on the dependence on k of the stability and the
accuracy of the boundary element method.

13



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

50

n/k

(1
+

n2 )1/
2 |λ

n,
k

T
|

k = 10
k = 20
k = 40

Figure 1: Plot of
√

1 + n2|λTn,k| for different values of n and k. The vertical lines denote the positions at
which n+ 1/2 = k.

3.2.1 Piecewise-constant Galerkin boundary element method

Proposition 13. Let Γ = S2, S = S0,−1
G,h , ϕ ∈ L2(Γ) be the solution of (16), and let (27) hold.

There exists a constant c independent of k such that if hk < c, the discrete problem (17) has a
unique solution ϕS ∈ S. If further ϕ ∈ Oρ,k,1, then there exists a constant C independent of k such
that

‖ϕ − ϕS‖0 ≤ Chk‖ϕ‖0.

Therefore, the boundary element method does not suffer from the pollution effect, and a con-
dition hk . 1 is sufficient to guarantee stability and a quasi-optimal error estimate.

Remark 6. Let us consider the two dimensional case, Γ = {x ∈ R2 : ‖x‖ = 1}. The Sobolev space
Hs(Γ) can be identified with the space Hs([0, 2π]) of 2π periodic distributions; see [2, 19]. Periodic
functions, e±inθ, n ∈ N0, are then the eigenfunctions of the operators Vk and Kk with eigenvalues
given by

λ
(V )
n,k =

iπ

2
Jn(k)Hn(k), λ

(K)
n,k = −1

2
+
iπ

2
kJ ′n(k)Hn(k).

Comparing these with the case of the sphere it is clear that the analogous analysis of this section
holds for the two dimensional case as well. In particular, the statement of Proposition 13 also holds
for the case of the unit ball in two dimensions.

3.2.2 The h-p version of the Galerkin method

Just as in the finite element method [16, 17], the use of higher order polynomials improves the
stability condition of the boundary element method. Let S = Sp,1G,h be the usual boundary element
space of continuous, piecewise polynomial functions of order p. Using the approximation properties
of such spaces proved in [15, 16, 17] we proceed as in the case of piecewise-constant basis functions.
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Assuming that H̃ = Oρ,k,l, where 1 ≤ l ≤ p, we obtain the estimate

η(S) = sup
ψ∈ eH\{0}

inf
v∈S

‖Tkψ − v‖0

‖ψ‖0

[15, 16]

≤ CA(l) sup
ψ∈ eH\{0}

‖Tkψ‖l+1

‖ψ‖0

(
h

2p

)l+1

≤ CA(l)CXk sup
ψ∈ eH\{0}

‖ψ‖l
‖ψ‖0

(
h

2p

)l+1

≤ ρCA(l)CX

(
kh

2p

)l+1

,

where C(l) is a constant depending only on l. Therefore, the condition for stability and the quasi-
optimal error estimate reduces to hk . 2p. Thus, higher order elements allow for a coarser mesh,
and the following error estimate:

‖ϕ− ϕS‖0 ≤ C

(
kh

2p

)l+1

‖ϕ‖0.
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