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Abstract. We give a survey on certain results related to the cohomology
of projective schemes with coefficients in coherent sheaves. In particu-
lar we present results on cohomological patterns, cohomological Hilbert
functions and cohomological Hilbert polynomials. Bounding results for
Castelnuovo-Mumford regularities, Severi coregularities and cohomolog-
ical postulation numbers are discussed. Moreover, a number of open
questions is presented.
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1. Introduction

Let R = ⊕n≥0Rn be a homogeneous noetherian ring. Let X := Proj(R) be
the projective scheme induced by R. Let i ∈ N0. For a sheaf of OX -modules
G, the i-th Serre cohomology group H i(X,G) of X with coefficients in F
carries a natural structure of R0-module. If G is coherent, it follows from
Serre’s finiteness theorem, that the R0-module H i(X,G) is finitely generated
(cf. [42, III, Theorem 5.2], [72, §66, Théorème 1]).
Now, fix a coherent sheaf of OX -modules F . For n ∈ Z consider the coherent
sheaf of OX -modules F(n) := F ⊗OX OX(n) = F ⊗OX O(1)⊗n, e.g. the n-th
twist of F (with respect to the very ample sheaf OX(1)).
A considerable number of results in algebraic geometry can be expressed in
the form of vanishing statements for some cohomology groups H i(X,F(n)).
Correspondingly, there are several numerical cohomological invariants of the
pair (X,F) related to the vanishing and non-vanishing of the groups
H i(X, F(n)).
Let us mention first the cohomological dimension of (X,F), which is given
by

(1.1) cd(X,F) = cd(F) := sup{i ∈ N0 | ∃n ∈ Z : H i(X,F(n)) 6= 0} .
(Throughout this paper we use the convention that sup∅ = −∞ and inf ∅ =
∞.) It is important to notice that cd(F) < ∞. In fact the invariant cd(F)
depends only on the topological behaviour of F along the fibres of the natural
morphism π : X −→ X0 := Spec(R0), (s. (2.3)), in accordance with the
Vanishing Theorem of Serre-Grothendieck (cf. [72, §66, Théorème 1], [42,
III, Theorem 2.7]).
Next, for each i ∈ N, we may define the i-th cohomological right vanishing
order of (X,F) by

(1.2) µiX,F = µiF := sup{n ∈ Z | H i(X,F(n− 1)) 6= 0} .
By the Vanishing Theorem of Castelnuovo-Serre (cf. [72, §66, Théorème 2
(b)]) we have µiF <∞ for all i ∈ N.
For k ∈ N, the (Castelnuovo-Mumford) regularity of (X,F) above level k is
defined by

(1.3) regk(X,F) = regk(F) := sup{µiF + i | i > k} .
As µiF < ∞ for all i > 0 and as cd(F) < ∞, we have regk(F) < ∞.
Moreover, reg(F) := reg0(F) is the (Castelnuovo-Mumford) regularity as
originally introduced in [65].
In 1893 G. Castelnuovo proved a result which, in our language, says that
reg0(J ) ≤ d−1, where J ⊆ O

P
3
C

is the sheaf of vanishing ideals of a smooth
projective curve in P3

C
, (s. [25]). This is apparently the first bounding result

for cohomological right vanishing orders and regularities. For this reason,
Mumford did speak of Castelnuovo regularity and for the same reason we
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associate the name of Castelnuovo to all vanishing or bounding results on
the groups H i(X,F(n)) in the range n ≥ −i.
The behaviour of the groups H i(X,F(n)) for n � 0 is more subtle than in
the “Castelnuovo” range: in general, these groups do not vanish if n � 0.
The problem of vanishing in this range essentially can be attacked only if i
does not exceed the cohomological finiteness dimension

f(X,F) = f(F)

: = inf{i ∈ N0 | H i(X,F(n)) 6= 0 for infinitely many n ≤ 0}
(1.4)

of the pair (X,F). Under certain assumptions on R0, the finiteness dimen-
sion f(F) depends only on the behaviour of F along the fibers of the natural
morphism π : X −→ X0 = Spec(R0), (s. (2.4) (iii)), in accordance with the
Vanishing Theorem of Severi-Enriques-Zariski-Serre (cf. [72, §74, Théorème
2], [42, III, Theorem 7.6 (b)]).

Now, obviously for each i < f(F), we may define the left-vanishing order of
(X,F) by

(1.5) νiX,F = νiF := inf{n ∈ Z | H i(X,F(n+ 1)) 6= 0}

and thus have νiF > −∞ for all i < f(F).

For k ∈ {0, 1, . . . , f(F)− 1} we define the (Severi-) coregularity of (X,F) at
and below level k by

(1.6) coregk(X,F) = coregk(F) := inf{νiF + i | i ≤ k} .

As νiF > −∞ for all i < f(F) we have coregk(F) > −∞ for all k < f(F).
If f(F) > 0 we call the number coreg(F) := coregf(F)−1(F) the (Severi-)
coregularity of (X,F).

In 1942 F. Severi proved a result which, in the language of sheaf cohomology,
says that f(ωX) > 1 for the canonical sheaf ωX of a smooth projective surface
X ⊆ P3

C
, (s. [73]). In 1949, F. Enriques gave an attempt to generalize this

to the case where X ⊆ Pr
C

is a smooth projective variety of dimension > 1,
(s. [29]). In 1952, Zariski proved that for an arbitrary invertible sheaf L over
a normal projective variety X of dimension > 1, we have f(L) > 1, (s. [82]).
In 1955, J.P. Serre brought this result to its final form by showing that for
an arbitrary coherent sheaf F over a projective variety X, f(F) equals the
minimum of the depths of the stalks of F at closed points x ∈ X, (cf. [72,
§74, Théorème 2]).

Apparently, Severi was the first to prove a non-trivial vanishing result for
some of the groups H i(X,F(n)) in the range n� 0. Therefore, we speak of
Severi coregularity. Moreover, for the same reason, we associate the name
of Severi to all vanishing or bounding results on the groups H i(X,F(n)) in
the range n ≤ −i, i < f(F).
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In order to study and to formulate vanishing results, it is convenient to
introduce the so called cohomological pattern

(1.7) P (X,F) = P (F) := {(i, n) ∈ N0 × Z | H i(X,F(n)) 6= 0}

of the pair (X,F). We shall discuss this concept in Section 2.
Besides the mere vanishing and non-vanishing of the cohomology groups
H i(X,F(n)) one may also ask for the “size” of these R0-modules. A natural
approach to this is to assume that the base ring R0 is artinian: then the R0-
modules H i(X,F(n)) are of finite length, so that this length may be used
to measure their size.
So, assume now, that R0 is artinian. For any i ∈ N0, any n ∈ Z and any
coherent sheaf of OX -modules F we consider the length

(1.8) hiX,F (n) = hiF (n) := lengthR0(H i(X,F(n))

of the R0-module H i(X,F(n)). For fixed i ∈ N0, the function

(1.9) hiX,F = hiF : Z −→ N0 ; (n 7−→ hiF (n))

is called the i-th cohomological Hilbert function of (X,F).
Now, fix k ∈ N0. Then, there are two easy vanishing constraints for the
numbers hiF (n) (cf. (2.4) (i), (ii)). The first of these constraints says:

If hiF (−i) = 0 for all i > k,

then hiF (n) = 0 for all i > k and all n ≥ −i .
(1.10)

The second constraint says:

If hiF (−i) = 0 for all i ≤ k,
then hiF (n) = 0 for all i ≤ k and all n ≤ −i .

(1.11)

Observe that the vanishing assumption in the constraint (1.11) implies in
particular that k < f(F).
In sections 3 and 4 we shall present a couple of bounding results, which
extend the above constraints. We actually have to distinguish three types of
such results.
The first type gives bounds on the invariant regk(F) and on the numbers
hiF (n) in the range i > k, n ≥ −i in terms of the cohomology diagonal

(hiF (−i))cd(F)
i=k+1 of F above level k. We refer to these bounds as (diagonal)

bounds of Castelnuovo type – in accordance with our earlier convention.
The second type of result applies if k < f(F) and bounds the invariant
coregk(F) and the numbers hiF (n) in the range i ≤ k, n ≤ −i in terms of
the cohomology diagonal (hiF (−i))ki=0 of F at and below level k. Here, we
speak of (diagonal) bounds of Severi type.
The third type of result is referred to as bounds of extended Severi type.
Their aim is to extend the bounds of Severi type beyond the situation in
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which k < f(F). This first of all needs some conceptual modification of the
ideas underlying the previous type of bound.
The crucial point is to keep in mind that for each i ∈ N0 there is a (unique)
polynomial

(1.12) piX,F = piF ∈ Q[x] with hiF (n) = piF (n), ∀n� 0 ,

the i-th cohomological Hilbert polynomial of (X,F), (s. [21, (20.4.12)]).
Moreover, deg(piF ) ≤ i.
Now, we may define the i-th cohomological deficiency function of (X,F):

(1.13) ∆i
X,F = ∆i

F : Z −→ Z, (n 7−→ ∆i
F (n) := hiF (n)− piF (n)) ,

and the i-th cohomological postulation number of (X,F):

(1.14) νiX,F = νiF := inf{n ∈ Z | ∆i
F (n+ 1) 6= 0} .

Then, clearly νiF > −∞ for all i ∈ N0. As piF ≡ 0 for all i < f(F), we have
∆i
F = hiF for all these i. Therefore, the concept of cohomological postulation

number naturally extends the concept of cohomological left-vanishing order
(cf. (1.5)) to the range i ≥ f(F). But now, it is clear, what bounds of
extended Severi type should achieve: They should bound the invariants νiF
and the numbers ∆i

F (n) in the range n ≤ −i for arbitrary values of i.
We shall discuss a result of this type, which gives a bound on the numbers
νiF for i ≤ k in terms of the cohomology diagonal (hiF (−i))ki=0 of F at and
below level k and the cohomological Hilbert polynomial pkF in section 3.
In section 4 we consider the case in which the base ring R0 is a field. In
this particular situation we are able to bound the cohomological postulation
numbers νiF in terms of the full cohomology diagonal (hiF (−i))cd(F)

i=0 of F . As
a consequence of this we obtain that there are only finitely many choices for
each of the cohomological Hilbert functions hiF if the cohomology diagonal
(hiF (−i))cd(F)

i=0 is fixed.
All the bounds mentionned so far, are a priory bounds, valid for arbitrary
pairs (X,F) (with appropriately chosen base ring R0). Moreover, they use
(part of) the cohomology diagonal as a bounding system. In section 5 we
also shall consider bounds for the regularity which depend on the so called
Hilbert coefficients and hold for b-sheaves in the sense of Kleiman [38, Exp.
XIII]. In section 6 we shall briefly discuss a few specific bounds, e.g. bounds
concerning special pairs (X,F). Our interest is focussed on the classical
cases, in which X is a projective space over an algebraically closed field and
F is an algebraic vector bundle or a sheaf of ideals defining a projective
variety. We also consider the case in which X is a projective variety and
F = OX is its structure sheaf.
Most of the results we present, are originally formulated and proved in terms
of local cohomology rather than in terms of sheaf cohomology. So, we briefly
recall the link between these two concepts. To do so, let the base ring R0 be
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arbitrary noetherian. Then, the coherent sheaf F is induced by some finitely
generated graded R-module M (s. [42, II, Proposition 5.11]).
Now, let R+ := ⊕n>0Rn ⊆ R be the irrelevant ideal and let DR+ denote the
R+-transform functor, e.g. the linear left exact functor on the category of
R-modules given by DR+(•) := lim−→

n
HomR((R+)n, •).

For i ∈ N0, let RiDR+ denote the i-th right derived functor of DR+ . Then,
the R-modules RiDR+(M) carry a natural grading (s. [21, (12.4.5)]). More-
over, there are isomorphisms of R0-modules

(1.15) H i(X,F(n)) ∼= RiDR+(M)n, (∀i ∈ N0, ∀n ∈ Z)

in which •n denotes the formation of n-th graded parts (s. [21, (20.4.4)]).
Now, keep in mind that the local cohomology modules H i

R+
(M) carry a

natural grading (s. [21, (12.3.3)]) or consult one of [23] or [26]) and that the
natural exact sequence

0 −→ H0
R+

(M) −→M −→ DR+(M) −→ H1
R+

(M) −→ 0

and the natural isomorphisms

RiDR+(M) ∼= H i
R+

(M), (∀i ∈ N)

respect these gradings (s. [21, (12.4.2), (12.4.5) (iii)]). So, altogether, for
each n ∈ Z we obtain a short exact sequence of R0-modules

(1.16) 0 −→ H0
R+

(M)n −→Mn −→ H0(X,F(n)) −→ H1
R+

(M)n −→ 0

and isomorphisms of R0-modules

(1.17) H i(X,F(n)) ∼= H i+1
R+

(M)n, (∀i ∈ N) .

The relations given by (1.16) and (1.17) are a version of the so called Serre-
Grothendieck correspondence (cf. [21, Chap. 20], [37]).

2. Cohomological patterns

Let X = Proj(R = ⊕n≥0Rn) and F be as in the introduction. In this
section we shall discuss a few properties of the cohomological pattern P (F)
introduced in (1.7). Let us start with the following definition.

2.1. Definition. (i) Let w ∈ N0. A set P ⊆ N0×Z is called a combinatorial
pattern of width w, if it satisfies the following five conditions:
(π1) ∃m,n ∈ Z : (0,m), (w, n) ∈ P ;
(π2) (i, n) ∈ P =⇒ i ≤ w;
(π3) (i, n) ∈ P =⇒ ∃j ≤ i : (j, n+ i− j + 1) ∈ P ;
(π4) (i, n) ∈ P =⇒ ∃k ≥ i : (k, n+ i− k − 1) ∈ P ;
(π5) i > 0 =⇒ (i, n) 6∈ P, ∀n� 0.
The width of a combinatorial pattern P is denoted by w(P ).
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(ii) Let i ∈ N0. A combinatorial pattern P is said to be tame at level i, if

either (i, n) ∈ P for all n� 0, or (i, n) 6∈ P for all n� 0 .

Observe that any combinatorial pattern P is tame at level 0 and at level
w(P ). A combinatorial pattern P is said to be tame if it is tame at any level
i ∈ N0.
(iii) A combinatorial pattern P is said to be minimal if there is no combina-
torial pattern Q ⊂ P .
(iv) Fix w ∈ N0 and let Mw be the set of all monotonically decreasing
functions µ : Z −→ {0, . . . , w} for which 0, w ∈ µ(Z). For any µ ∈ Mw, let
us introduce the “skew graph” of µ, e.g. the set

P [µ] := {(µ(n);n− µ(n)) | n ∈ Z} ⊆ N0 .

It is easy to verify that P [µ] is a minimal combinatorial pattern of width w.
•

In the following remark we summarize a few properties of combinatorial
patterns. For a more detailed and complete presentation of the listed facts
we refer to [13, Sec. 2].
2.2. Remark. (i) Let P ⊆ N0×Z be a combinatorial pattern and let (i, n) ∈
P . Then, there is a integer w ≥ i and a function µ ∈Mw such that

(i, n) ∈ P [µ] ⊆ P .

(ii) In view of what we just remarked, it is easy to see, that the minimal
combinatorial patterns of width w are precisely the patterns of the formP [µ]
with µ ∈Mw.
(iii) On use of the previous observation one now proves immediately:
A set P ⊆ N0 × Z is a tame combinatorial pattern if and only if it is the
union of finitely many minimal combinatorial patterns. •
After these combinatorial preliminaries, let us turn back to cohomological
patterns.
2.3. Proposition. In the notation of (1.1) and (1.7) we have:

P (F) is a combinatorial pattern of width
cd(F) = sup{dim(Supp(F) ∩ π−1(x0)) | x0 ∈ X0}.

Proof: s. [13, (3.5)]. �

2.4. Remarks. (i) Observe that according to Proposition (2.3) the pattern
P (F) satisfies in particular the two conditions π4 and π3, which correspond
respectively to the following two vanishing constraints (in which k ∈ N0 and
r ∈ Z are fixed):

(∗)1 H i(X,F(r− i)) = 0, ∀i > k =⇒ H i(X,F(n− i)) = 0, ∀i > k, ∀n ≥ r

(∗)2 H i(X,F(r − i)) = 0, ∀i ≤ k =⇒ H i(X,F(m− i)) = 0,

∀i ≤ k, ∀m ≤ r.
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In the special case, where R0 is a field, the constraint (∗)1 is found in Mum-
fords work [65]. For a proof of both constraints in the present form see [13,
Sec. 3]. Obviously, if R0 is artinian and r = 0, the constraints (∗)1 and (∗)2

respectively correspond to the constraints (1.10) and (1.11).
(ii) The constraints (∗)1, (∗)2 tell us respectively: If H i(X,F(n)) vanishes
“along a diagonal above (resp. “at and below”) level k” then it vanishes
everywhere “to the right” (resp. “to the left”) of this diagonal.
In particular, these constraints give alternative descriptions of the concepts
of regularity above level k and of coregularity at and below level k (s. (1.3),
(1.5)), namely:

regk(F) = inf{r ∈ Z | H i(X,F(r − i)) = 0, ∀i > k} ;

coregk(F) = sup{c ∈ Z | H i(X,F(c− i)) 6= 0, ∀i ≤ k}, (k < f(F)) .

(iii) Clearly, the cohomological finiteness dimension f(F) of F is the lowest
level i at which there are infinitely many (i, n) ∈ P (F) with n < 0. The
invariant f(F) is related to the local behaviour of F along the fibres of the
morphism π : X −→ X0 by the inequality

f(F) ≤ inf{depthOX,x(Fx) + dim(π−1(π(x)) ∩ {x}) | x ∈ X} =: δ(F) .

Moreover, if R0 is a homomorphic image of a regular ring, equality holds (cf.
[21, (20.4.20)]). •

Now, let us say a few words about the tameness of the pattern P (F). First
of all, let us mention the following result (cf. [13, (4.3)]).

2.5. Theorem. If the base ring R0 is semilocal and of dimension ≤ 1, the
cohomological pattern P (F) of the coherent sheaf F is tame. �

2.6. Comment and Problem. We do not know, whether the conclusion
of (2.5) holds without any restriction on the (noetherian) base ring R0. So,
let us pose the following tameness problem:

Is P (F) always tame? •

2.7. Remark. Obviously, one might try to answer the tameness problem
at certain particular levels i. Indeed, for certain values of i the requested
tameness is easily verified. So, by the axioms π3 and π4 and in view of (2.3)
it is clear, that P (F) is tame at level 0 and at all levels i > cd(F). Moreover,
P (F) obviously is tame at any level i < f(F). •

In view of the previous remark, i = f(F) is the first level at which the
tameness question is non-trivial. At this particular level P (F) is indeed
tame. Actually, we have the following result, which is an easy consequence
of [13, (5.6)] and the Serre-Grothendieck Correspondence (1.16), (1.17).
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2.8. Theorem. The sets AssR0(Hf(F)(X,F(n)) are asymptotically stable
for n −→ −∞, e.g. there exists an integer n0 such that

AssR0(Hf(F)(X,F(n))) = AssR0(Hf(F)(X,F(n0))) for all n ≤ n0 .

In particular P (F) is tame at level f(F). �

2.9. Remark and Problems. (i) For arbitrary values of i ∈ N0, the sets
AssR0(H i(X,F(n))) need not be asymptotically stable for n −→ −∞. In-
deed, using a construction of Singh [75] one can easily write down a posi-
tively graded homogeneous noetherian domain R = ⊕n≥0Rn such that with
X = Proj(R) we have cd(OX) = 2 and

#
(⋃
n<0

AssR0

(
H2(X,OX(n))

))
=∞ , (cf. [13, (5.7)]) .

(ii) On the other hand, we do not know an example for which the sets
AssR0(H i(X,F(n))) are not “asymptotically increasing” for n −→ −∞. So,
let us ask the following question:

Is there some n0 ∈ Z such that for all n ≤ n0

AssR0(H i(X,F(n− 1))) ⊇ AssR0(H i(X,F(n)))?

Clearly, an affirmative answer to this question implies that P (F) is tame
(at level i).
(iii) The base ring R0 in the example mentionned in part (i) is not local,
and in fact we do not know an example with local base ring R0 for which
the sets AssR0(H i(X,F(n))) are not asymptotically stable for n −→ −∞.
So, let us pose the following problem:

Assume that R0 is local. Is there some n0 ∈ Z such that
AssR0(H i(X,F(n))) = AssR0(H i(X,F(n0))) for all n ≤ n0?

(iv) Let us also mention here the following fact, which is an easy consequence
of [13, (5.5)] and the Serre-Grothendieck Correspondence (1.16), (1.17):

If AssR0(H i(X,F(n))) is asymptotically stable for n −→ −∞
and if F is induced by the finitely generated graded R-module
M , then AssR(H i+1

R+
(M)) is a finite set.

In the special case, where (R0,m0) is local and m := m0 + R+ denotes the
graded maximal ideal of R, the two sets AssR(H i+1

R+
(M)) and

AssRm(H i+1
(R+)Rm

(Mm)) are in natural bijection. So, the “stability problem”
mentionned in part (iii) is closely related to the finiteness problem for the
sets of associated primes AssR(H i

a(M)) of the local cohomology modules
H i

a(M) of a finitely generated module M over a noetherian (local) ring R
with respect to some ideal a ⊆ R, (cf. [47]). This problem recently has found
an affirmative answer for some particular values of i (cf. [14], [19] and also
[12]) and is known to have a negative answer in general (s. [75]). In the
special case, where R = M is a local ring, there are some partial results (cf.
[43]), but even in the case of a local Cohen-Macaulay ring R, the problem is
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open. Only in the case where R = M is regular local ring, there are complete
(and further reaching) results (s. [49], [55], [56]). One might ask, whether
the ideas developed in [74] could lead to some progress in the study of the
“graded case” of the above finiteness problem. •
It is natural to ask, whether the pattern axioms (2.1) (π1 − πr) (together
with the requirement of tameness) are the only general constraints to which
cohomological patterns are subject. More precisely: Is any tame combina-
torial pattern the pattern of a pair (X,F)? This question has indeed an
affirmative answer.

2.10. Theorem. Let R0 be a semilocal noetherian ring of dimension ≤ 1
and let w ∈ N0. Then, the tame combinatorial patterns of width ≤ w are
precisely the combinatorial patterns of coherent sheaves of OPwR0

-modules.

Proof: (s. [13, (4.8)]). �

2.11. Remark. (i) The crucial step in the proof of (2.10) is to show that
for any field K and any minimal combinatorial pattern P of width w, there
is a coherent sheaf F of OPwK -modules with P (F) = P . In view of the
vanishing Theorem of Severi-Enriques-Zariski-Serre, such a F must be an
algebraic vector bundle. Indeed, we can choose the requested sheaf F as an
(indecomposable) algebraic vector bundle of rank ≤ w! (s. [13, (4.5)]). Here,
let us ask the following problem:

What is the least possible rank of an algebraic vector
bundle F over Pwk for which P (F) = P?

In [13, (4.5)] a candidate for F is constructed as the direct image π∗L of a line
bundle L = ⊗wi=1π

∗
iOP1

K
(ri) over the w-fold Segre product Y = P

1
K×· · ·×P1

K

of a projective line P1
K under a generic projection π : Y −→ P

w
K . (Here

πi : Y −→ P
1
K denotes the projection to the i-th factor.) The twisting

orders ri are determined appropriately on use of the Künneth formulas (s.
[77], [31]). To answer the above question one likewise has to use a different
method of construction.
(ii) It is easy to write down examples of tame combinatorial patterns of
width w which are realizable only by decomposable vector bundles (s. [13,
(4.9)]) over PwK . This makes arise the following question:

Is there a purely combinatorial characterization of those
patterns, which may be realized by an indecomposable
algebraic vector bundle over PwK? •

Let K be a field. By Theorem (2.10) (and by the Vanishing Theorem of
Severi-Enriques-Zariski-Serre) the combinatorial patterns of algebraic vector
bundles over PwK are precisely the combinatorial patterns P of width w such
that (i, n) 6∈ P for all i < w and all n� 0. Inspired by this observation one
may be tempted to ask whether there is a purely combinatorial description
of the patterns P (OX) of a smooth projective variety X ⊆ P

r
K over an
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algebraically closed field K (of characteristic 0). In order to say a few words
about this question, we introduce some notions:

2.12. Definition and Remark. (i) A combinatorial pattern P is said to
be positive, if (0, 0) ∈ P and if (i, n) 6∈ P for all i < w(P ) and all n < 0. A
combinatorial pattern P is said to be straight, if (0, 0) ∈ P and if (i, n) 6∈ P
whenever i < w(P ) and n < 0 or 0 < i < w(P ) and n > 0. Straight patterns
are positive.
(ii) If P is a combinatorial pattern of width w, we set

α(P ) := sup{n ∈ Z | (w, n) ∈ P} .
If P is positive, the axiom (2.1) (π3) implies that α(P ) ≥ −w(P )−1, wheras
axiom (π4) gives

(i, 0) 6∈ P for all i > w + α(P ) + 1 . •
Now, we are ready to show:

2.13. Proposition. Let P a straight combinatorial pattern of width w > 0
and let K be an algebraically closed field. Then, there is a smooth projective
variety X over K such that P (OX) = P .

Proof: (Induction on w) First, let w = 1, so that α(P ) ≥ −2. If α(P ) = −2,
choose X = P

1
K . Otherwise, let X ⊆ P

2
K be a smooth curve of degree

α(P ) + 3.
Now, let w > 1, α := α(P ) and m = max{i ∈ N0 | (i, 0) ∈ P}. Then
α ≥ m− w − 1 (s. (2.12) (ii)).
Assume first, that α = m − w − 1. Then m < w and α < 0. If m = 0,
choose X = P

w
K . So, let m > 0. Then, there is a straight pattern Q with

w(Q) = m and Q ∩ (N0 × {0}) = P ∩ (N0 × {0}). So, by induction, there is
a smooth projective non-degenerate variety Y ⊆ PrK with P (OY ) = Q. Let
Z := P

w−m
K . Then, the Segre product X := Y × Z ⊆ P(r+1)(w−m+1)−1

K is a
smooth projective variety. As P (OZ) = ({0}×N0)∪ ({w−m}×Z≤m−w−1),
the Künneth formulas give for all i ∈ N0 and all n ∈ Z

H i(X,OX(n))) ∼= H i(Y,OY (n))⊗K H0(Z,OZ(n))

⊕H i−m−w(Y,OY (n))⊗K Hw−m(Z,OZ(n))

(with the convention that Hj ≡ 0 for j < 0). Using again the shape of
P (OY ) and of P (OZ) it follows that P (OX) = P .
Next, assume that m− w − 1 < α < 0. Then m ≤ w − 1. If m = w − 1, we
have α = −1. Moreover, there is a straight pattern Q with w(Q) = w−1 and
such that Q∩ (N0×{0}) = P ∩ (N0×{0}). If m < w− 1, there is a straight
pattern Q with w(Q) = w−1, α(Q) = α and Q∩(N0×{0}) = P ∩(N0×{0}).
By induction, there is a smooth non-degenerate projective variety Y ⊆ PrK
such that P (OY ) = Q. Let Z ⊆ P2

K be a smooth quadratic curve. Then,
the Segre product X := Y × Z ⊆ P3r+2

K is a smooth projective variety. As
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P (OZ) = ({0}×N0)∪ ({1}×Z<0), the Künneth formulas give for all i ∈ N0

and all n ∈ Z
H i(X,OX(n)) ∼= H i(Y,OY (n))⊗K H0(Z,OZ(n))

⊕H i−1(Y,OY (n))⊗K H1(Z,OZ(n)) .

Using once more the shape of P (OY ) and of P (OZ) it follows P (OX) = P .
So, let α ≥ 0. Then, there is a straight pattern M with α(M) ∈ {0,−1},
w(M) = w−1 and such that M ∩(N0×{0}) = P ∩({0, . . . , w−1}×{0}). By
induction, there is some smooth projective non-degenerate variety T ⊂ PrK
such that P (OT ) = M . Now, let W ⊆ P

9
K the third Veronesean of the

projective plane, so that P (OW ) = ({0} × N0) ∪ ({2} × Z<0). Moreover, let
U := T × W ⊂ P10r+9

K be the Segre product of T and W . Then, U is a
smooth projective variety and the Künneth formulas give

H i(U,OU (n)) ∼= H i(T,OT (n))⊗K H0(W,OW (n))

⊕H i−2(T,OT (n))⊗K H2(W,OW (n)) ,

for all i, n ∈ Z. It follows, that P (OU ) is a straight pattern with w(P (OU )) =
w + 1, α(P (OU )) = −1 and such that

P (OU ) ∩ (N0 × {0}) = P ∩ ({0, . . . , w − 1} × {0}) .
Now, let H ⊂ P10r+9

K be a generic hypersurface of degree 2α + 1. Then, by
Bertini, V := U ∩H ⊂ P10r+9

K is a smooth projective variety (cf. [50]). Now,
the exact sequences

H i(U,OU (n− 2α− 1)) −→ H i(U,OU (n)) −→ H i(V,OV (n))

−→ H i+1(U,OU (n− 2α− 1))

−→ H i+1(U,OU (n))

show, that

H i(V,OV (n)) = 0 if


i > w

0 < i < w, n 6= 0, 2α+ 1
i = 0, n < 0

H i(V,OV (0)) ∼= H i(U,OU (0)) for 0 ≤ i < w ;

Hw(V,OV (2α)) 6= 0; Hw(V,OV (n)) = 0 for all n > 2α .

Now, let X ⊆ P
50r2+105r+54
K be the second Veronose transform of V . As

X ∼= V , X is smooth. It now follows easily from the above statements on
the groups H i(V,OV (n)) that P (OX) = P. �

2.14. Remark and Problems. (i) In view of the Kodaira Vanishing Theo-
rem (cf. [52]) the pattern P (OX) of the structure sheaf of a smooth projective
complex variety X is always positive. So one may be lead to ask:

Is each positive pattern the cohomological pattern of the
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structure sheaf OX of a smooth projective variety X?
(ii) The method of construction used in the proof of (2.14) realizes straight
patterns by smooth projective varieties X ⊆ PrK of rather large degree. So,
we ask:

What can be said about the minimal possible degree of a
smooth projective variety X ⊆ PrK whose structure sheaf
OX realizes a given straight pattern?

(iii) Let us also mention the relation of the above problems to the following
Non-Rigidity Theorem of Evans-Griffiths (s. [30] and [63]): Given r − c −
1 graded modules L1, . . . , Lr−c−1 of finite length over the polynomial ring
K[x0, . . . ,xr] over the algebraically closed field K, (2 ≤ c ≤ r − 2), there
is a normal projective variety X ⊆ PrK of codimension c and an integer t
such that there are graded isomorphisms ⊕n∈ZH i(X,OX(n)) ∼= Li(t) for
1 ≤ i ≤ r − c− 1. •

3. Cohomological Hilbert functions

Let X = Proj(R = ⊕n≥0Rn) π−→X0 = Spec(R0) and F be as in the intro-
duction, but assume from now on, that R0 is artinian. We now shall present
a few results on the cohomological Hilbert functions hiF introduced in (1.9).
Let us start with a few preliminary remarks.

3.1. Remark. (i) As R0 is artinian, we have

sup{dim(Supp(F)) ∩ π−1(x0)) | x0 ∈ X0} = dim(Supp(F)) =: dim(F),

so that (cf. (2.3))
cd(F) = dim(F) .

(ii) Clearly, now the invariant

δ(F) = inf{depthOX,x(Fx) + dim(π−1(π(x)) ∩ {x}) | x ∈ X}
of (2.4) (iii) takes the value

inf{depthOX,x(Fx) | x ∈ X, {x} = {x}}.
As R0 is artinian, its localizations are complete and hence homomorphic
images of regular local rings, by Cohens Structure Theorem (s. [60]). By
(2.4) (iii) it follows now easily that

f(F) = δ(F) = inf{depthOX,x(Fx) | x ∈ X, {x} = {x}} . •

Now, let us formulate a first bounding result – a diagonal bound of Castel-
nuovo type.

3.2. Theorem. Let d := dim(F). Then

a) regk(F) ≤
(
2
∑d

i=k+1

(
d−k−1
i−k−1

)
hiF (−i)

)2d−k−1

, (0 ≤ k < d) .
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b) hjF (n) ≤ 1
2

(
2
∑d

i=j

(
d−j
i−j
)
hiF (−i)

)2d−j
, (0 < j ≤ d, n ≥ −j) .

Proof: See [16, Sec. 4]. �

Our next result gives a diagonal bound of Severi type.

3.3. Theorem. Let k < δ(F). Then

a) coregk(F) ≥ −
(
2
∑k

i=0

(
k
i

)
hiF (−i)

)2k ;

b) hjF (n) ≤ 1
2

(
2
∑j

i=0

(
j
i

)
hiF (−i)

)2j
, (0 < j < k, n ≤ −j) .

Proof: See [16, Sec. 5]. �

3.4. Definition. (i) Let C denote the class of all pairs (X,F) in which
X = Proj(⊕n≥0Rn) is a projective scheme over an artinian base ring R0

and F is a coherent sheaf of OX -modules. Let D ⊆ C be a subclass. Now,
in the spirit of [16, (4.8)] and [21, (16.4.1)] we define a numerical invariant
on D to be an assignement µ : D −→ Z∪{±∞}. We say that the numerical
invariant is finite, if µ(D) ⊆ Z.
(ii) Let C,D be as in part (i) and let µ1, . . . , µs, ρ be numerical invariants
on D. We say that µ1, . . . , µs form an upper (resp. lower) bounding system
for ρ on D, if the invariants µ1, . . . , µs are finite and if there is a function
B : Zs −→ Z such that

ρ(U) ≤ B(µ1(U), . . . , µs(U))

(resp. ρ(U) ≥ B(µ1(U), . . . , µs(U))) for all U ∈ D .

(iii) In the situation of part (ii) we call B an upper (resp. lower) bounding
function for ρ in terms of µ1, . . . , µs. Instead of saying that µ1, . . . , µs form
an upper (resp. lower) bounding system for ρ on D, we also say that ρ is
bounded above (resp. below) by (or - in terms of) µ1, . . . , µs on D. We say
that ρ is polynomially bounded above (resp. below) on D by µ1, . . . , µs if is
bounded by a polynomial bounding function B.
(iv) Let D, C and µ1, . . . , µs, ρ : D −→ Z be as above. We say that µ1, . . . , µs
form a minimal upper (resp. lower) bounding system for ρ on D if they form
such a system, but if none of the s systems µ1, . . . , µi−1, µi+1, . . . , µs does
(i = 1, . . . , s). •

3.5. Lemma. Let K be a field, let d ∈ N, let i ∈ {0, . . . , d} and let D be the
class of all pairs (PdK , E) for which E is an indecomposable algebraic vector
bundle over PdK . Then
a) If 0 ≤ k < i, the invariants h0

•(0), . . . , hi−1
• (−i+1), hi+1

• (−i−1), . . . , hd•(−d)
do not form an upper bounding system for the invariant regk(•) on the class
D.
b) If i ≤ k < d, the invariants h0

•(0), hi−1
• (−i+ 1), hi+1

• (−i− 1), . . . , hd• (−d)
do not form a lower bounding system for the invariant coregk(•) on the class
D.
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Proof: Let t ∈ N. It is easy to see, that there is a minimal combinatorial
pattern Pi,t of width d with the properties that (i,−i− t), (i,−i+ t) ∈ Pi,t
and (j,−j) 6= Pi,t for all j 6= i. By (2.10) and in view of (2.11) (i) there is an
indecomposable algebraic vector bundle Ei,t over PdK such that P (Ei,t) = Pi,t.
In particular we have hjEi,t(−j) = 0 for all j 6= i.

Moreover, if 0 ≤ k < i we conclude from (i,−i+ t) ∈ Pi,t that regk(Ei,t) > t.
If i ≤ k < d, we use (i,−i − t) ∈ Pi,t to show that coregk(Ei,t) < −t. This
proves our claim. �

3.6. Notation. For r ∈ N0, let C(r) denote the class of all pairs (X,F) ∈ C
with dim(F) = r and let (r)C denote the class of all pairs (X,F) ∈ C with
δ(F) > r.

3.7. Corollary. Let k ∈ N0.
a) For each d ≥ k, the invariant regk(•) is bounded above polynomially in
terms of the invariants hk+1

• (−k−1), hk+2
• (−k−2), . . . , hd•(−d) on the class

C(d). Moreover, these latter invariants form a minimal bounding system for
regk(•) on C(d).
b) coregk(•) is bounded below polynomially in terms of the invariants h0

•(0),
h1
•(−1), . . . , hk•(−k) on the class C. Moreover, these latter invariants form a

minimal bounding system for coregk(•) on (k)C.

Proof: Immediate by (3.2), (3.3) and (3.5). �

3.8. Remarks and Problems. (i) The polynomial bounds of Theorems
(3.2) and (3.3) are not the sharpest possible bounds. In [16] we give sharper
bounds in terms of certain piecewise polynomial and recursively defined
bounding functions

B
(i)
(d+1) : Nd+1−i

0 × Z≥−i−→N0

, (0 < i ≤ d)

C
(i)
(d+1) : Nd+1−i

0 −→Z≥−i
and

B
(i)
(k+1) : Ni+1

0 × Z≤−i−→N0

, (0 ≤ i < k)

C
(i)
(k+1) : N0i+ 1 −→Z≤−i

such that

hiF (n) ≤ B(i)
(d+1)(h

i
F (−i), . . . , hdF (−d);n), ∀n ≥ −i ;

∀(X,F) ∈ C(d)

regi−1(F) ≤ C(i)
(d+1)(h

i
F (−i), . . . , hdF (−d)) + i ;



16 M. BRODMANN

and

hiF (n) ≤ B(i)
(k+1)(h

0
F (0), . . . , hiF (−i);n), ∀n ≤ −i

∀(X,F) ∈(k) C.

coregi(F) ≤ C(i)
(k+1)(h

0
F (0), . . . hiF (−i)) + i ;

(ii) In spite of the sharper bounds mentioned in part (i), one may ask,
whether the polynomial bounds of Theorem (3.2) and (3.3) reflect the rate
of growth for the invariants regk(F) (resp. coregk(F)) in terms of the corre-
sponding diagonal values hiF (−i). More precisely, let d, k ∈ N0 with k < d.
Then, we ask
Is there a sequence (Xn,Fn)n∈N ⊆ C(d) and a constant c > 0 such that

regk(Fn) ≥ c(2
d∑

i=k+1

(
d− k − 1
i− k − 1

)
hiFn(−i))2d−k−1

for all n ∈ N?

Is there a sequence (Yn,Gn)n∈N ⊆(k) C and a constant b > 0 such that

coregk(Gn) ≤ −b(2
k∑
i=1

(
k

i

)
hiGn(−i))2k for all n ∈ N?

(iii) In the special case where k = 0, diagonal bounds of Castelnuovo type
similar to those in Theorem (3.2) are given in [21, Chap. 16]. There, the
main tool is an algebraic version of the Lemma of Mumford-Le Potier (cf.
[21, (16.1.4)]). This lemma applies only to the function n 7−→ h1

F (n) in the
range n ≥ 0 and thus is not of great help to bound regk(F) for k > 0 and
to bound coregk(F) at all. So, we use another idea to derive the bounding
results mentioned under (3.2), (3.3) and (3.4): a generalized version of the
principle of linear systems of hyperplane sections. This principle has been
used to derive a-priori bounds of Castelnuovo type and of Severi type in the
case where R0 = K is an algebraically closed field in [5], [7], [9], [18]. In [4]
and [16] versions of this principle adopted to the case where R0 is local (and
artinian) are used. •
Now, let us say a few words on a-priori bounds of extended Severi type, e.g.
bounds on the cohomological deficience functions n 7−→ ∆i

F (n) (cf. (1.13))
and the cohomological postulation numbers νiF (cf. (1.14)) for i ≥ f(F), e.g.
without any restriction on i.

3.9. Theorem. Let i ∈ N0. Then, in the notation of (1.12-14):

a) νiF ≥ −
(

2
(
1 +

∑i
j=0

(
i
j

)
(hjF (−j) + |piF (−j)|)

))2i

+ 2 .

b) |∆i
F (n)| ≤ 1

2

(
2
(
1 +

∑i
j=0

(
i
j

)
(hjF (−j) + |piF (−j)|)

))2i

, (n ≤ −i) .

Proof: See [17, Sec. 3]. �
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3.10. Remarks and Problems. (i) Here again, the polynomial bounds
of Theorem (3.9) are not the sharpest possible bounds. In [17] we give
sharper bounds in terms of certain piecewise polynomial and recursively
defined bounding functions.
(ii) Similar as in (3.8) (ii) one may ask here:

Does the polynomial bound (3.9) a) “reflect the rate of
growth” of the invariant νiF?

(iii) It is easy to see that the method of linear systems of general hyperplane
sections (cf. (3.8) (iii)) cannot be used to derive bounds of extended Severi
type. So, in order to prove (3.9), one has to apply a different method: the
method of sequences of admissible linear forms. This method was introduced
by Matteotti [61] and turns out to be successfull even in greater generality
than here.
(iv) It turns out, that the 2(i + 1) numerical invariants h0

•(0), . . . , hi•(−i),
pi•(0), . . . , pi•(−i) do not form a minimal lower bounding system for the in-
variant νi• on the class C (s. (3.4) (i)). In fact, one has (s. [17, (4.12)]):

Let i ∈ N0 and let k ∈ {0, . . . , i− 1}. then, the 2i invariants

hj•(−j), (j = 0, . . . , i), and pi•(−j), (j = 0, . . . , i− 1; j 6= k),
form a lower bounding system for the invariant νi• on the class C.

This observation gives rise to the following question:
For which sets M ⊆ {0, . . . , i} do the invariants hj•(−j),
(j = 0, . . . , i), pi• (−l), (l ∈M) form a minimal lower
bounding system for the invariant νi• on the class C? •

4. Purely diagonal bounds

Keep the previous notations and hypotheses. We shall discuss in this section
the role of the full cohomology diagonal (hiF (−i))cd(F)=dim(F)

i=0 as a bounding
system in the special case where the base ring R0 is a field. For these
considerations the case where R = K[x] = K[x0, . . . ,xr] is a polynomial
ring over a field K is crucial. We begin with some prerequisites.

4.1. Definition and Remark. (i) Let M be a finitely generated and graded
module over the positively graded homogeneous ring R = ⊕n≥0Rn. Let
R+ := ⊕n>0Rn ⊂ R be the irrelevant ideal of R and let k ∈ N0. For a
graded R-module T = ⊕n∈ZTn let end(T ) := sup{n ∈ Z | Tn 6= 0} denote
the end of T . We define the regularity of M at and above level k by (cf. [21,
(15.2.9)])

regk(M) := sup{end(H i
R+

(M)) + i | i ≥ k} ,
bearing in mind that the local cohomology modules H i

R+
(M) carry a natural

grading. Then reg(M) := reg0(M) is the Castelnuovo-Mumford regularity
of the module M , as it was introduced by Ooishi [68].



18 M. BRODMANN

(ii) Keep the notations and hypotheses of part (i). Let X = Proj(R) and
let F := M̃ be the sheaf of OX -modules induced by M . Then, on use of the
Serre-Grothendieck Correspondence (1.16), (1.17) we have

regk(F) = regk+2(M), (∀k ≥ 0) .

In particular we have (cf. [21, (20.2.4)])

reg(F) = reg2(M) ;

reg(M) = max{reg(F), end(H0
R+

(M)), end(H1
R+

(M)) + 1} .
(iii) Now, let K[x] = K[x0, . . . ,xr] be a polynomial ring over the field K. Let
M be a finitely generated and graded K[x]-module with a minimal graded
free resolution of the form

0 −→ ⊕bpi=1K[x](a(p)
i ) −→ ⊕bp−1

i=1 K[x](a(p−1)
i )

−→ . . . −→ ⊕b0i=1K[x](a(0)
i ) −→M −→ 0 .

Then, the well known syzygetic characterization of regularity (cf. [21, (15.3.7)],
[27]) gives

reg(M) = max{−a(j)
i − j | 0 ≤ j ≤ p, 1 ≤ i ≤ bj} . •

4.2. Definition. Let R = ⊕n≥0Rn be as in the introduction. Let M =
⊕n∈ZMn be a finitely generated and graded R-module. We define the gener-
ating degree d(M) of M as the smallest integer d such that M is generated
over R by homogeneous elements of degree ≤ d. Thus

d(M) := inf{d ∈ Z |M = ⊕n≤dMnR} . •
Now, we may formulate the following bounding result.

4.3. Theorem. Let r ∈ N. Then, there is a polynomial Pr ∈ Q[s, t] such
that for each s ∈ N, each field K, each polynomial ring K[x] = K[x0, . . . ,xr]
and for each graded submodule M ⊆ K[x]⊕s

reg(M) ≤ Pr(s, d(M)) .

Proof: See [15, Sec. 2]. �

4.4. Remark and Problems. (i) One way of obtaining a bounding poly-
nomial Pr ∈ Q[s, t] as in (4.3) is to use the classical Hentzelt-Hermann
bound for the generating degree of the kernel of a polynomial matrix, (s.
[44], [45] but also [59], [71] and [76]). This bound says that the kernel
Ker(F ) ⊆ K[x]⊕t of a matrix F = [fij | 1 ≤ i ≤ s, 1 ≤ j ≤ t] ∈ Ks×t

of size s × t with entries fij ∈ K[x] is generated by elements of degree
< (2sdeg(F ))2r , where deg(F ) := max{deg(fij) | 1 ≤ i ≤ s, 1 ≤ j ≤ t}.
Starting form this bound one obtains

Pr(s, t) = (2st)2r(r+1) ∈ Q[s, t]

as a possible choice for Pr.
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(ii) A considerable smaller bounding polynomial Pr than in part (i) is ob-
tained if one proceeds as in the thesis of A.F. Lashgari [53]: First, the
regularity criterion of Bayer-Stillman [3] is extended from the case of graded
ideals of K[x] to the case of graded submodules of K[x]⊕s for arbitrary s ∈ N.
Then adopting the arguments which furnish the Bayer-Mumford regularity
bound for graded ideals in K[x] (cf. [2]) one obtains

Pr(s, t) = ser(2t)r! ∈ Q[s, t]

as a possible candidate for Pr, where the exponents er are defined recursively
by

e0 := 1 ; em = mem−1 + 1 for m ∈ N .

(iii) There is some evidence, that the bounding polynomial of part (ii) is
for apart from giving sharp bounds either: Namely, for a graded ideal a ⊆
K[x] we may apply theorem (4.3) with the bounding polynomial Pr(s, t)
mentionned in part (ii) and obtain reg(a) ≤ (2d(a))r!. This is the regularity
bound of Bayer-Mumford found in [2, (3.8)] and mentionned already in part
(ii). It is still an open problem, whether in our special case one has the
sharper estimate reg(a) ≤ (2d(a))2r−1

. For base fields K of characteristic 0,
this inequality is in fact true (cf. [2, (3.7)], [32], [33]). On the other hand,
examples due to E. Mayr and A. Meyer [62] show, that this latter bound is
“fairly close” to be sharp. More precisely, for each r ∈ N, there is a graded
ideal ar ⊆ C[x0, . . . ,xr] such that d(ar) = 4 and reg(ar) ≥ 22[(r−1)/10]

+ 1 (cf.
[2, (3.11)]).
(iv) In view of the above observations it seems natural to ask, whether in
Theorem (4.3) one might expect a mere “doubly exponential” bound on
reg(M). More precisely:

Are there constants a, b > 0 such that for each r ∈ N, each
s ∈ N, each polynomial ring K[x] = K[x0, . . . ,xr] and each graded

submodule M ⊆ K[x]⊕s we have reg(M) ≤ (asd(M))b
r
? •

Now, let X = Proj(⊕n≥0Rn = R) and F be as in the introduction. Let

F∨ := HomOX (F ,OX)

be the dual of F . Our next result says that, over projective spaces, the
”cohomology diagonal of a coherent sheaf bounds the regularity of the dual
sheaf”.

4.5. Theorem. Let r ∈ N0. Then, there is a polynomial Qr ∈ Q[t0, . . . , tr]
such that for each field K and each coherent sheaf of OPrK -modules F we
have

reg(F∨) ≤ Qr(h0
F (0), h1

F (−1), . . . , hrF (−r)) .

Proof: See [15, Sec. 3]. �
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4.6. Example and Problems. (i) For a locally free sheaf F ofOPrK -modules
(e.g. an algebraic vector bundle over PrK) Serre-duality gives hiF∨(n) =
hr−iF (−n− r − 1) for all i ∈ {0, . . . , r} and all n ∈ Z. Fix j ∈ {0, . . . , r − 1}
and let t ∈ N0. Consider the minimal combinatorial pattern

Pj,t := ({0} × N) ∪ ({j} × {k | −j − t ≤ k ≤ −j}) ∪ ({r} × Z<−t−r)
of width r. Then, there is an indecomposable algebraic vector bundle Fj,t of
rank ≤ r! such that P (Fj,t) = Pj,t (cf. (2.11) (i)). Consequently, P (F∨j,t) =
({0}×Z≥t)∪ ({r− j}× {k | j − r− 1 ≤ k ≤ j − r− 1 + t})∪ ({r}×Z<r−1).
In particular, we have reg(Fj,t) = 0 and hiFj,t(−i) = 0 for all i 6= j and
reg(F∨j,t) = t. This shows at the same time that the regularity of a coherent
sheaf of OPrK -modules F need not bound the regularity of F∨ and that
the full cohomology diagonal is a minimal upper bounding system for the
regularity on the class of all these sheaves.
(ii) In view of the previous observation one is lead to ask:

Which invariants of F bound the regularity of F∨? •
As a consequence of Theorem (4.5) one now gets that the “full cohomology
diagonal bounds the cohomological postulation numbers”. To formulate this
result, let us introduce the following notation.

4.7. Notation. Let C̃ denote the class of all pairs (X,F) in which X =
Proj(⊕n≥0Rn) is a projective scheme over a field R0 = K and F is a coherent
sheaf of OX -modules. For r ∈ N0 let C̃(r) denote the class of all pairs
(X,F) ∈ C̃ with dim(F)(= cd(F)) = r. Observe that in the notation of
(3.4) (i) and (3.6) we have C̃ ⊆ C and C̃(r) ⊆ C(r). •
Now, we are ready to formulate the announced bounding result.

4.8. Theorem. Let r ∈ N0. Then, there is a polynomial Tr ∈ Q[t0, . . . , tr]
such that for each pair (X,F) ∈ C̃(r) and each i ∈ {0, . . . , r} we have

νiF ≥ Tr(h0
F (0), h1

F (−1), . . . , hrF (−r)) .

Proof: See [15, Sec. 4] or [53]. �

As an interesting consequence of the previous result we get that “the full
cohomology diagonal numerically bounds cohomology”.

4.9. Corollary. Let i, r ∈ N0 and let h0, . . . , hr ∈ N0. Then, there are only
finitely many cohomological Hilbert functions hiF with (X,F) ∈ C̃(r) and

hjF (−j) = hj for j = 0, . . . , r.

Proof: See [15, Sec. 5] or [53]. �

4.10. Remark and Problems. (i) For r = 2, the conclusions of (4.8) and
(4.9) even hold on the class C(2), e.g. over arbitrary artinian base rings R0

(cf. [17, Sec. 4], (3.10) iv)).
(ii) The observation made in part (i) gives rise to the question:
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Do the results (4.8) and (4.9) hold for arbitrary r on the class C(r)? •

5. b-sheaves and Hilbert coefficients

A fundamental issue of algebraic geometry is the relation between the so
called Hilbert coefficients and the regularity of coherent sheaves – notably
for sheaves of ideals or for invertible sheaves. Results of this type are of
basic significance for the theory of Hilbert schemes and Picard schemes (cf.
[34], [40], [57], [58], [38], [51], [65]).

5.1. Reminder and Remark. (i) Let X = Proj(R = ⊕n≥0Rn) and F 6= 0
be as in the previous sections and assume in addition that the base ring R0 is
artinian. For i ∈ {0, . . . , cd(F) = dim(F)} let ei(F) ∈ Z be the i-th Hilbert
coefficient of F , so that the Hilbert-Serre polynomial of F is given by

χF (t) =
dim(F)∑
i=0

(−1)iei(F)
(

t + dim(F)− i
dim(F)− i

)
∈ Q[t] .

Keep in mind that e0(F) ∈ N and that

χF (n) =
dim(F)∑
i=0

(−1)ihiF (n) for all n ∈ Z .

Sometimes it is useful to introduce the invariants

ai(F) = (−1)dim(F)−iedim(F)−i(F), (i = 0, . . . ,dim(F)) ,

so that

χF (t) =
dim(F)∑
i=0

(
t + i

i

)
ai(F) .

(ii) Let K be an algebraically closed field and let r ∈ N. A fundamental result
of Mumford [65] says that the regularity reg(J ) of a coherent sheaf J ⊆
OPrK of ideals is bounded polynomially in terms of the Hilbert coefficients
e0(J ), . . . , er(J ) of J .
For each m ∈ N let Fm := O

P
1
K

(−m)⊕O
P

1
K

(m) , so that e0(Fm) = 2, e1(F1)
= 0 and reg(Fm) = m. This example shows that, even on the class of fully
decomposable algebraic vector bundles over PrK , regularity is not bounded
by the Hilbert coefficients. •

In spite of the failure just observed, there is an extension of Mumfords bound-
ing result mentionned in (5.1) (ii) to a larger class of sheaves. This extension
is due to S. Kleiman (s. [38, Exp. XIII]) and based on the notion of b-sheaf.
We recall this notion for the readers convenience.
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5.2. Definition and Remark. (i) LetX = Proj(R = ⊕n≥0Rn) and F be as
in the introduction. A sequence of global sections f1, . . . , fr ∈ H0(X,OX(1))
is said to be F-regular, if

Hi ∩AssX(F �H1∩···∩Hi−1) = ∅ for i = 1, . . . , r ,

where Hi ⊆ X is the subscheme defined by fi. It is equivalent to say, that
the natural homomorphisms of sheaves

fi : F �H1∩···∩Hi−1 (n) −→ F �H1∩···∩Hi−1 (n+ 1)

are injective for all i ∈ {1, . . . , r} and one (resp. all) n ∈ Z.

If R0 contains an infinite field, there are F-regular sequences f1, . . . , fr ∈
H0(X,OX(1)) of arbitrary length r.

(ii) Now, let X = Proj(R = ⊕n≥0Rn) and F be as above and assume, that
R0 is in addition artinian. Let r ∈ N0 and let b = (b0, . . . , br) ∈ Nr+1

0 . Then,
F is said to be a b-sheaf, if dim(F) ≤ r and

h0
F �H1∩···∩Hi (−1) ≤ bi for i = 0, . . . , r ,

where again Hj ⊆ X is the subscheme defined by fj . •

Then, Kleimans Main Theorem on b-sheaves says

5.3. Theorem. (cf. [38, Exp. XIII, Théorème 1.11]) Let r ∈ N0. Then,
there is a polynomial Ur ∈ Q[t0, . . . , tr] such that for each algebraically
closed field K, each projective scheme X over K and each coherent sheaf of
OX -modules which is a b = (b0, . . . , br)-sheaf of dimension r we have

reg(F) ≤ Ur(b0 − a0(F), . . . , br − ar(F)) . �

5.4. Remark and Problems. (i) Let X be a purely r-dimensional reduced
projective scheme of degree d over an algebraically closed field K. Then, on
use of Bertini, it follows easily that OX is a (0, . . . , 0, d)-sheaf. As the prop-
erty of being a b-sheaf is inherited by coherent subsheaves (cf. [38, Exp. XIII,
Prop. 1.6]) it follows from (5.3) that reg(J ) ≤ Ur(−a0(J ), . . . ,−ar−1(J ), d−
ar(J )) for each coherent sheaf of ideals J ⊆ OX . This clearly recovers the
bounding result of Mumford mentionnend in (5.1) (ii).

(ii) Let K be an algebraically closed field, let m1, . . . ,mt ∈ Z and let F ⊆
⊕ti=1OPrK (mi) be a coherent subsheaf. It follows easily from (5.3) that reg(F)
is polynomially bounded in terms of the Hilbert coefficients ei(F) of F and
the integers mj . In [21, Chap. 17] we proved an algebraic version of this, in
which K may be replaced by an arbitrary artinian ring.

(iii) Now, let X = Proj(R = ⊕n≥0Rn) and F as in (5.1) (i). Assume that
f1, . . . , fr ∈ H0(X,OX(1)) form an F-regular sequence. For j ∈ {0, . . . , r}
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let Hj ⊆ X denote the subscheme of X defined by fj . Then, it follows easily
by induction on k, that

hiF�H1∩···∩Hk
(n) ≤

k∑
j=0

(
k

j

)
hi+jF (n− j) ; (n ∈ Z, 0 ≤ k ≤ r) .

So, if dim(F) ≤ r and with bk :=
∑k

j=0

(
k
j

)
hjF (−j), (k = 0, . . . , r) it follows

that F(1) is a b = (b0, . . . , br)-sheaf.
Thus, if R0 contains an infinite field, for each coherent sheaf F of OX -
modules of dimension r with given cohomology diagonal the twisted sheaf
F(1) is a b-sheaf, where b = (b0, . . . , br) is defined as above. It is easy to see
that the converse of this does not hold:
If K is an algebraically closed field, one may choose a sequence (Jn)n∈N of
coherent sheaves of ideals Jn ⊆ OPrK such that limn→∞ reg(Jn) =∞. Then
clearly the set of cohomology diagonals {(hiJn(−1)(−i))

r
i=0 | n ∈ N} is un-

bounded by (3.2), whereas the sheaves (Jn(−1))(1) = Jn are all (0, . . . , 0, 1)-
sheaves (cf. part (i)).

(iv) For r ∈ N0 let C(r) be the class of all pairs (X,F) in which X is a
projective scheme over an algebraically closed field and F is a coherent sheaf
of OX -modules with dim(F) = r.
The observations of part (iii) make us ask the following question:

Let b = (b0, . . . , br) ∈ Nr+1
0 , (c0, . . . , cr) ∈ Nr+1

0 and let D be

the class of all pairs (X,F) ∈ C(r)
in which F is a b-sheaf and

for which |ei(F)| ≤ ci for i = 0, . . . , r. Is the set of cohomology
diagonals {(hiF(−1)(−i))

r
i=0 | (X,F) ∈ D} finite?

Obviously, the best answer to this would be given by polynomial upper
bounds for the numbers hiF(−1)(−i) = hiF (−i − 1) in terms of the numbers
bk and the Hilbert coefficients ej(F).
(v) In view of [38, Exp. XIII, Théorème (6.4), (6.7)] one also could ask the
following modified version of the previous question:

Let b, c be as in part (vi), let m ∈ N0 and let D′m resp. D′′m be

the classes of all pairs (X,F) ∈ C(r)
for which F(m) is generated

by global sections and F is a b-sheaf resp. |ei(F)| ≤ ci for
i = 0, . . . , r. Are the sets {(hiF(−1)(−i))

r
i=0 | (X,F) ∈ D′m}

and {(hiF(−1)(−i))
r
i=0 | (X,F) ∈ D′′m} finite? •

6. A few specific bounds

Now, we shall say a few words about the cohomological invariants of some
specific classes of pairs (X,F). We start with pairs (PrK ,J ) with r > 1,
where K is an algebraically closed field and J ⊆ OPrK is the sheaf of
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vanishing ideals of a projective variety Y ⊆ PrK , e.g. a closed reduced ir-
reducible subscheme. We always shall assume in this situation, that Y
is non-degeneratedly embedded, e.g. that it is contained in no hyperplane
P
r−1
K ⊆ PrK .

6.1. Reminder, Remark and Problem. (i) Keep the above hypotheses
and notations. The function h1

J : Z −→ N0 is called the Hartshorne-Rao
function of the variety Y ⊆ PrK . As Y is reduced and K is algebraically
closed, we have h1

J (n) = 0 for all n ≤ 0. Write ⊕n∈ZH0(PrK ,OPrK (n)) =
K[x0, . . . ,xr] = K[x], let I := ⊕n∈ZH0(PrK , J (n)) ⊆ K[x] be the homoge-
neous vanishing ideal of Y and let A := K[Y ] := K[x]/I be the homogeneous
coordinate ring of Y . As J = Ĩ, the Serre-Grothendieck correspondence
(1.16), (1.17) yields h1

J (n) = dimK(H2
K[x]+

(I)n) for all n ∈ Z. So, the
graded short exact sequence 0 −→ I −→ K[x] −→ A −→ 0 shows that
h1
J (n) = dimK(H1

A+
(A)n) for all n ∈ Z.

(ii) Keep the previous notations and hypotheses, and let us briefly recall
the geometric meaning of the numbers h1

J (n). First of all, let us recall that
h1
J (1) is the projection excess of Y ⊆ PrK , e.g. the largest number e ∈ N0

for which there is a non-degenerate projective variety Y ′ ⊆ P
r+e
K and a

projection π : Pr+eK \ Pe−1
K −→ P

r
K from a linear subspace Pe−1

K ⊆ Pr+eK (with
the convention that P−1

K = ∅) such that Pe−1
K ∩ Y ′ = ∅ and π induces an

isomorphism π �: Y ′
∼=−→Y .

For arbitrary n ∈ N let Y (n) ⊆ P(r+nr )−1

K the n-th Veronesean of Y and let

P
t(n)
K ⊆ P(r+nr )−1

K be the linear subspace spanned by Y (n). Then h1
J (n) is

nothing else than the projection excess of Y (n) ⊆ Pt(n)
K .

So here, the Hartshorne-Rao function has a description in purely geometric
terms.
(iii) The Hartshorne-Rao function of space curves Y ⊆ P3

K has found much
interest recently and here, very satisfactory results have been proved (cf. [64]
for example). In [20] the structure of the Hartshorne-Rao module H1(A) ∼=
⊕n∈ZH1(PrK ,J (n)) of a curve Y ⊆ PrK of degree r+2 is completely described.
The fact, that in this situation only 4 different Hartshorne-Rao functions
occur if r ≥ 4 allows a fairly good understanding of these curves. The ideas
of [20] have been used in [10] to study surfaces Y ⊆ PrK of degree r + 1.
But here, we have not been able to describe all occuring Hartshorne-Rao
functions. So, let us ask the following question:

Which are the possible Hartshorne-Rao functions of surfaces
Y ⊆ PrK of degree r + 1?

A related problem (open even in the surface case) is:
What is a sharp upper bound for the Hartshorne-Rao function
of a projective variety Y ⊆ PrK of degree ≤ r − dim(Y ) + 3? •
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6.2. Remark and Problems. (i) Let K be an algebraically closed field and
let Y ⊆ PrK be a closed subscheme, J ⊆ OPrK its sheaf of vanishing ideals.
The study of the regularity reg(Y ) := reg(J ) is an extremely active field
of algebraic geometry. One of the most appealing problems in this field is a
conjecture of Eisenbud-Goto [27] saying that

reg(Y ) ≤ deg(Y )− codim (Y ) + 1

whenever Y is reduced and irreducible. For smooth curves in P3
C

, the above
estimate corresponds to Castelnuovo’s classical result (cf. [25]). For curves
Y ⊆ PrK , the above inequality has been established by Gruson-Lazarsfeld-
Peskine [39]. For smooth surfaces and threefolds Y ⊆ PrK in characteristic
0, the stated inequality has been shown by Lazarsfeld [54] and Pinkham [69]
respectively by Ran [70].
(ii) Besides the proves of the above inequality a tremendeous amount of
upper bounds for the regularity of specific classes of projective schemes has
been established (s. [46], [67] , [78] for example). For investigations of the
same kind in some modified context see also [80] or [81]. The regularity
of projective schemes is of fundamental interest for computational algebraic
geometry (s. [2] for example) and thus related to Gröbner base techniques
(cf. [24], [26], [33], [46], [57], [81]).
(iii) For arbitrary 1-Buchsbaum surfaces in characteristic 0 the Eisenbud-
Goto inequality of part (i) has been established in [22]. The essential problem
was to establish this inequality for 1-Buchsbaum surfaces Y ⊆ PrK of degree
r+1. In [10], the Eisenbud-Goto inequality has been established in arbitrary
characteristic for a larger class of surfaces Y ⊆ PrK of degree r + 1, but not
for all of them. So we ask the following question – closely related to the
problem in (6.1) (iii):

Do all surfaces (resp. all projective varieties) Y ⊆ PrK of
degree r + 1 (resp. of degree ≤ r − dim(Y ) + 3) satisfy
the Eisenbud-Goto inequality? •

6.3. Remark and Problems. (i) Elencwaig and Forster [28] have shown
that all cohomological Hilbert functions hiE of an algebraic vector bundle
E over a complex projective space Pr

C
are bounded in terms of the first two

Chern numbers c1(E), c2(E) and the span σ(E) of the generic splitting type of
E . If E is in addition semistable, the Grauert-Mülich theorem gives bounds
on the functions hiE in terms of c1(E), c2(E) and rank(E), thus generalizing
a result of [41]. In [5] and [18] such bound of Elencwaig-Forster type are
studied over algebraically closed base fields K of arbitrary characteristic by
means of the method of linear systems of hyperplane sections.
(ii) In (2.11) we have asked already a few questions related to the cohomology
of algebraic vector bundles over a projective space. Remember, that for
a coherent sheaf F of OPrK -modules F with a given cohomology diagonal
only finitely many different cohomological Hilbert functions hiF may occur
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(cf. (4.9)). This makes us ask, under which conditions on the cohomology
diagonal all the occuring functions hiF with i < r are “left vanishing”:

Is there a non-trivial criterion on the full cohomology
diagonal (hiF(−i))

r
i=0 of a coherent sheaf of OPrK -modules

F which induces that F is a vector bundle? •

6.4. Remark and Problems. (i) One also can just study the cohomological
Hilbert functions hiOX , where X ⊆ PrK is a projective variety (e.g. a closed
reduced and irreducible subscheme of PrK) over the algebraically closed field
K. Bearing in mind the short exact sequence 0 −→ J −→ OPrK −→ OX −→
0 (in which J ⊆ OPrK is the sheaf of vanishing ideals of X) this essentially
comes up to study the cohomological Hilbert functions hiJ for i > 1, e.g.
different from the Hartshorne-Rao function. Using the method of linear
systems of hyperplane sections, some bounding results on these functions
are deduced in [5], [6] and [8].
(ii) Among the fundamental vanishing theorems for (local) cohomology groups
on may distinguish results of Hartshorne-Lichtenbaum type (cf. [21, Chap.
8] and [48] notably) which concern cohomology defined with respect to open
subsets of projective schemes and results of Kodaira type (cf. [35], [52],
[66]) which are closely related to the vanishing of the numbers hiOX (n) in
the range n < 0, i < dim(X), where X is a projective variety over an alge-
braically closed field K. We focus only on the second type of result. Here,
the situation considered in the geometric context actually is more general:
On consideres an ample invertible sheaf L of OX -modules and studies the
vanishing of the groups H i(X,L⊗n) for i < dim(X) and n < 0. Choosing
L = OX(1) one obtains vanishing statements for the numbers hiOX (n) in the
requested range. Let us recall the main result of [52] which says that the
above cohomology groups H i(X,L⊗n) vanish if X is smooth and K = C.
Let us also recall a vanishing result of Mumford [66], which says that the
groups H1(X,L⊗n) vanish for all n < 0 if X is normal of dimension > 1 and
if Char(K) = 0. In [66] it is also shown that this result fails if Char(K) > 0.
(iii) In positive characteristic one has at least some bounding results for the
dimensions h1(X,L⊗n) := dimK H

1(X,L⊗n). So, in [1] it is shown that with

e(X) :=
∑

p∈X,{p}={p}

dimK(H1
mX,p

(OX,p))

we have

e(X) ≤ h1(X,L⊗n) ≤ min{e(X), h1(X,OX) + n(h0(X,L)− 1)}
for all n < 0, if X is of dimension > 1 and has only finitely many non-
normal points. In [1], we actually consider a more general situation, with
the aim to prove a relative version of the mentionned bounding result: The
canonical morphism X −→ Spec(K) is replaced by a projective morphism
X −→ X0 = Spec(R0) with geometrically normal fibres (cf. [36]), where R0
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is a domain essentially of finite type over a perfect field. We have not been
able to prove similar bounds for higher cohomology groups. So let us ask
the following question:

Are there upper bounds of the above type for the numbers
hi(X,L⊗n) in the range n < 0, i < dim(X) if X is smooth?

(iv) One consequence of the bound mentionned in part (ii) is that
h1(X,OX(n)) = e(X) for all non-degenerate surfaces X ⊆ PrK with sectional
genus < r and having only finitely many non-normal points. In [11] we
have applied this fact in order to give a characteristic free approach to the
cohomological behaviour of non-degenerate surfaces X ⊆ P

r of degree ≤
2r − 2 and having only finitely many non-normal points. This leads to a
generalization of a corresponding result of Chern and Griffiths for smooth
complex projective surfaces. It seems natural to ask whether these results
may be generalized to amply polarized surfaces:

Let X be a projective surface with only finitely many non-normal
points and let L be an ample invertible sheaf with deg(L) ≤
2h0(X,L)− 4. Is it true that h1(X,L⊗n) = e(X) for all n < 0?

What is the nature of the morphism X −→ P
h0(X,L)−1
K induced

by L, if deg(L) = 2h0(X,L)− 4? •
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[31] FUMASOLI, S., Die Künnethrelation in abelschen Kategorien und Anwendung auf

die Idealtransformation, Diplomarbeit, University of Zurich (1999).
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[45] HERMANN, G., Über die Frage der endlich vielen Schritte in der Theorie der
Polynomideale, Math. Ann. 95 (1926) 736–788.

[46] HOA, L.T., TRUNG, N.V., On the Castelnuovo-Mumford regularity and the arith-
metic degree of monomial ideals, Math. Zeitschrift 229 (1998) 519–537.

[47] HUNEKE, C., Problems on local cohomology, Res. Notes in Math. 2 (1992) 93–108.
[48] HUNEKE, C., LYUBEZNIK, G., On the vanishing of local cohomology modules,

Invent. Math. 102 (1990) 73–93.
[49] HUNEKE, C., SHARP, R.Y., Bass numbers of local cohomology modules, Trans.

AMS 339 (1993) 765–779.
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[78] STÜCKRAD, J., VOGEL, W., Castelnuovo’s regularity and multiplicity, Math.
Ann. 281 (1988) 355–368.

[79] TRUNG, N.V., The Castelnuovo regularity of the Rees algebra and the associated
graded ring, Trans. AMS 350 (1998) 2813–2832.

[80] TRUNG, N.V., The largest non-vanishing degree of graded local cohomology mod-
ules, Journal of Algebra 215 (1999) 481–499.
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