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Abstract

In this paper we will prove saturation estimates for the adaptive hp-finite element
method for linear, second order partial differential equations. More specifically we will
consider a sequence of nested finite element discretizations where we allow for both, local
mesh refinement and locally increasing the polynomial order. We will prove that the
energy norm of the error on the finer level can be estimated by the sum of a contraction
of the old error and data oscillations. We will derive estimates of the contraction factor
which are explicit with respect to the local mesh width and the local polynomial de-
gree. In order to cover p-refinement of finite element spaces new polynomial projection
operators will be introduced and new polynomial inverse estimates will be derived.
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1 Introduction

In this paper, we will consider the discretization of linear, second order elliptic partial differ-
ential equations by finite elements. Nowadays, adaptive techniques based on a posteriori error
estimation have been established to set up a sequence of finite element approximations which
should converge towards the exact solution. The advantage compared to uniform mesh refine-
ment is that the finite element spaces are enriched from level to level in a problem oriented
way.
A posteriori error estimation and adaptivity are well established methodologies for the

numerical solution of partial differential equations by finite elements (cf. [2], [3], [22], [1], [4],
[19], [10], [14], [21], [7]).
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Some types of error estimators as, e.g., hierarchical error estimators (see, e.g., [5], [8], [6])
require explicitly or implicitly the saturation assumption which states that the error on the
refined mesh and/or with higher polynomial degree is strictly smaller than the error on the
previous mesh/polynomial degree. In the pioneering paper [11] the saturation assumption is
proved for the P1-finite element method for the Poisson problem in two spatial dimensions
under the assumption that the data oscillations are small. In [14] the convergence of adaptive
finite element methods (AFEM) for general (nonsymmetric) second order linear elliptic partial
differential equations is proved, where the term “adaptivity” is understood in the sense of
adaptive mesh refinement and the polynomial degree stays fixed. The theory in [14] also
generalizes the proof of the saturation property to quite general 2nd order elliptic problems
and estimate the error on the refined mesh by the error of the coarser mesh plus a data
oscillation term.
In this paper, we will focus on adaptive hp-refinement, i.e., the finite element space is

enriched by increasing locally the polynomial degree of the ansatz functions while we allow
also for conventional local h-refinement, where the elements of the finite element mesh are
geometrically subdivided. We will show (and quantify) that, for residual a posteriori error
estimation, the saturation property, i.e., the error contraction from level to level behaves like(
1− C

p5/2

)
provided the data oscillations are sufficiently well resolved. Hence, p-refinement

should be combined with h-refinement in order to guarantee that the numerical solution
converges towards the exact solution.
The paper is organised as follows. In Section 2 we will introduce the elliptic boundary

value problem and formulate appropriate assumptions to ensure the well-posedness of this
problem.
The hp-finite element method will be defined in Section 3 and standard assumptions on

mesh refinement, shape regularity, and the polynomial degree distribution will be introduced.
In Section 4 we will recall the definition of the residual a posteriori error estimator for

hp-finite elements and its reliability estimate.
In Section 5 we will introduce some polynomial projection operator which maps global

polynomials on triangle patches to piecewise polynomials of lower degree. This allows to lo-
calize projected residuals by multiplying the resulting piecewise polynomials with appropriate
bubble functions. We will investigate the stability constant of the projection operator while
its explicit dependence on the polynomial degree for p-refinement will be analysed numerically
in Appendix A.
The saturation estimate will be proved in Section 6.
In Appendix B we will derive polynomial inverse estimates containing those bubble func-

tions as weights which have been used in Section 6 to prove the saturation property.

Remark 1.1 The theory in [14] indicates how an adaptive finite element procedure should
be defined such that the sequence of finite element solutions converges. Note that the rate of
convergence for adaptive finite elements is investigated in, e.g., [7], [21], [20].

Besides the estimates derived for the saturation property, the convergence theory requires
a reduction of the data oscillations which, for h-refinement, is (essentially) related to the fact
that the local mesh width shrinks by a fixed factor for the marked elements. For p-refinement,
the analogue condition is that the hp-weight of the data oscillations term also shrinks by a
factor smaller than one. Due to the non-robust p-dependence of polynomial inverse estimates
this cannot be expected in a straightforward way. In order not to overload this paper we decided
to leave the convergence of an adaptive hp-finite element method to a forthcoming paper.
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2 Setting

Let Ω ⊂ R
d be a bounded Lipschitz domain. Consider the Dirichlet problem for given f ∈

L2 (Ω) :
− div (A∇u) + 〈b,∇u〉+ cu = f in Ω,

u = 0 on ∂Ω
(2.1)

with variational formulation: Find u ∈ H1
0 (Ω) such that

a (u, v) :=

∫

Ω

〈A∇u,∇v〉+ (〈b,∇u〉+ cu) v =

∫

Ω

fv =: F (v) ∀v ∈ H1
0 (Ω) . (2.2)

Assumption 2.1 The coefficients in (2.2) satisfy A ∈ C0,1
(
Ω,Rd×d

sym

)
, b ∈ C0,1

(
Ω,Rd

)
,

c ∈ L∞ (Ω), and

0 < α := inf
x∈Ω

inf
v∈Rd\{0}

〈Av, v〉
〈v, v〉 ≤ sup

x∈Ω
sup

v∈Rd\{0}

〈Av, v〉
〈v, v〉 := β < ∞

0 ≤ inf
x∈Ω

(
c (x)− 1

2
divb (x)

)
.

We set c∞ := ‖c‖L∞(Ω) and b∞ := max
{
‖b‖L∞(Ω,Rd) , ‖divb‖L∞(Ω)

}
. The energy norm is

denoted by
‖v‖PDE := a (v, v)1/2 ,

where Assumption 2.1 implies that ‖·‖PDE is a norm and Friedrichs inequality implies

‖v‖2PDE ≥
∫

Ω

〈A∇v,∇v〉 ≥ α ‖∇v‖2L2(Ω) ≥
α

cF
‖v‖2H1(Ω) , (2.3)

where cF denotes the Friedrichs constant. In fact, the norms ‖·‖PDE and ‖·‖H1(Ω) are equivalent
since also

‖v‖2PDE ≤ Ca ‖v‖2H1(Ω) with Ca :=
b∞
2

+ max {c∞, β} . (2.4)

For a subdomain ω ⊂ Ω we set

‖v‖2PDE,ω := aω (v, v) :=

∫

ω

(
〈A∇v,∇v〉+ 〈b,∇v〉 v + cv2

)
.

Remark 2.2 The constants in the estimates below possibly depend (continuously) on α, β, c∞,
and b∞ and might tend to infinity with increasing β, b∞, c∞, α−1. We suppress the dependence
in the notation.

Note that these conditions ensure that problem (2.2) is well posed and the coercivity
estimate holds trivially

a (v, v) = ‖v‖2PDE ∀v ∈ H1
0 (Ω) .

Assumption 2.1 implies the continuity of a (·, ·), i.e.,

a (u, v) ≤ CS ‖v‖PDE ‖v‖PDE ∀v ∈ H1
0 (Ω) (2.5)

with CS := 1 + cF
b∞
α
.
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3 Conforming hp-Finite Elements

Let Ω ⊂ R
2 be a polygonal domain and let T := {Ki : 1 ≤ i ≤ N} denote a conforming

simplicial finite element mesh. With each element K ∈ T we associate of polynomial degree
pK ∈ N≥1 which are collected into the polynomial degree vector p = (pK)K∈T . Then, we
define the conforming hp-finite element space for the mesh T with local polynomials of degree
pK by

SpT :=
{
u ∈ H1

0 (Ω) | ∀K ∈ T u|K ∈ PpK
}
. (3.1)

Here Pp denote the space of bivariate polynomials of maximal total degree p. For a subset
ω ⊂ Ω, we write Pp (ω) to indicate explicitly that we consider u ∈ Pp (ω) as a polynomial on
ω. Formally we define P−1 := {0}. We set

pT := max {pK : K ∈ T } .

By convention the triangles K ∈ T are open sets. The boundaries of the triangles K ∈ T
consist of one-dimensional edges which are collected in the set E . Furthermore, let EΩ :=
{E ∈ E | E ⊂ Ω}. The union SΩ :=

⋃
E∈EΩ

E forms the inner skeleton of the mesh T . For each
E ∈ E we fix one unit vector nE which is perpendicular to E. If E ⊂ ∂Ω, the orientation
is chosen such that nE points to the exterior of Ω. The E-piecewise constant vector field
n is given by n|E := nE. Finally we define the jump of some piecewise smooth function
g ∈ ∏

K∈T
H1 (K) across E ∈ EΩ by

[g]E (x) := lim
εց0

(g (x+ εnE)− g (x− εnE)) ∀x ∈
◦
E.

This defines the jump function [g]|E := [g]E for all E ∈ EΩ almost everywhere.
Let N 1

Ω denote the set of inner vertices of T . For z ∈ N 1
Ω, we denote by b

1
z ∈ S1

T the
canonical continuous, piecewise affine basis function. The volume star for the node z is
given by ωz := supp b1z and its measure is denoted by |ωz|. For z ∈ N 1

Ω, we set Ez :={
E ∈ E : E ⊂ SΩ ∩ ◦

ωz

}
and Tz := {K ∈ T : K ⊂ ωz}. Let VK denote the set of inner vertices

of K and let ωK :=
⋃

z∈VK
ωz.

We denote by ∇T the trianglewise gradient and by divT the trianglewise divergence op-
erator. Let hT denote the T -piecewise constant function with values hT |K := diamK for all
K ∈ T . Similarly we define hE : SΩ → R as the E-piecewise constant function hE |E := diamE
for all E ∈ EΩ. The maximal mesh width in T is defined by

hT ,max := max {diamK : K ∈ T } .

If T is clear from the context we write h short for hT ,max. The shape regularity of T is
described by the constant

ρT := max

{
diamK

diamBK

: K ∈ T
}
, (3.2)

where BK is the maximal inscribed ball in K. Since T contains finitely many simplices the
constant ρT is always bounded but becomes large if the simplices are degenerate, e.g., are
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flat or needle-shaped. The constants in the following estimates depend on the mesh via the
constant ρT — they are bounded for any fixed ρT but, possibly, become large for large ρT .
Concerning the polynomial degree distribution we assume throughout the paper that the

polynomial degrees of neighbouring elements are comparable1:

ρ−1T (pK + 1) ≤ pK′ + 1 ≤ ρT (pK + 1) ∀K,K ′ ∈ T with K ∩K ′ �= ∅. (3.3)

The finite element solution is defined by:

Find upT ∈ SpT such that a (upT , v) = F (v) ∀v ∈ SpT . (3.4)

In view of an adaptive solution process we generate a sequence Sℓ := SpℓTℓ , ℓ ∈ N0, of
finite element spaces, where we require that all meshes Tℓ are conforming and the constants
ρℓ corresponding to the shape regularity of the mesh Tℓ and the polynomial degree vector pℓ
are uniformly bounded from above by some positive constant ρ. We also assume that Tℓ+1 is
a refinement of Tℓ in the sense that for any K ∈ Tℓ there is a subset sons (K) ⊂ Tℓ+1 such that

K =
⋃

K′∈sons(K)

K ′.

To reduce technicalities we make the following assumption concerning the concrete refine-
ment method (cf. Figure 1). As usual for conforming h-refinement, there exists two types
of refinements. Some triangles are marked for refinement while this marking induces some
additional refinement of neighbouring triangles in order to avoid hanging nodes.

Assumption 3.1

a. A triangle K, which is marked for refinement, is regularly refined by connecting the
midpoint of the edges as well as the midpoint of the longest side with the opposite vertex
in K (cf. Fig. 1, Pic 1) so that the set sons (K) contains six new triangles.

b. To eliminate hanging nodes neighbouring triangles are refined by inserting a line L from
one hanging node to the opposite vertex and connecting the vertices of K with the mid-
point of L (cf. Fig. 1, Pic 2). If there is a further hanging node then this node is
connected also with the midpoint of L (cf. Fig. 1, Pic 3). If K contains three hang-
ing nodes or the shape regularity of the new triangles exceeds some threshold it will be
regularly refined.

c. For any triangle K ∈ Tℓ, one of the following conditions are satisfied (cf. Fig. 2):

i. K will be p-refined, i.e., K ∈ Tℓ+1 and the polynomial degree is raised by 1.

ii K will be h-refined, i.e., there exists a set of sons σ (K) ⊂ Tℓ+1 withK =
⋃

K′∈sons(K)

K ′

and at least one vertex of each K ′ lies in the interior of K. The polynomial degree
pK defines the polynomial degree on K ′ ∈ sons (K) as follows

pK′ :=





pK if K is regularly refined,

pK + 1 if




∃K̃ ∈ Tℓ : K ′ ∩ K̃ is a full edge of K̃

K̃ is p− refined
pK̃ ≥ pK


 ,

pK otherwise.

1We use here the same constant ρ as for the shape regularity to simplify the notation.
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Figure 1: Refinement patterns of a triangle which satisfies the interior node property. Second
row, from left to right: Pic. 1: Regular refinement. Pic. 2,3: Refinement patterns for the
elimination of hanging nodes. Third row: If two triangles K1, K2 share an edge E and they
will be both h-refined, then the common edge E must get an interior point xE.

  

p K

p K

p K

p K

p K

p K

p K

p K

p K

p K  + 1

p K

p K

p K

p K + 1

p K

p K

p K  + 1

p K

p K

p K

p K

p K

p K + 1

  

Figure 2: Definition of the polynomial degrees. From left to right: Pic1: regular refinement.
Pic 2: K is h-refined, K̃ is p-refined and pK̃ ≥ pK. Pic 3: K is h-refined, K̃ is p-refined and
pK̃ < pK . Pic 4: p-refinement.
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Assumption 3.1 implies the interior node property (cf. [14, Sec. 3.4]).

Definition 3.2 (interior node property) Any K ∈ Tℓ which will be regularly h-refined and
the three adjacent triangles T ′ ∈ Tℓ as well as their common sides contain a node of the finer
mesh Tℓ+1 in their interior and the resulting triangulation Tℓ+1 has no hanging nodes.

Remark 3.3 Let K1, K2 ∈ Tℓ denote two triangles which share an edge E and let pm := pKm,
m = 1, 2. The condition u ∈ H1

0 (Ω) in the definition of SpℓTℓ in (3.1) implies that for any
u ∈ Sℓ the one-dimensional polynomial degree of u along E satisfies

deg (u|E) ≤ pE := min {p1, p2} .

Notation 3.4 To reduce the number of indices we write uℓ short for upℓTℓ , hℓ short for hTℓ,
divℓ short for divTℓ, pℓ short for pTℓ, N 1

ℓ for the inner triangle vertices for the mesh Tℓ, etc.
The star ωz corresponds always to the triangulation Tℓ while we suppress this additional index
in the notation of ωz.

Definition 3.5 The saturation estimate for a sequence of finite element solutions (uℓ)ℓ is an
estimate of the form

‖uℓ+1 − u‖PDE ≤ κℓ ‖uℓ − u‖PDE

for some κℓ < 1 such that
∞∏

ℓ=1

κℓ = 0.

It was proved in [11] that the saturation estimate holds for the case of a bounded, two-
dimensional domain Ω with coefficients

A = I, b = 0 and c = 0, (3.5)

where I is the 2 × 2 unit matrix and the analysis was restricted to P1 finite elements with
h-refinement. It was proved that it is necessary and sufficient for the saturation estimate that
the data oscillations (which will be introduced in (6.5)) are controlled. Here, we generalize
this result to the setting described in Section 2 and also derive p-explicit estimates for the
contraction factor κℓ.

4 Residual A Posteriori Error Estimation

The Galerkin error is denoted by eℓ := u − uℓ. In the following, we will investigate under
which condition the saturation estimate of the form

‖eℓ+1‖PDE ≤ κℓ ‖eℓ‖PDE , (4.1)

hold for some κℓ ∈ ]0, 1[ depending only on the polynomial degree p and the shape-regularity
of the mesh but not on the mesh width.
For the proof of the saturation estimate, we will use tools from residual a posteriori error

estimation which we briefly recall: To obtain an a posteriori error estimate we obtain by
Galerkin’s orthogonality for every v ∈ Sℓ

‖eℓ‖2PDE = a (eℓ, eℓ − v) =

∫

Ω

res (uℓ) (eℓ − v) +

∫

SΩ

Res (uℓ) (eℓ − v) , (4.2)
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where the volume residual res : Sℓ → L2 (Ω) is given by

res (v) := f + divℓ (A∇v)− 〈b,∇v〉 − cv

and the edge residual Res : Sℓ → L2 (SΩ) is given by

Res (v) := −〈An, [∇v]〉 a.e. in SΩ.

By choosing v ∈ Sℓ as the Clément interpolation of eℓ and using a trace inequality for the last
term in (4.2), results in the classical residual a posteriori error estimation. In [15], [16] the
local and global residual a posteriori error estimator is defined by

η2K (v) :=

∥∥∥∥
hK
pK

res (v)

∥∥∥∥
2

L2(K)

+
∑

E⊂∂K∩Ω

∥∥∥∥∥

√
hE
2pK

Res (v)

∥∥∥∥∥

2

L2(E)

∀v ∈ Sℓ ∀K ∈ Tℓ. (4.3)

The global error estimator is given by

ηℓ (v) :=

√∑

K∈Tℓ
η2K (v).

Due to the finite overlap of the stars ωz, the error estimator (4.3) is equivalent to

ηstarℓ (v) :=

√∑

z∈N 1
ℓ

η2z (v) with η2z (v) :=

∥∥∥∥
hz
pz

res (v)

∥∥∥∥
2

L2(ωz)

+
∑

E∈Ez

∥∥∥∥∥

√
hz
pz

Res (v)

∥∥∥∥∥

2

L2(E)

(4.4)

and
pz := min {pK : K ⊂ ωz} and hz := max {hK : K ⊂ ωz} . (4.5)

Theorem 4.1 (Melenk, Wohlmuth) Let Ω ⊂ R
2 be a bounded Lipschitz domain. Let

a (·, ·) in (2.2) satisfy Assumption 2.1 and let f ∈ L2 (Ω). The solution of (2.2) is denoted by
u and its Galerkin approximation by uℓ (see (3.4)). There exists a constant Crel independent of
the local mesh width and the local polynomial degree but, possibly, depending on the constants
in Assumption 2.1 such that

‖u− uℓ‖PDE ≤ Crelηℓ (uℓ) ≤ Crelη
star
ℓ (uℓ) .

The proof of this theorem is a slight modification of [16, Theorem 3.6] and we include it
here for completeness.
Proof. The error u− uℓ can be estimated by using (4.2) and by setting w = eℓ− Ieℓ with

the hp-Clément interpolation operator I as in [16, Section 2.1]:

‖eℓ‖2PDE =

∫

Ω

w res (uℓ) +

∫

SΩ

wRes (uℓ) ≤ Crelηℓ (uℓ) ‖eℓ‖PDE

for all v ∈ Sℓ. Clearly we have

ηℓ (v) ≤ ηstarℓ (v) ≤ C♯ηℓ (v) ,

where C♯ depends only on the constant ρℓ in (3.2) and (3.3).
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5 Projection of Polynomials onto Piecewise Polynomi-

als

The proof of the saturation estimate is based on estimates of some projection of the volume
residual to the space of piecewise polynomials locally on stars ωz. In this section, we will
derive stability estimates for this projection.
We start with a result of a weighed L2 projection of global polynomials of maximal total

degree p to piecewise polynomials of lower degree. The setting is as follows.
Let z ∈ R2 and let Tz := {Ki : 1 ≤ i ≤ q} denote a triangle patch around z, i.e., Tz is a

set of (open) triangles which

• are pairwise disjoint,
• share z as a common vertex.
• For all 1 ≤ i ≤ q, the triangles Ki−1 and Ki share one common edge

2.

Let3 ωz := int

(
q⋃

i=1

Ki

)
and let S := ωz ∩

q⋃

i=1

∂Ki denote the inner mesh skeleton. We

denote by Pp (Tz) the space of piecewise polynomials, i.e.,
Pp (Tz) :=

{
f : ωz\S→ R | ∀1 ≤ i ≤ q; f |Ki

∈ Pp (Ki)
}
. (5.1)

Next, we will introduce weighted scalar products and associated norms. The weights are
defined triangle- and edge-wise and depend whether the triangle will be h-refined of p-refined.

Definition 5.1

a. p-refinement.

If K will be p-refined, then, the cubic weight function Φ
(3)
K and quadratic edge bubble

ΦE are given, on the reference element K̂ := conv
((

0
0

)
,
(
1
0

)
,
(
0
1

))
and on the reference

interval Ê := (0, 1), by

Φ
(3)

K̂
(x1, x2) = (1− x1 − x2)x1x2 and ΦÊ (x) = x (1− x) , (5.2)

while on K and E we set

Φ
(3)
K := Φ

(3)

K̂
◦ Λ−1K and ΦE := ΦÊ ◦ Λ−1E , (5.3)

where ΛK : K̂ → K and ΛE : Ê → E are affine pullbacks4.

b. h-refinement.

The edge bubble ΦE for h-refinement is the same as for p-refinement.

b1. Let K be regularly refined (cf. Figure 3). Then, Φ
(1)
K,K is the piecewise linear

function on the submesh sons (K) which has value 1 at xK and value 0 at all other
vertices of the refined mesh. Let E denote the edge as indicated in Figure 3 which
splits K into the triangles K1 and K2. Then Φ(2)

K is the product of the barycentric
coordinates for the two endpoints of E with respect to the two triangles K1 and K2.

2We use here the convention K0 := Kq. Clearly q ≥ 3 holds.
3For a subset ω ⊂ R2, we denote by int (ω) the open interior of ω.
4Note that the scalings compared to the scalings in [23, p.83] differ by fixed constants of order 1.
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Figure 3: Illustration for the notation of a regulary h-refined triangle K. The edge E = AMA

splits K into the two triangles K1 and K2.The subtriangle K
′
1 has vertices A,MC , xK while

the vertices of K ′
2 are A, xK ,MB.

b2. If K is non-regularly h-refined (cf. Figure 1, Pic. 2,3), then the weight function for

K is the piecewise linear bubble function Φ
(1)
K which interpolates Φ

(3)
K at the vertices

of the submesh sons (K).

The weight function for a triangle K is

ΦK :=





Φ
(3)
K if K will be p-refined,

Φ
(1)
K if K will be non-regularly h-refined,

Φ
(1)
K,K + Φ

(2)
K if K will be regularly h-refined.

(5.4)

For z ∈ N 1
Ω, the function Φz : ωz → R is given by

Φz|K := ΦK ∀K ∈ ωz (5.5)

and extended by zero to Ω.
These weight functions induce bilinear forms (·, ·)K and (·, ·)z via

(u, v)K :=

∫

K

ΦKuv and (u, v)z :=
∑

K⊂ωz
(u, v)K =

∫

ωz

Φzuv

and a corresponding norm ‖·‖z := (·, ·)1/2z .

Next we define a projection Πp
K : Pp (K) → Pp−1 (K) by

∫

K

ΦK (Πp
Kv)w =

∫

K

ΦKvw ∀w ∈ Pp−1 (K) , (5.6)

where the definition of ΦK is as in (5.4), i.e., depends on how K will be refined.
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Definition 5.2 For a triangle patch Tz, let pz be as in (4.5). The star-wise polynomial
projection Πz is applied to polynomials v ∈ Ppz−1 (ωz) and given by

(Πzv)|K :=





Φ
(3)
K Πpz−1

K v if K is p-refined,

Φ
(1)
K v if K is non-regularly h-refined,

Φ
(1)
K,Kv + ΦKΠpz−1

K v if K is regularly h-refined,

Theorem 5.3 Let p ≥ 1. For all u ∈ Pp (ωz), the condition

∑

K∈Tz

∫

K

Φ
(3)
K uw = 0 ∀w ∈ Pp−1 (Tz) . (5.7)

implies u = 0.

For a proof we refer to [13, Theorem 1.1]. A consequence of Theorem 5.3 is the following
corollary. To reduce technicalities we make an assumption on the minimal local polynomial
degree.

Assumption 5.4 For all ℓ and z ∈ N 1
ℓ it holds: If all K ⊂ ωz will be p-refined then pz ≥ 2

otherwise pz ≥ 1.

Corollary 5.5 Let Assumption 5.4 be valid. The projection Πz is injective.

Proof. If all triangles in ωz are p-refined, then the injectivity follows from Theorem 5.3.
If, at least, one triangle is h-refined we distinguish between two cases:

a. K is non-regularly h-refined. Then, the positivity of Φ
(1)
K implies (Πzv)|K = 0 =⇒ v =

0.

b. K is regularly h-refined. We use the notation as introduced in Figure 3. Note that

(Πzv)|K′

1∪K′

2
:=
(
Φ
(1)
K,K

(
v + Πpz−1

K v
))∣∣∣

K′

1∪K′

2

.

b1. If the degree of v satisfies deg v = pz−2, it holds Πpz−1
K v = v|K Then, Πzv|K′

1∪K′

2
=

2 Φ
(1)
K,Kv

∣∣∣
K′

1∪K′

2

. The positivity of Φ
(1)
K,K on K ′

1 ∪ K ′
2 together with the analytic

continuation principle, i.e., v|K′

1∪K′

2
= 0 =⇒ v = 0, imply the injectivity of Πz for

this case.

b2. If deg v = pz − 1, it holds v + Πpz−1
K v �= 0. The positivity of Φ

(1)
K,K again implies

(Πzv)|K′

1∪K′

2
�= 0.

Corollary 5.6 Let Assumption 5.4 be valid. For all z ∈ N 1
Ω, the estimates

inf
v∈Pp−1(ωz)\{0}

(v,Πzv)L2(ωz)

‖v‖2z
≥ cπ. (5.8)

c
∥∥Φ−1/2z Πzv

∥∥
L2(ωz)

≤ (v,Πzv)
1/2

L2(ωz)
≤ ‖v‖z ≤ ‖v‖L2(ωz) . (5.9)

hold. The constant 0 < cπ ≤ 1 only depends, possibly, on the polynomial degree p and the
shape regularity of the mesh.
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Proof. For the proof of (5.8), we distinguish between the following cases.
a) If all triangles in ωz are p-refined, estimate (5.8) for some constant cπ > 0 follows from

the injectivity of Πz via the compactness argument in [13, Theorem 6.4] and the equivalence
of norms on the finite dimensional space Ppz−1 (ωz).
b) At least one triangle in ωz is h-refined. Let K ⊂ ωz.

b1) K is non-regularly h-refined. Then, the positivity of Φ
(1)
K implies (v,Πzv)L2(K) =∥∥∥Φ1/2

K v
∥∥∥
2

L2(K)
> 0 for all v ∈ Ppz−1 (K) \ {0}.

b2) K is regularly h-refined. We use the notation as introduced in Figure 3. Then,

(v,Πzv)L2(K) =
(
v,Φ

(1)
K,Kv

)
L2(K)

+
(
v,ΦKΠpz−1

K v
)
L2(K)

=
(
v,Φ

(1)
K,Kv

)
L2(K)

+
(
Πpz−1
K v,ΦKΠpz−1

K v
)
L2(K)

=

∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKΠpz−1
K v

∥∥∥
2

L2(K)
≥
∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

.

Again, the positivity of Φ
(1)
K,K on K

′
1∪K ′

2 implies (v,Πzv)L2(K) > 0 for all v ∈ Ppz−1 (K) \ {0}.
For the estimate (5.9) we again consider the different refinement options separately. It is

easy to check that pointwise on K, we have ΦK ≤ 1 so that Φ2
K ≤ ΦK .

a) K is p-refined, i.e., ΦK := Φ
(3)
K . Estimate

(v,Πzv)L2(K) =

∫

K

ΦKvΠ
pz−1
K v ≤

∥∥∥
√

ΦKv
∥∥∥
2

L2(K)
(5.10a)

holds since Πpz−1
K is a projection. On the other hand,

(v,Πzv)L2(K) =

∫

K

ΦK

(
Πpz−1
K v

)2
=
∥∥∥Φ−1/2K Πzv

∥∥∥
2

L2(K)
. (5.11a)

b) K is non-regularly h-refined. Then,

(v,Πzv)L2(K) =
∥∥∥
√

ΦKv
∥∥∥
2

L2(K)
. (5.10b)

From (5.10b) we get

(v,Πzv)L2(K) =
∥∥∥Φ−1/2K ΦKv

∥∥∥
2

L2(K)
=
∥∥∥Φ−1/2K Πzv

∥∥∥
2

L2(K)
. (5.11b)

c) K is regularly h-refined. Then,

(v,Πzv)L2(K) =

∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKΠpz−1
K v

∥∥∥
2

L2(K)
≤
∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKv
∥∥∥
2

L2(K)

(5.10c)

≤ 2
∥∥∥
√

ΦKv
∥∥∥
2

L2(K)
.
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For the first estimate in (5.9) we use the pointwise estimate on K

(Πzv)
2 =

(
Φ(1)
K,Kv + ΦKΠpz−1

K v
)2

≤ 2

((
Φ
(1)
K,Kv

)2
+
(
ΦKΠpz−1

K v
)2)

≤ 2
(
Φ
(1)
K,K + ΦK

)(
Φ
(1)
K,Kv

2 + ΦK

(
Πpz−1
K v

)2)

≤ 4ΦK

(
Φ
(1)
K,Kv

2 + ΦK

(
Πpz−1
K v

)2)

to get

∫

K

Φ−1K (Πzv)
2 ≤ 4

(∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKΠpz−1
K v

∥∥∥
2

L2(K)

)
= 4 (v,Πzv)L2(K) . (5.11c)

The second estimate in (5.9) follows by summing the inequality (5.11c) over all K ⊂ ωz
while the third one is a consequence of ‖v‖z ≤ ‖v‖L2(ωz) since 0 ≤ Φz ≤ 1.
The first estimate in (5.9) also follows by summation over all K ⊂ ωz the inequalities

(5.11).

The derivation of a sharp positive lower bound for cπ seems to rather involved. Instead we
have performed numerical experiments (cf. Appendix A) to support the following conjecture.

Conjecture 5.7 The constant cπ is bounded from below by a constant c0 > 0 which only de-
pends on the shape regularity of the mesh but neither on the mesh width nor on the polynomial
degree p.

For z ∈ N 1
ℓ , we introduce the subspaces for K ∈ Tℓ (recall Notation 3.4)

Sℓ+1,K := {u ∈ Sℓ+1 | supp u ⊂ K} and Sℓ+1,z := {u ∈ Sℓ+1 | supp u ⊂ ωz} . (5.12)

Theorem 5.8 Let Assumption 3.1 and 5.4 be satisfied. For z ∈ N 1
ℓ , E ∈ Ez, and w ∈ Sℓ,

let JE (w) := 〈AnE, [∇w]E〉. Set p := pz (cf. (4.5)). For any v ∈ Pp−1 (ωz), there exists a
ϕℓ+1,z ∈ Sℓ+1,z such that

∑

E∈Ez

∫

E

JEb
1
z =

∑

E∈Ez

∫

E

JEϕℓ+1,z, (5.13a)

cπ ‖hℓv‖z ≤
∣∣∣∣
∫

ωz

v
(
b1z − ϕℓ+1,z

)∣∣∣∣ , (5.13b)

∥∥Φ−1/2z

(
b1z − ϕℓ+1,z

)∥∥
L2(ωz)

+ c2
hz
p

∥∥(b1z − ϕℓ+1,z

)∥∥
PDE,ωz

≤ C1hz. (5.13c)

The constant c2 > 0 only depends on α, β, b∞, c∞, and the shape-regularity of the mesh while
C1 is a number.

Proof. We make the ansatz
ϕℓ+1,z = b1z − ψℓ+1,z,

for some ψℓ+1,z with ψℓ+1,z|K ∈ Sℓ+1,K for all K ⊂ ωz. Hence ψℓ+1,z|K vanishes on all edges
and condition (5.13a) trivially is satisfied.
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Statement (5.13b) is trivial for v = 0 and we consider here v ∈ Pp−1 (ωz) \ {0} . Let

ψℓ+1,z = hz
Πzv

‖v‖z
and observe that ψℓ+1,z ∈ Sℓ+1,z. Hence, by Corollary 5.6 we obtain

∣∣∣∣
∫

ωz

v
(
b1z − ϕℓ+1,z

)∣∣∣∣ = hz

∣∣∣(v,Πzv)L2(ωz)

∣∣∣
‖v‖z

≥ cπhz ‖v‖z .

Finally, we consider estimate (5.13c) and get

∥∥Φ−1/2z

(
b1z − ϕℓ+1,z

)∥∥
L2(ωz)

= hz

∥∥∥Φ−1/2z Πzv
∥∥∥
L2(ωz)

‖v‖z
(5.9)

≤ hz
c

(v,Πzv)
1/2

L2(ωz)

‖v‖z
(5.9)

≤ C̃hz. (5.14)

For the H1-seminorm we get

∥∥∇
(
b1z − ϕℓ+1,z

)∥∥
L2(ωz)

= hz

∥∥∥∥∇
(

Πzv

‖v‖z

)∥∥∥∥
L2(ωz)

. (5.15)

We distinguish again three cases.
Case a. Let K ⊂ ωz be a triangle which will be p-refined. Hence, ΦK = Φ

(3)
K (cf.

Definition 5.1).
We apply Lemma B.3 to obtain

‖∇ (Πzv)‖2L2(K) ≤ C ′0
p2

h2z

∥∥∥Φ1/2
K Πpz−1

K v
∥∥∥
2

L2(K)
≤ C ′0

p2

h2z

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K)
. (5.16a)

The last inequality in (5.16a) is trivial for pK > p since (Πzv)|K = v, while, for pK = p, we
employ (5.10a) and (5.11a).

Case b. Let K ⊂ ωz be a triangle which is non-regularly h-refined. Hence, ΦK = Φ
(1)
K .

We introduce the function5 dK : K → R by

dK = dK̂ ◦ Λ−1K with dK̂ (x) := dist
(
x, ∂K̂

)
,

where ΛK is as in (5.3). Since both, Φ
(1)
K and dK are piecewise linear bubble functions with

maximal value O (1) in the interior it is easy to verify that the pointwise estimates hold

cdK ≤ Φ
(1)
K ≤ CdK

c ‖∇dK‖ ≤
∥∥∥∇Φ

(1)
K

∥∥∥ ≤ C ‖∇dK‖

}
a.e. (5.17)

with fixed constants 0 < c,C = O (1). Estimates (5.17) imply the pointwise estimate

1

2
‖∇ (vΦK)‖2 ≤ Φ2

K ‖∇v‖2 + ‖∇ΦK‖2 v2 ≤ C2
(
d2K ‖∇v‖2 + v2 ‖∇dK‖2

)
.

5The function dK differs from the function ΦK in [16, (27)] only by a scaling constant which is of order 1.
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Hence, we may use [16, (23) with δ = 1 and (22) with α = 0 and β = 1] to obtain

1

2
‖∇ (Πzv)‖2L2(K) =

1

2
‖∇ (vΦK)‖2L2(K) ≤

C2

h2K

(
p2
∥∥∥Φ1/2

K v
∥∥∥
2

L2(K)
+ ‖v‖2L2(K)

)
≤ C̃2 p

2

h2K

∥∥∥Φ1/2
K v

∥∥∥
2

L2(K)
.

(5.16b)
Case c. Let K ⊂ ωz be a triangle which is regularly h-refined. We employ the notation

as explained in Definition 5.1(b1); illustrated in Figure 3. It holds

∇ ((Πzv)|K) = ∇
(
Φ(1)
K,Kv + ΦKΠpz−1

K v
)

= ∇
(
Φ
(1)
K,K

(
v + Πpz−1

K v
))

+∇
(
Φ
(2)
K Πpz−1

K v
)
.

For the first term and the piecewise linear bubble Φ(1)
K,K we can argue as in Case b to obtain

∥∥∥∇
(
Φ
(1)
K,K

(
v + Πpz−1

K v
))∥∥∥

2

L2(K)
≤ C̃2 p

2

h2K

∥∥∥∥
√

Φ
(1)
K,K

(
v + Πpz−1

K v
)∥∥∥∥

2

L2(K)

, (5.18a)

while we employ Lemma B.4 for

∥∥∥∇
(
Φ(2)
K Πpz−1

K v
)∥∥∥

2

L2(K)
≤ Ĉ2 p

2

h2K

∥∥∥∥
√

Φ(1)
K,K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

. (5.18b)

Thus,

‖∇ ((Πzv)|K)‖2L2(K) ≤ 2

(∥∥∥∇
(
Φ
(1)
K,K

(
v + Πpz−1

K v
))∥∥∥

2

L2(K)
+
∥∥∥∇
(
Φ
(2)
K Πpz−1

K v
)∥∥∥

2

L2(K)

)

(5.18)

≤ 2
(
C̃2 + Ĉ2

) p2

h2K

(∥∥∥∥
√

Φ
(1)
K,K

(
v + Πpz−1

K v
)∥∥∥∥

2

L2(K)

+

∥∥∥∥
√

Φ
(2)
K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

)

≤ 4
(
C̃2 + Ĉ2

) p2

h2K

(∥∥∥∥
√

Φ(1)
K,Kv

∥∥∥∥
2

L2(K)

+

∥∥∥∥
√

Φ(1)
K,KΠpz−1

K v

∥∥∥∥
2

L2(K)

+

∥∥∥∥
√

Φ(2)
K

(
Πpz−1
K v

)∥∥∥∥
2

L2(K)

)

= 4
(
C̃2 + Ĉ2

) p2

h2K

(∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKΠpz−1
K v

∥∥∥
2

L2(K)

)

(5.16a)

≤ 4
(
C̃2 + Ĉ2

) p2

h2K

(∥∥∥∥
√

Φ
(1)
K,Kv

∥∥∥∥
2

L2(K)

+
∥∥∥
√

ΦKv
∥∥∥
2

L2(K)

)

≤ 8
(
C̃2 + Ĉ2

) p2

h2K

∥∥∥
√

ΦKv
∥∥∥
2

L2(K)
. (5.16c)

The combination of (5.16) with (5.15) leads to

‖∇ϕℓ+1,z‖L2(ωz) ≤ C̃0p.

15



6 The Saturation Property

Note that the Pythagoras theorem

‖eℓ‖2PDE = ‖eℓ+1‖2PDE + ‖uℓ − uℓ+1‖2PDE

only holds for symmetric bilinear forms, i.e., b = 0 in (2.2). For non-symmetric bilinear
forms one can prove a quasi-orthogonality and we follow here [14, Proof of Lemma 2.1.]. One
ingredient in the proof is an Aubin-Nitsche argument (see, e.g., [9]) which we recall here. For
0 < s ≤ 1, we say that the adjoint problem

For given g ∈ L2 (Ω) find ψg ∈ H1
0 (Ω) such that a (v, ψg) :=

∫

Ω

gv ∀v ∈ H1
0 (Ω)

is H1+s (Ω)-regular if, for any right-hand side g ∈ L2 (Ω), the solution ψg is in H
1+s (Ω) and

there exists a constant Cs independent of g ∈ L2 (Ω) such that

‖ψg‖H1+s(Ω) ≤ Cs ‖g‖L2(Ω) .

We introduce the adjoint approximation property for a subspace S ⊂ H1
0 (Ω) by

η (S) := sup
g∈L2(Ω)\{0}

inf
v∈S

‖ψg − v‖PDE

‖g‖L2(Ω)
.

In our context, we obtain, e.g., from [9] the estimate

‖eℓ+1‖L2(Ω) ≤ CSη (Sℓ+1) ‖eℓ+1‖PDE .

If the adjoint problem is H1+s (Ω)-regular, standard approximation results for finite elements
lead to

η (Sℓ) ≤ Ca sup
g∈L2(Ω)\{0}

inf
v∈Sℓ

‖ψg − v‖H1(Ω)

‖g‖L2(Ω)
≤ CaCapproxh

s
ℓ sup
g∈L2(Ω)\{0}

‖ψg‖H1+s(Ω)

‖g‖L2(Ω)
≤ CaCapproxCsh

s
ℓ,

where Capprox only depends on the shape regularity of the mesh. Hence,

‖eℓ+1‖L2(Ω) ≤ Cdualh
s
ℓ+1 ‖eℓ+1‖PDE with Cdual := CSCaCapproxCs. (6.1)

Lemma 6.1 Let Assumption 2.1 be satisfied and let the adjoint problem be H1+s (Ω) regular
for some 0 < s ≤ 1. Then, there exists some C⋆ > 0 depending only on α, β, b∞, c∞, and the
shape regularity of the mesh such that, for any finite element mesh Tℓ+1 with maximal mesh
width hℓ+1 < C−s⋆ , the quasi-orthogonality

‖eℓ+1‖2PDE ≤ Λ2
ℓ+1 ‖eℓ‖2PDE − ‖uℓ+1 − uℓ‖2PDE with Λ2

ℓ+1 :=
1

1− C⋆hsℓ+1

(6.2)

holds.
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The proof is adapted from [14, Lem. 4.1] and included here for completeness.
Proof. We set εℓ := uℓ+1 − uℓ. It is easy to conclude from Galerkin’s orthogonality that

‖eℓ‖2PDE = ‖eℓ+1‖2PDE + ‖εℓ‖2PDE + a (εℓ, eℓ+1)

holds. Then, integration by parts yields

a (εℓ, eℓ+1) = a (eℓ+1, εℓ) +

∫

Ω

(〈b,∇εℓ〉 eℓ+1 − 〈b,∇eℓ+1〉 εℓ)

=

∫

Ω

(2 〈b,∇εℓ〉+ (divb) εℓ) eℓ+1.

Hence,

‖eℓ+1‖2PDE = ‖eℓ‖2PDE − ‖εℓ‖2PDE −
∫

Ω

(2 〈b,∇εℓ〉+ (divb) εℓ) eℓ+1. (6.3)

The integral can be estimated by Young’s inequality and estimate (6.1)

−
∫

Ω

(2 〈b,∇εℓ〉+ (divb) εℓ) eℓ+1 ≤ δ ‖eℓ+1‖2L2(Ω) +
(3b∞)2

2δ
‖εℓ‖2H1(Ω)

(2.3)

≤ δ ‖eℓ+1‖2L2(Ω) +
9b2∞cF
2δα

‖εℓ‖2PDE

≤ δC2
dualh

2s
ℓ+1 ‖eℓ+1‖2PDE +

9b2∞cF
2δα

‖εℓ‖2PDE .

Inserting this into (6.3) leads to

(
1− δC2

dualh
2s
ℓ+1

)
‖eℓ+1‖2PDE ≤ ‖eℓ‖2PDE −

(
1− 9b2∞cF

2δα

)
‖εℓ‖2PDE .

We choose δ such that both parenthesis have the same value and obtain

‖eℓ+1‖2PDE ≤ ‖eℓ‖2PDE

1− C⋆hsℓ+1

− ‖εℓ‖2PDE with C⋆ := 3Cdualb∞

√
cF
2α

.

Let the mesh width hℓ+1 of Tℓ+1 satisfy h
s
ℓ+1 < C−1⋆ . Then the assertion holds with Λ2

ℓ+1 as in
(6.2).
The proof of the saturation estimate requires conditions on the data oscillations. First,

we will introduce some edge bubble for triangles with a common edge. For E ∈ EΩ, let
K1, K2 ∈ Tℓ denote the triangles which share E as the common edge.
Case a) Both, K1, K2 will be p-refined.

In this case, let ϕ
(2)
K1,K2

∈ Sℓ+1 be the quadratic edge bubble, i.e., the product of the
barycentric coordinates in K1, K2 for the endpoints of E.
Case b) Both K1, K2 will be h-refined
Let xE ∈ E denote the interior vertex on the edge E (cf. Figure 1) and let K ∈ {K1,K2}

be an adjacent triangle with inner vertex xK. Let K
′ := conv {xE, xK, A} and K ′′ :=

conv {xE, B, xK} with A,B denoting the endpoints of E. Then, the piecewise affine edge

bubble ϕ
(1)
K1,K2

, restricted to K, has value 1 at xE and vanishes at all other vertices of triangles

in sons (K1). Assumption 3.1 ensures that ϕ
(1)
K1,K2

∈ Sℓ+1.
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Case c) K1 will be p-refined and K2 will be h-refined. Let pm := pKm, m = 1, 2 and define
pE := min {p1, p2}. Let K ′ ∈ sons (K2) be the triangle which contains E as an edge. Then,

ϕ
(2)
K1,K′

∣∣∣
K1

(resp. ϕ
(2)
K1,K′

∣∣∣
K′

) is the product of the barycentric coordinates in K1 (resp. K
′) for

the endpoints of E and zero outside K1 ∪K ′.
Case d) K1 will be h-refined and K2 will be p-refined. Then ϕ

(2)
K′,K2

is defined as in Case
c by interchanging the roles of K1 and K2.

We define

ϕE :=





ϕ
(2)
K1,K2

in Case a,

ϕ
(1)
K1,K2

in Case b,

ϕ
(2)
K1,K′ in Case c,

ϕ
(2)
K′,K2

in Case d.

(6.4)

For g ∈ L2 (Ω), we define averages gz ∈ Ppz−1 (ωz) (with pz as in (4.5)) as the L
2 (ωz)-

orthogonal projection onto Ppz−1 (ωz).
The data oscillations are defined by

osc (v) :=

√∑

z∈N 1
ℓ

osc2z (v) with oscz (v) :=

∥∥∥∥
hz
pz

Φ1/2
osc,z (res (v)− resz (v))

∥∥∥∥
L2(ωz)

(6.5)

with

Φosc,z :=
p5z
c2π

Φz + p3zΦE,z + 1 and ΦE,z :=
∑

E∈Ez
ϕE.

and resz (v) is a shorthand for (res (v))z.

Theorem 6.2 Let Assumptions 2.1, 3.1, and 5.4 be satisfied. We assume that the adjoint
problem is H1+s (Ω) regular for some 0 < s ≤ 1. Further we assume that the maximal mesh
width of Tℓ+1 satisfies hℓ+1 < C−s⋆ with C⋆ as in Lemma 6.1. Let cπ be as in (5.13b) and Crel

as in (4.1).
There exists a constant C2 > 0 depending on α, β, b∞, c∞, and ρ but independent of hℓ, pℓ,

u, and f such that for any 0 ≤ µ ≤ 1 and any C3 > C2Crel the condition

osc (uℓ) ≤
µ

C3

‖eℓ‖PDE (6.6)

implies the error reduction

‖eℓ+1‖PDE ≤ κℓ ‖eℓ‖PDE with κℓ :=

√√√√√


Λ2

ℓ+1 −
(

cπ

C3p
5/2
ℓ

)2

(1− µ2)


.

Remark 6.3 The condition on C3 implies that κℓ > 0. From the definition of Λ2
ℓ+1 = 1

1−C⋆hsℓ+1
with hℓ+1 < (2C⋆)

−1/s as in (6.2) it follows that the condition

hℓ+1 ≤ H (pℓ) := C4

(
cπ

p
5/2
ℓ

)2/s

with C4 :=

(
1

C⋆ (2C3Crel)
2

)1/s
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implies

Λ2
ℓ+1 −

(
cπ

C3Crelp
5/2
ℓ

)2

≤ 1− εℓ with εℓ :=
1

2

(
cπ

C3Crelp
5/2
ℓ

)2

and, for 0 ≤ µ < 1/
√
2, it holds

κℓ ≤

√√√√1−
(

cπ

C3Crelp
5/2
ℓ

)2(
1

2
− µ2

)
< 1.

Proof of Theorem 6.2. Since uℓ+1−uℓ ∈ Sℓ+1, the quasi-orthogonality (cf. Lemma 6.1)
implies

Λ2
ℓ+1 ‖eℓ‖2PDE ≥ ‖eℓ+1‖2PDE + ‖uℓ+1 − uℓ‖2PDE (6.7)

with Λ2
ℓ+1 as in (6.2). Hence it is sufficient to prove a lower bound for ‖uℓ+1 − uℓ‖2PDE in terms

of ‖eℓ‖2PDE and data oscillations. The residual a posteriori error estimate can be recast in the
form of stars (cf. (4.4)): By a triangle inequality we obtain

‖eℓ‖2PDE ≤ 2C2
rel

∑

z∈N1
ℓ



∥∥∥∥
hz
pz

resz (uℓ)

∥∥∥∥
2

L2(ωz)

+
∑

E∈Ez

∥∥∥∥∥

√
hz
pz

Res (uℓ)

∥∥∥∥∥

2

L2(E)

(6.8)

+

∥∥∥∥
hz
pz

(resz (uℓ)− res (uℓ))

∥∥∥∥
2

L2(ωz)

)
.

Hence, it is sufficient to bound the jumps and projected volume residuals from above by
‖uℓ+1 − uℓ‖PDE and to control the last term by the oscillation condition (6.6).
We start with the jump term and employ the same arguments as in [14, Proof of Lemma

3.1, Step 2]. Since uℓ is continuous, [∇uℓ]E is parallel to nE, i.e., [∇uℓ]E = jEnE and jE =[
∂uℓ
∂nE

]
E
∈ PpE−1 with pE := min {p1, p2} (cf. Remark 3.3). The continuity of the coefficient

matrix A implies
JE := 〈AnE, [∇uℓ]E〉 = 〈AnE,nE〉 jE =: aEjE, (6.9)

where α ≤ aE (x) ≤ β (cf. Assumption 2.1). Consequently

‖√ϕEJE‖2L2(E) =

∫

E

αE (jEϕE) JE ≤ β

∫

E

(jEϕE) JE

‖√ϕEJE‖2L2(E) =

∫

E

α2
Ej

2
EϕE ≥ α2

∫

E

j2EϕE
[16, Lem. 2.4]

≥ c
α2

p2E
‖jE‖2L2(E) ≥ c

(
α

βpE

)2

‖JE‖2L2(E)

(6.10)

Thus ∥∥∥
√
hEϕEJE

∥∥∥
2

L2(E)
≤ βhE

∫

E

〈An, [∇uℓ]E〉 (jEϕE) .

Next we extend jE to ωE. For K ⊂ ωE, let ΛK, ΛE be chosen such that (cf. (5.3)) ΛK |x2=0 =

ΛE holds. Let Ẑ (x) := (x1, 0)
⊺ for x = (x1, x2) ∈ R2. We define j⋆E : ωE → R trianglewise by

j⋆E|K := jE ◦ ΛK ◦ Ẑ ◦ Λ−1K . (6.11)
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Note that j⋆E is a polynomial of degree pE−1 on both triangles which share E as the common
edge. The construction of ϕE along the definition of the polynomial degrees on the refined
mesh (cf. Assumption 3.1) imply ϕEj

⋆
E ∈ Sℓ+1. By using partial integration and the fact that

uℓ+1 is the Galerkin solution we get for any E ⊂ ωz

1

β

∥∥∥
√
hEϕEJE

∥∥∥
2

L2(E)
≤ hE

∫

E

〈An, [∇uℓ]E〉 (jEϕE) (6.12a)

= hE

∫

ωE

〈A∇uℓ,∇ (j⋆EϕE)〉+ divℓ (A∇ℓuℓ) (j
⋆
EϕE) (6.12b)

= hE

{
a (uℓ − uℓ+1, j

⋆
EϕE) +

∫

ωE

resz (uℓ) (j
⋆
EϕE) + (res (uℓ)− resz (uℓ)) (j

⋆
EϕE)

}
.

(6.12c)

From Lemma B.5 and Corollary B.6 we conclude by an affine pullback to the reference element
that

‖√ϕEj⋆E‖L2(ωE) ≤ C5

∥∥∥
√
hEϕEjE

∥∥∥
L2(E)

(6.9)

≤ C5

α

∥∥∥
√
hEϕEJE

∥∥∥
L2(E)

, (6.13a)

‖ϕEj⋆E‖PDE ≤ C6pE

∥∥∥∥
√
ϕE
hE

JE

∥∥∥∥
L2(E)

, (6.13b)

where C5, C6 only depend on α, β, b∞, c∞ and the shape regularity of the mesh. The combi-
nation of (6.12) with (6.13) and (6.10) leads to

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥
L2(E)

≤ C7p
3/2
E

{
‖uℓ − uℓ+1‖PDE,ωE

+

∥∥∥∥
hE
pE

ϕ
1/2
E resz (uℓ)

∥∥∥∥
L2(ωE)

(6.14)

+

∥∥∥∥
hE
pE

ϕ
1/2
E (res (uℓ)− resz (uℓ))

∥∥∥∥
L2(ωE)

}

with C7 depending only on α, β, b∞, c∞, and ρ. A summation of the squared inequality (6.14)
over all E ∈ Ez yields

∑

E∈Ez

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)

≤ C8p
3
z

{
‖uℓ − uℓ+1‖2PDE,ωz

+

∥∥∥∥
hz
pz

Φ
1/2
E,z resz (uℓ)

∥∥∥∥
2

L2(ωz)

+ (6.15)

∥∥∥∥
hz
pz

Φ
1/2
E,z (res (uℓ)− resz (uℓ))

∥∥∥∥
2

L2(ωz)

}
.

Hence, we are left with the estimate of the volume residual.
Partial integration and the fact that uℓ solves the Galerkin equations leads to

∑

E∈Ez

∫

E

JEb
1
z =

∫

ωz

〈
A∇uℓ,∇b1z

〉
+ divℓ (A∇ℓuℓ) b

1
z =

∫

ωz

res (uℓ) b
1
z

=

∫

ωz

resz (uℓ) b
1
z +

∫

ωz

(res (uℓ)− resz (uℓ)) b
1
z. (6.16)
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We choose ϕℓ+1,z as in Theorem 5.8 such that (5.13) holds and obtain as in (6.12c)

∑

E∈Ez

∫

E

JEϕℓ+1,z =
∑

E∈Ez

∫

E

〈An, [∇uℓ]E〉ϕℓ+1,z =
∑

K⊂ωz

∫

K

〈A∇uℓ,∇ϕℓ+1,z〉+ divℓ (A∇uℓ)ϕℓ+1,z

= a (uℓ − uℓ+1, ϕℓ+1,z) +

∫

ωz

resz (uℓ)ϕℓ+1,z +

∫

ωz

(res (uℓ)− resz (uℓ))ϕℓ+1,z.

(6.17)

The combination of (6.16) and (6.17) with (5.13a) allows to eliminate the jump residuals
and we obtain
∫

ωz

resz (uℓ)
(
b1z − ϕℓ+1,z

)
= a

(
uℓ − uℓ+1, ϕℓ+1,z − b1z

)
+

∫

ωz

(res (uℓ)− resz (uℓ))
(
ϕℓ+1,z − b1z

)
.

(6.18)
Recall the definition of ϕℓ+1,z as in the proof of Theorem 5.8

b1z − ϕℓ+1,z = vz with vz := hz
Πzv

‖v‖z
and we apply this definition for v = resz (uℓ). From this and (5.13b) we obtain a bound of the
averaged volume residual on stars

cπ
∥∥Φ1/2

z hz resz (uℓ)
∥∥
L2(ωz)

≤ CS ‖uℓ − uℓ+1‖PDE,ωz

∥∥ϕℓ+1,z − b1z
∥∥
PDE,ωz

(6.19)

+
∥∥hzΦ1/2

z (res (uℓ)− resz (uℓ))
∥∥
L2(ωz)

h−1z

(∥∥Φ−1/2z

(
ϕℓ+1,z − b1z

)∥∥
L2(ωz)

)
.

Hence, from (5.13) we conclude

cπ
∥∥Φ1/2

z hz resz (uℓ)
∥∥
L2(ωz)

≤ CS
C1

c2
pz ‖uℓ − uℓ+1‖PDE,ωz

+2C1

∥∥hzΦ1/2
z (res (uℓ)− resz (uℓ))

∥∥
L2(ωz)

.

(6.20a)
Note that6

∥∥Φ1/2
z hz resz (uℓ)

∥∥
L2(ωz)

≥ c

p1−sz

∥∥∥∥
hz
pz

Φ
s/2
E,z resz (uℓ)

∥∥∥∥
L2(ωz)

for s ∈ {0, 1} . (6.20b)

6For s = 1 this follows from Corollary B.7. For s = 0, we conclude from [23, Prop. 3.37, Cor. 3.40, Prop.
3.46] that ∥∥∥∥

√
Φ
(3)
K v

∥∥∥∥
L2(K)

≥ c

p2
‖v‖L2(K) ∀v ∈ Pp (K) , p ≥ 1

holds and from [16, (22) with α = 0 and β = 1]
∥∥∥∥
√
Φ
(1)
K v

∥∥∥∥
L2(K)

≥ c

p
‖v‖L2(K) ∀v ∈ Pp (K) , p ≥ 1

for some constant c > 0 which is independent of p and hK . Finally, for Φ
(1)
K,K +Φ

(2)
K we employ

Φ
(3)
K ≤ Φ(1)K,K +Φ

(2)
K pointwise

to obtain
∥∥∥∥
√
Φ
(1)
K,K +Φ

(2)
K v

∥∥∥∥
L2(K)

≥
∥∥∥∥
√
Φ
(3)
K v

∥∥∥∥
L2(K)

≥ c

p2
‖v‖L2(K) ∀v ∈ Pp (K) , p ≥ 1.
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The first and second term in the right-hand side in (6.8) can be estimated by means of (6.14)
and (6.20)

‖eℓ‖2PDE ≤ 2C2
relC

∑

z∈N 1
ℓ

(
p5z
c2π

‖uℓ − uℓ+1‖2PDE,ωz
+

∥∥∥∥
hz
pz

Φ1/2
osc,z (res (uℓ)− resz (uℓ))

∥∥∥∥
2

L2(ωz)

)

(6.21)
where, again, C9 only depends on α, β, b∞, c∞, and ρ.
Taking into account the finite overlap of the supports ωz we end up with

‖eℓ‖2PDE ≤ (C2Crel)
2

(
p5ℓ
c2π

‖uℓ − uℓ+1‖2PDE + osc2 (uℓ)

)
, (6.22)

where C2 only depends on α, β, b∞, c∞, and ρ.
Choose C3 > C2Crel. The assumption that the data oscillations are small, i.e., osc (uℓ) ≤

µ
C3
, implies for any 0 ≤ µ < 1

∑

z∈N 1
ℓ

‖uℓ − uℓ+1‖2PDE,ωz
≥ c2π

C2
3p

5
ℓ

(
1− µ2

)
‖eℓ‖2PDE .

The combination with (6.7) finally leads to

‖eℓ+1‖2PDE ≤ Λ2
ℓ+1 ‖eℓ‖2PDE − ‖uℓ+1 − uℓ‖2PDE ≤


Λ2

ℓ+1 −
(

cπ

C3p
5/2
ℓ

)2 (
1− µ2

)

 ‖eℓ‖2PDE

and this is the assertion.

Corollary 6.4 Let the assumptions of Theorem 6.2 be satisfied. Condition (6.6) follows from
the computable condition

osc (uℓ) ≤ µ̂
cπ

C10p
5/2
ℓ


∑

E∈EΩ

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)




1/2

(6.23)

for sufficiently small 0 < µ̂ ≤ µ̂0, where µ̂0 depends on α, β, b∞, c∞, µ, C3, and ρ.

Proof. Observe that (6.12c) and (6.17) remain true if uℓ+1 is replaced by u. Hence, we
may also replace uℓ+1 by u in (6.14) and (6.20). By doing so, the combination of (6.14) and
(6.20) yields after summing the squared norms over all z ∈ N 1

ℓ the estimate

∑

E∈EΩ

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)




1/2

≤ C10

(
p
5/2
ℓ

cπ
‖eℓ‖PDE + osc (uℓ)

)
,

where C10 only depends α, β, b∞, c∞, and ρ. The condition (6.23) implies (since 0 ≤ cπ ≤ 1
(cf. Cor. 5.6))

osc (uℓ) ≤ µ̂
1

C10

cπ

p
5/2
ℓ


∑

E∈EΩ

∥∥∥∥∥

√
hE
pE

Res (uℓ)

∥∥∥∥∥

2

L2(E)




1/2

≤ µ̂ ‖eℓ‖PDE + µ̂ osc (uℓ) .

For sufficiently small 0 < µ̂ ≤ µ̂0, this implies (6.6).
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Corollary 6.5 Assume that the sequence of meshes and polynomial distributions are chosen
such that the oscillation condition (6.6) holds on every level ℓ. Let Conjecture 5.7 be satisfied.
Then, the contraction of the error on level ℓ is given by

ζℓ :=
ℓ∏

k=1

(
1− C

p
5/2
k

)

for a constant 0 < C ≤ 1 which is independent of the polynomial degrees, i.e.,

‖eℓ‖PDE ≤ ζℓ ‖e0‖PDE .

Recall that pk denotes the maximal polynomial degree at level k which is monotonously in-
creasing. Define the sequence (ni)i∈N recursively by n0 = 0 and, for i = 1, 2, . . ., by the
condition

pk = i for ni−1 + 1 ≤ k ≤ ni,

i.e., the maximal polynomial degree stays fix for δi := ni − ni−1 consecutive levels.

1. If, for some k0 > 0, it holds nk = ∞ for all k ≥ k0, then ζℓ ≤
(
1− Cp

−5/2
k0

)ℓ
→ 0 as

ℓ → ∞.

2. If,
∑∞

k=1 p
−5/2
k = +∞, then limℓ→∞ ζℓ = 0.

3. If δi ≥ ci3/2, then limℓ→∞ ζℓ = 0 as ℓ → ∞, while limk→∞ pk = ∞.

Proof. The first statement is trivial. For the second statement we employ for s > 0 and
C < 1

ζℓ ≤ exp

(
ℓ∑

k=1

log

(
1− C

psk

))
.

Note that, for 0 < ε < 1,
log (1− ε) ≤ −ε

so that

ζℓ ≤ exp

(
−C

ℓ∑

k=1

1

psk

)
.

From this, the second statement follows. For the third one we use

lim
ℓ→∞

ζℓ ≤ exp

(
−C

∞∑

i=1

δi
is

)
.

Hence, for δi ≥ cis−1 we have limℓ→∞ ζℓ = 0.

A Lower Bound for the Constant cπ. Numerical Exper-

iments

In this appendix we will investigate the dependence of the stability constant cπ of the polyno-
mial projection operator Πz (cf. (5.8)) on the polynomial degree p. We consider mainly two
cases: pure p-refinement and h-refinement.
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A.1 p-Refinement

First, we will rewrite the definition of cπ as an algebraic eigenvalue problem which we will
solve numerically. We have performed numerical experiments for the two-dimensional setting
on stars as described in this paper but also considered the one-dimensional case where ωz
consists of the two intervals which have z as a common endpoint.

A.1.1 Equivalent Formulation

The goal is to investigate the dependence of the constant

cπ := inf
v∈Pp(ωz)\{0}

(v,Πp
zv)L2(ωz)∥∥∥Φ1/2

z v
∥∥∥
2

L2(ωz)

(A.1)

on the polynomial degree p numerically. Let d denote the spatial dimension. Let ωz consists
of q ≥ d simplices Ki, 1 ≤ i ≤ q.
By employing a global affine map we can pull back the star ωz to a reference configuration,

where K1 = K̂ is the unit simplex, on the expense that cπ in (A.1) depends additionally on

the shape regularity of K1. Let χi : K̂ → Ki denote affine bijection with the special choice
χ1 = id. Then,

∥∥Φ1/2
z v

∥∥2
L2(ωz)

=

q∑

i=1

|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂K v̂
2
i ,

where v̂i = v ◦χi and ΦK̂ denotes the product of barycentric coordinates. Let (Pn)n∈ιp denote
a basis of Pp (ωz) for a suitable index set ιp. We write

v =

p∑

n=0

vnPn (A.2)

and obtain ∥∥Φ1/2
z v

∥∥2
L2(ωz)

= v⊺M(p)v,

where

(
M

(p)
i

)
n,m

:=
|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂K (Pn ◦ χi) (Pm ◦ χi) , n,m ∈ ιp and M(p) :=

q∑

i=1

M
(p)
i .

For the special case that Φ̂K̂ is the polynomial bubble function we can choose an orthogonal

basis for Pp

(
K̂
)
(cf. [18], [12]) so thatM

(p)
1 is a diagonal matrix.

In order to invest (A.1) we introduce a matrix representation of Πp
zv with v as in (A.2) via

the ansatz
Πp
zv|Ki =

∑

m∈ιp
wm,iPm ◦ χ−1i

The coefficients wi = (wm,i)m∈ιp are determined via

wi =
(
M

(p−1)
1

)−1
Wiv with (Wi)m,n :=

|Ki|∣∣∣K̂
∣∣∣

∫

K̂

Φ̂KPn ◦ χiPm for m ∈ ιp−1, n ∈ ιp.
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Hence,

(v,Πp
zv)z = v⊺Bv with B :=

q∑

i=1

W
⊺

i

(
M

(p−1)
1,1

)−1
Wi

so that the constant cπ has the algebraic representation

cπ = inf
v∈Rιp

v⊺Bv

v⊺M(p)v
.

Hence, cπ is the smallest eigenvalue of
(
M(p)

)−1/2
B
(
M(p)

)−1/2
.

A.1.2 The One-Dimensional Case

In this case we have K̂ = [−1, 1] and Pn are the Jacobi polynomials P
(1,1)
n which are defined

as follows

P (α,β)
n (x) =

(2)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;
1− x

2

)
,

where (·)n is Pochhammer’s symbol and 2F1 is the terminating Gauss hypergeometric function

2F1

(−n, b
c

; z

)
=

n∑

k=0

(−n)k(b)k
(c)kk!

zk.

We consider K1 = K̂ and K2 = [1, 1 + δ] for some δ > 0. Note thatM
(p)
1 in this case is given

by

M
(p)
1 = diag

[
8

(n+ 1)

(2n+ 3) (n+ 2)
: n ∈ ιp

]
.

The mapping χ2 is defined by

χ2 (x̂) =
1− x̂

2
+

1 + x̂

2
(1 + δ) .

To observe the behaviour of cπ with respect to p and δ, we consider three different cases:
δ = 0.5, δ = 1, δ = 2, δ = 4. The following observations can be obtained from Figure 4:

• cπ converges to a positive constant with respect to p,

• cπ is properly bounded from below,

• cπ is decreasing as δ goes to zero.

A.1.3 The Two-Dimensional Case

Now we consider Jacobi bivariate polynomials as our basis functions on the reference triangle,
which are defined as follows:

P 1,1,1
n,k (x, y) := (1− x)kP

(1,3+2k)
n−k (1− 2x)P

(1,1)
k

(
1− 2y

1− x

)
,
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Figure 4: Performance of cπ versus p for the one-dimensional case.

which is a polynomial of degree n in x and y.
We study different triangulations. Again we assume that K1 is the unit simplex and the

common point of all triangles in the patch is (0, 0). The meshes consist of the following nodes
and are illustrated in Figure 5:

v1 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)},
v2 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−2, 0), (−2,−1), (−1,−3), (0,−3), (1,−1)},
v3 = {(0, 0), (1, 0), (0, 1), (−1, 1), (−3, 0), (−4,−2), (−3,−3), (−1,−4), (0,−4), (1,−2)},

(A.3)

v4 = {(0, 0), (1, 0), (0, 1), (−1,−1)},
v5 = {(0, 0), (1, 0), (0, 1), (−0.1,−0.2)},
v6 = {(0, 0), (1, 0), (0, 1), (−4, 3), (−4, 0), (−4,−4), (0,−4), (1,−0.1)}.

Figure 6 shows the behaviour of cπ with respect to p in each case and we summarize the
main observations.

a. In the first three cases, i.e., the number of triangles (at least six) is varying while
the shape regularity constant is always moderately bounded, the lower bound of cπ
is approximately 1. It also shows that the constant cπ is robust with respect to the
elongation of the triangles which is in analogy to the one-dimensional observation (δ
increases).
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Figure 5: Illustration of the geometric configuations described in (A.3).

b. If we consider the minimal number (three) elements, again, with moderate shape regular
constant, we still get a proper lower bound. Recall that the dimension of the image space
Pp−1 (Tz) (in (5.1)) increases with the number of triangles so that we expect that the
constant cπ becomes larger with increasing number of triangles.

c. On the other hand, if we consider the minimal configuration with only three triangles and
large shape regularity constant (the area of the triangles is highly varying) as described
by v5, then the constant cπ becomes smaller as expected.

d. Configuration v6 supports the statement that, if the space Pp−1 (Tz) is large enough, then
a few tiny elements can be still harmless. We can see that these numerical examples
confirm our hypothesis that cπ depends on the shape regularity of our meshes but does
not depend on p.

A.2 h-Refinement

In this section we study the similar problem as in previous section but with h-refinement
instead of p-refinement. In other word, we apply one level of regular h-refinement on each
mesh and observe the behaviour of the constant cπ with respect to p on the refined mesh. To
be able to make a comparison between the results, we take the same patches as in previous
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Figure 6: Performance of cπ versus p for the two-dimensional cases.

section. From the definition of Φz for this case we have

cπ = inf
v∈Pp−1(K)

∑
K⊂ωz

∫
K
vΦ(1)

K,Kv +
∫
K
v
(
Φ(1)
K,K + Φ(2)

K

)∏p−1
K v

∑
K⊂ωz

∫
K
v
(
Φ
(1)
K,K + Φ

(2)
K

)
v

,

where Φ
(1)
K,K and Φ

(2)
K are piecewise linear and quadratic functions defined as in (5.4). Figure 7

shows the behaviour of cπ for the same patches with respect to p. It supports our hypothesis
and shows the similar behaviour as in p-version. Also here we observe that cπ does not depend
on p, but it only depends on the shape regularity of the mesh.

B Polynomial Inverse Estimates

We start with a one-dimensional estimate.

Lemma B.1 For a < b, let Φ[a,b] (x) = (x−a)(b−x)
(b−a)2 denote the one-dimensional bubble function.

Then, ∥∥∥
(
Φ[a,b]v

)′∥∥∥
L2([a,b])

≤ C
p + 1

b− a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

∀v ∈ Pp ([a, b]) .

Proof. We first prove the result for (a, b) = (0, 1). Observe that
∥∥∥Φ′[0,1]

∥∥∥
L∞([0,1])

= 1 so

that Leibniz rule gives us

∥∥∥
(
Φ[0,1]v

)′∥∥∥
L2([0,1])

≤
∥∥Φ′[0,1]v

∥∥
L2([0,1])

+
∥∥Φ[0,1]v

′∥∥
L2([0,1])

≤ ‖v‖L2([0,1]) +
∥∥Φ[0,1]v

′∥∥
L2([0,1])

.

28



3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

 

 

v
1

v
2

v
3

v
4

v
5

v
6

Figure 7: Behaviour of cπ versus p with one level of h-refinement

For the first term, we apply [16, Lemma 2.4 with α = 0 and β = 1] and for the second
term [16, Lemma 2.4 with δ = 1] to obtain

∥∥∥
(
Φ[0,1]v

)′∥∥∥
L2([0,1])

≤ C (p+ 1)
∥∥∥Φ1/2

[0,1]v
∥∥∥
L2([0,1])

. (B.1)

The result then follows via a scaling argument.

Corollary B.2 Let a < b and Φ[a,b] be as in Lemma B.1. Let Ψ[a,b] ∈ W 1,∞ ([a, b]) be a
function with the properties

∣∣Ψ[a,b]

∣∣ ≤ C11Φ[a,b] pointwise and
∥∥Ψ′

[a,b]

∥∥
L∞([a,b])

≤ C12

b− a
.

Then
∥∥∥
(
Ψ[a,b]v

)′∥∥∥
L2([a,b])

≤ C (C11 + C12)
p+ 1

b− a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

∀v ∈ Pp ([a, b]) .

Proof. Leibniz’ rule gives us
∥∥∥
(
Ψ[a,b]v

)′∥∥∥
L2([a,b])

≤
∥∥Ψ′

[a,b]v
∥∥
L2([a,b])

+
∥∥Ψ[a,b]v

′∥∥
L2([a,b])

≤ C12

b− a
‖v‖L2([a,b]) + C11

∥∥Φ[a,b]v
′∥∥
L2([a,b])

≤ C (C11 + C12)
p+ 1

b− a

∥∥∥Φ1/2
[a,b]v

∥∥∥
L2([a,b])

,

where the last inequality follows as (B.1).
The two-dimensional version is formulated next. The estimates are similar to those in [23,

Sec. 3.6] but differ by powers of the weight functions in the right-hand side and also by the
choice of the weight function in Lemma B.4. The proofs follow the lines of the proofs in [23,
Prop. 3.46] and also employs tools from [17, Appendix D].
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Lemma B.3 Let K denote a triangle and let ΦK be the cubic bubble function as defined in
(5.3). Then, it holds for all v ∈ Pp (K)

‖∇ (ΦKv)‖L2(K) ≤ C
p+ 1

hK

∥∥∥Φ1/2
K v

∥∥∥
L2(K)

.

Proof. Let K = K̂ be the two-dimensional reference triangle. Note that

ΦK̂ (x1, x2) = Φ[0,1−x1] (x2) (1− x1) Φ[0,1] (x1)

with Φ[a,b] as in Lemma B.1. First, we consider the derivative with respect to x2 and obtain

∥∥∂2
(
ΦK̂v

)∥∥2
L2(K̂) =

∫ 1

0

(∫ 1−x1

0

(
∂2
(
ΦK̂ (x1, x2) v (x1, x2)

))2
dx2

)
dx1

=

∫ 1

0

Φ2
[0,1] (x1) (1− x1)

2

(∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

)
dx1.

We then get

(1− x1)
2

∫ 1−x1

0

(
∂

∂x2

(
Φ[0,1−x1] (x2) v (x1, x2)

))2

dx2

= (1− x1)
2
∥∥∥
(
Φ[0,1−x1]v (x1, ·)

)′∥∥∥
2

L2(0,1−x1)
Lem. B.1

≤ C (p+ 1)2
∥∥∥Φ1/2

[0,1−x1]v (x1, ·)
∥∥∥
2

L2(0,1−x1)
.

Since Φ2
[0,1] (x1)Φ[0,1−x1] (x2) ≤ ΦK̂ (x1, x2) we end up with

∥∥∂2
(
ΦK̂v

)∥∥2
L2(K̂) ≤ C (p+ 1)2

∫ 1

0

∫ 1−x1

0

Φ2
[0,1] (x1) Φ[0,1−x1] (x2) v

2 (x1, x2) dx2dx1

≤ C (p+ 1)2
∥∥∥Φ1/2

K̂
v
∥∥∥
2

L2(K̂)
.

Since K̂, ψK̂, and the integral are invariant under permutations of the coordinates, the same
estimate holds for the other partial derivatives.

Lemma B.4 Let K be regularly h-refined and let Φ
(2)
K be as explained in Definition 5.1 and

illustrated in Figure 3. Then, it holds for all v ∈ Pp (K)

∥∥∥∇
(
Φ
(2)
K v
)∥∥∥

L2(K)
≤ C

p + 1

hK

∥∥∥∥
√

Φ
(2)
K v

∥∥∥∥
L2(K)

.

Proof. Via an affine transformation it suffices to prove the result for the reference element
K1 = K̂ and K2 = conv

{(
0
0

)
,
(
0
1

)
,
(−1

0

)}
. The common edge is E = {0} × (0, 1). Let K =

K1 ∪K2. The edge bubble Φ
(2)
K (cf. (5.4)) is given by

Φ
(2)
K (x1, x2) = x2 (1− |x1| − x2) .
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We first consider the derivative with respect to x2. Let

Φ[0,1−|x1|] (x2) =
x2 (1− |x1| − x2)

(1− |x1|)2
,

i.e., Φ[0,1−|x1|] is the one-dimensional bubble function for [0, 1− |x1|] and satisfies Φ
(2)
K =

(1− |x1|)2 Φ[0,1−|x1|]. Hence,

∥∥∥∂2
(
Φ
(2)
K v
)∥∥∥

2

L2(K)
=

∫ 1

−1
(1− |x1|)4

∫ 1−|x1|

0

(
∂2
(
Φ[0,1−|x1|] (x2) v (x1, x2)

))2
dx2dx1

Lem. B.1
≤ C (p+ 1)2

∫ 1

−1
(1− |x1|)2

∫ 1−|x1|

0

Φ[0,1−|x1|] (x2) v
2 (x1, x2) dx2dx1

= C (p+ 1)2
∫

K

Φ
(2)
K v2. (B.2)

Next, we will estimate the derivative with respect to x1. We split the triangle into the two
regions

D1 :=

{(
x1
x2

)
∈ K : x2 ≤

1

2

}
and D2 := conv

{(
1/2
1/2

)
,
(
0
1

)
,
(−1/2

1/2

)}
.

In addition, we will need

D3 := conv
{(

0
0

)
,
(
1/2
1/2

)
,
(
0
1

)
,
(−1/2

1/2

)}
.

On D1 we obtain

∥∥∥∂1
(
Φ
(2)
K v
)∥∥∥

2

L2(D1)
≤
∫ 1/2

0

x22 (1− x2)
2

∫ 1−x2

x2−1

(
∂1

(
1− |x1| − x2

1− x2
v (x1, x2)

))2

dx1dx2

Lem. B.2
≤ C (p+ 1)2

∫ 1/2

0

∫ 1−x2

x2−1

x2
1− x2

Φ
(2)
K (x1, x2) v

2 (x1, x2) dx1dx2

≤ C (p+ 1)2
∥∥∥∥
√

Φ(2)
K v

∥∥∥∥
2

L2(D1)

, (B.3)

since x2/ (1− x2) ≤ 1 on D1.
On D2, we observe that

1

2

∥∥∥∂1
(
Φ
(2)
K v
)∥∥∥

2

L2(D2)
≤
∥∥∥v∂1Φ(2)

K

∥∥∥
2

L2(D2)
+
∥∥∥Φ(2)

K ∂1v
∥∥∥
2

L2(D2)
. (B.4)

Let d : D3 → R be defined by d (x1, x2) = c3 dist ((x1, x2)
⊺ , ∂D3) where the scaling c3 is chosen

such that d interpolates Φ
(2)
K at the vertices of the two triangles Km∩D3, m = 1, 2. Note that

d ≤ Φ
(2)
K ≤ 1 pointwise in D3 and Φ

(2)
K ≤ 2d pointwise in D2.

Since
∥∥∥∂1Φ(2)

K

∥∥∥
L∞(K)

≤ C we obtain for the first term in (B.4) as in (5.16b)

∥∥∥v∂1Φ(2)
K

∥∥∥
L2(D2)

≤ C ‖v‖L2(D2)
≤ C ‖v‖L2(D3) ≤ C (p+ 1)

∥∥d1/2v
∥∥
L2(D3)

≤ C (p+ 1)

∥∥∥∥
√

Φ
(2)
K v

∥∥∥∥
L2(D3)

.

(B.5a)
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Figure 8: Reference triangle K̂ which is split into K̂1 and K̂2. The shaded regions illustrate
the integration domains in the splitting of the integral in (B.8).

For the second term in (B.4) we get, again, as in (5.16b)

∥∥∥Φ(2)
K ∂1v

∥∥∥
L2(D2)

≤ 2 ‖d∂1v‖L2(D3)

[16, (23) with δ = 1]

≤ C (p+ 1)
∥∥∥
√
dv
∥∥∥
L2(D3)

≤ C (p+ 1)

∥∥∥∥
√

Φ
(2)
K v

∥∥∥∥
L2(D3)

.

(B.5b)
The combination of (B.4) and (B.5) yields

∥∥∥∂1
(
Φ
(2)
K v
)∥∥∥

2

L2(D2)
≤ C (p+ 1)2

∥∥∥∥
√

Φ
(2)
K v

∥∥∥∥
2

L2(D3)

. (B.6)

The combination of (B.2), (B.3), and (B.6) yields the assertion.
The following lemma is illustrated in Figure 8.

Lemma B.5 Let K̂ be the reference triangle split into K̂1 = conv
((

0
0

)
,
(
a
0

)
,
(
0
1

))
and K̂2 =

conv
((

a
0

)
,
(
1
0

)
,
(
0
1

))
for some a ∈ ]0, 1[. Let ϕlin

E denote the continuous, piecewise linear function

which has value 1 at
(
a
0

)
and vanishes at ∂K̂\E1 with E1 = [0, 1] × {0}. Then, for any

polynomial v ∈ Pp which is constant with respect to x2 it holds
∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(K̂)

≤ C

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(E1)

,

∥∥∇
(
ϕlin
E v
)∥∥

L2(K̂) ≤ C (p+ 1)

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
L2(E1)

.

Proof. We prove this lemma only for a = 1/2 to reduce technicalities. The arguments
apply verbatim for the general case. The function ϕlin

E and its partial derivatives are given by

ϕlin
E (x1, x2) =

{
2x1 (x1, x2) ∈ K̂1,

2 (1− x1 − x2) (x1, x2) ∈ K̂2,
∂2ϕ

lin
E (x1, x2) =

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2,

∂1ϕ
lin
E (x1, x2) =

{
2 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

Since v ∈ Pp is constant with respect to x2 we write, with a slight abuse of notation, v (x1, x2) =
v (x1). Hence,

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2(K̂)
=

∫ 1

0

v2 (x1)

(∫ 1−x1

0

ϕlin
E (x1, x2) dx2

)
dx1.
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The result of the inner integration is

r (x1) :=

∫ 1−x1

0

ϕlin
E (x1, x2) dx2 =

{
2
(∫ 1−2x1

0
x1dx2 +

∫ 1−x1
1−2x1 (1− x1 − x2) dx2

)

2
∫ 1−x1
0

(1− x1 − x2) dx2

=

{
x1 (2− 3x1) x1 ≤ 1/2,

(1− x1)
2 x1 > 1/2.

Since r ≤ ϕlin
E (·, 0) pointwise on [0, 1], the first assertion follows.

Next, we investigate the derivative with respect to x2. It holds

∂2
(
ϕlin
E v
)
= v∂2ϕ

lin
E = v ×

{
0 (x1, x2) ∈ K̂1,

−2 (x1, x2) ∈ K̂2.

Thus,

∫

K̂

(
∂2
(
ϕlin
E v
))2

=

∫

K̂

(
v∂2ϕ

lin
E

)2 ≤ 4

∫

K̂

v2 ≤ 4

∫ 1

0

v2

[16, Lemma 2.4 with α = 0 and β = 1]

≤ 4 (p + 1)2
∫ 1

0

Φ[0,1]v
2 ≤ 4C (p+ 1)2

∫ 1

0

ϕlin
E v

2.

(B.7)

For the derivative with respect to x1, we get

q (x1, x2) := ∂1
(
ϕlin
E (x1, x2) v (x1)

)
= 2

{
(x1v (x1))

′ in K̂1,

(1− x1 − x2) v
′ (x1)− v (x1) in K̂2.

The function q is on K̂1 and on K̂2, an affine function with respect to x2. We split the integral
into

∫ 1

0

∫ 1−x1

0

. . . =

∫ 1/2

0

∫ 1−2x1

0

. . .+

∫ 1/2

0

∫ 1−x1

1−2x1
. . .+

∫ 1

1/2

∫ 1−x1

0

=: W1 +W2 +W3 (B.8)

and obtain for the summands

W1 = 4

∫ 1/2

0

(1− 2x1)
(
(x1v (x1))

′)2 dx1 ≤
∫ 1/2

0

(
(2x1v (x1))

′)2 dx1

≤
∫ 1

0

((
ϕlin
E (x1, 0) v (x1)

)′)2
dx1

Cor. B.2
≤ C (p+ 1)2

∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.
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For W2 and W3 we use the fact that the Simpson rule is exact for quadratic polynomials and
(B.7) to obtain

W2 = 4

∫ 1/2

0

∫ 1−x1

1−2x1
((1− x1 − x2) v

′ (x1)− v (x1))
2
dx2dx1

=
2

3

∫ 1/2

0

x1





x1v′ (x1)− v (x1)︸ ︷︷ ︸

=(x1v(x1))
′−2v(x1)




2

+ 4



x1
2
v′ (x1)− v (x1)

︸ ︷︷ ︸
(x1v(x1))

′

2
− 3
2
v(x1)




2

+ v2 (x1)


 dx1

≤ 2

3

∫ 1/2

0

x1
(
4
(
(x1v (x1))

′)2 + 27v2 (x1)
)
dx1

≤ 4

3

∫ 1

0

(((
ϕlin
E (x1, 0) v (x1)

)′)2
)
dx1 + 9 ‖v‖2L2([0,1])

Cor. B.2

≤ C (p+ 1)2
∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.

Finally, for W3 we obtain

W3 = 4

∫ 1

1/2

∫ 1−x1

0

((1− x1 − x2) v
′ (x1)− v (x1))

2
dx2dx1

= 4

∫ 1

1/2

1− x1
6





(1− x1) v

′ (x1)− v (x1)︸ ︷︷ ︸
((1−x1)v(x1))′




2

+ 4




(
1− x1

2

)
v′ (x1)− v (x1)

︸ ︷︷ ︸
1
2(((1−x1)v(x1))

′−v(x1))




2

+ v2 (x1)



dx1

4

∫ 1

1/2

1− x1
6

(
3
(
((1− x1) v (x1))

′)2 + 9v (x1)
)
dx1

≤ 1

12

∫ 1

1/2

3
(
(2 (1− x1) v (x1))

′)2 + 36v2 (x1) dx1 ≤
1

4

∫ 1

0

((
ϕlin
E (x1) v (x1)

)′)2
dx1 + 3 ‖v‖2L2[0,1]

Cor. B.2

≤ C (p+ 1)2
∥∥∥∥
√
ϕlin
E v

∥∥∥∥
2

L2([0,1])

.

Corollary B.6 Let K̂ be the reference triangle and let ϕE (x1, x2) = x1 (1− x1 − x2) denote

the quadratic edge bubble on K̂ for the edge E1 = [0, 1]×{0}. Then, for any polynomial v ∈ Pp
which is constant with respect to x2 it holds

‖√ϕEv‖L2(K̂) ≤ C ‖√ϕEv‖L2(E1) ,
‖∇ (ϕEv)‖L2(K̂) ≤ C (p+ 1) ‖√ϕEv‖L2(E1) .

The proof follows by a simple repetition of the arguments of the proof of Lemma B.5.

Lemma B.7 Let K be a triangle and E one of its edges. Then, for any of the functions ϕE
(6.4) and corresponding version ΦK as in (5.4) it holds

∥∥∥ϕ1/2
E v

∥∥∥
L2(D)

≤ C (p+ 1)
∥∥∥Φ1/2

K v
∥∥∥
L2(D)

∀v ∈ Pp (D) .
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The proof requires two preparatory lemmata and follows the ideas in [17, Appendix D].

Lemma B.8 Let I = [a, b] for some a < b and let ω : I → R be a weight function which
satisfies

∃A,B,D ≥ 0 with

{
ω is positive in ]a, b[ ,
ω (x) ≤ Aϕa (x) +Bϕb (x) +DΦ[a,b] (x) ,

(PI)

where ϕb (x) = x−a
b−a , ϕa = 1− ϕb, and Φ[a,b] = ϕaϕb as in (B.1). Then, it holds

∥∥ω1/2v
∥∥
L2(I)

≤ C (p+ 1)
∥∥√ωΦ[a,b]v

∥∥
L2(I)

∀v ∈ Pp (I) ,

where C is independent of p, v, ω, a, b.

Proof. By employing an affine transform it is sufficient to prove the assertion for the unit
interval I = [0, 1].
a) ω (x) = Φ[0,1] (x) = x (1− x). We may apply standard inverse estimates to obtain

∥∥∥Φ1/2
[0,1]v

∥∥∥
L2(I)

[16, with α = 1, β = 2]

≤ C (p + 1)
∥∥Φ[0,1]v

∥∥
L2(I)

= C (p+ 1)
∥∥√ωΦ[0,1]v

∥∥
L2(I)

.

b) For ω (x) = ϕb (x) = x we observe that ω (x) ≤ 2Φ[0,1] (x) holds for all 0 ≤ x ≤ 1/2 so
that

∥∥ω1/2v
∥∥2
L2(I)

≤ 2
∥∥∥Φ1/2

[0,1]v
∥∥∥
2

L2(I)
+‖v‖2

L2([ 12 ,1])

[16, Lem. 2.4]

≤ C (p+ 1)2
(
∥∥Φ[0,1]v

∥∥2
L2(I)

+

∥∥∥∥Φ
1/2

[ 12 ,1]
v

∥∥∥∥
2

L2([ 12 ,1])

)
.

The result now follows from Φ
1/2
[0,1] ≤ ω1/2 pointwise in [0, 1] and

√
2ω ≥ 1 pointwise on

[
1
2
, 1
]
.

c) The ω (x) = ϕa (x) follows from Case b by symmetry.
d) Let ω be a general weight function which satisfies the assumptions of the lemma. Hence,

from Part a,b,c we conclude that

∥∥ω1/2v
∥∥2
L2(I)

= A ‖√ϕ0v‖2L2(I)+B ‖√ϕ1v‖2L2(I)+D
∥∥√Φ[0,1]v

∥∥2
L2(I)

≤ C ′ (p+ 1)2
∥∥√ωΦ[0,1]v

∥∥2
L2(I)

holds.
The following lemma is a weighted version of [17, Lem. D3].

Lemma B.9 Let d ∈ (0, 1), a, b be given such that −1+ ad < 1+ bd and define the trapezoid

D := D (a, b, d) :=
{
(x1, x2) ∈ R2 | x2 ∈ (0, d) and − 1 + ax2 < x1 < 1 + bx2

}
.

Let ω ∈ P2 (D) be a polynomial such that for any 0 ≤ x2 ≤ d, ω (·, x2) has property
P[−1+ax2,1+bx2].

On D we define the weight function

Φa,b,d (x1, x2) := min {|x1 − (−1 + ax2)| , |x1 − (1 + bx2)|}

which measures the distance of the point (x1, x2) from the lateral edges of D. Then, there
exists a constant C = C (a, b, d) such that for all p ∈ N and all polynomials v ∈ Pp (D) it
holds ∥∥ω1/2v

∥∥
L2(D)

≤ C (p+ 1)
∥∥∥
√
ωΦa,b,dv

∥∥∥
L2(D)

.
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Proof. Note that

C13Φ[−1+ax2,1+bx2] (x1) ≤ Φa,b,d (x1, x2) ≤ C14Φ[−1+ax2,1+bx2] (x1)

for positive constants C13, C14 which only depends on a, b, d. Hence, the one-dimensional case
(Lemma B.8) implies
∫ 1+bx2

−1+ax2
ω1/2 (x1, x2) v

2 (x1, x2) dx1 ≤ C (p+ 1)2
∫ 1+bx2

−1+ax2

√
ω (x1, x2)Φa,b,d (x1, x2)v

2 (x1, x2) dx1.

Integrating this estimate over x2 ∈ (0, d) completes the proof.

Proof of Lemma B.7. By using an affine pullback we may restrict to the case that K is

the equi-sided triangle conv
((

0
0

)
,
(
1
0

)
, 1
2

(
1√
3

))
and E = (0, 1)× {0}.

It turns out that the proofs for the different cases in (6.4) for ϕE and in (5.4) for ΦK uses
the same arguments and we work them out exemplarily for the case of the quadratic edge
bubble

ϕE (x1, x2) =

(
x1 −

x2√
3

)(
1− x1 −

x2√
3

)

and for ΦK = Φ
(3)
K being the cubic bubble on K.

First, we will cover K with 4 trapezoids and one triangle: Let v =
(
cos π

4
, sin π

4

)⊺
=

2−1/2 (1, 1)⊺. Then,

1. T1 :=

{(
x̂1
0

)
+ sv :

(
0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)}
with L1 (x̂1) :=

√
6

1+
√
3
(1− x̂1) .

2. T2 : mirror image of T1 with respect to the angle bisector at (0, 0)
⊺ .

3. T3 : counter-clockwise rotations of T1 by
3π
4
about the barycenter of K.

4. T4 : mirror image of T3 with respect to the angle bisector at (1, 0)
⊺.

5. T5 := {(x1, x2)⊺ ∈ K | x2 ≥ 1/2}.

Case T1: We introduce

χ :

(
0 ≤ x̂1 ≤ 1/2

0 ≤ s ≤ L1 (x̂1)

)
→ T1 by χ (x̂1, s) :=

(
x̂1
0

)
+ sv

The bubble function ϕE restricted to the line
(
x̂1
0

)
+ sv results in

ψx̂1 (s) := ϕE ◦ χ (x̂1, s) = (L1 (x̂1)− s)

(√
3 + 1√
6

x̂1 +
s

3

)
∀
(

0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)
.

Note that the function ψx̂1 satisfies the assumptions of Lemma B.8 and v̂ := v ◦ χ is a
polynomial of maximal degree p. Hence,

∫

T1

ϕEv
2 =

∫ 1/2

0

(∫ L1(x̂1)

0

ψx̂1 (s) v̂
2ds

)
dx1

≤ C (p+ 1)2
∫ 1/2

0

(∫ L1(x̂1)

0

ψx̂1 (s) Φ[0,L1(x̂1)] (s) v̂
2ds

)
dx̂1.
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Composing Φ[0,L1(x̂1)] (s) with χ
−1 yields the function

d (x1, x2) =
1 +

√
3√

3

x2
(
1− x1 − x2√

3

)

(1− x1 + x2)
2 .

Note that the distance function Φ1
K (x1, x2) = dist ((x1, x2)

⊺ , ∂K) is piecewise linear on K. It
is easy to verify that d (x1, x2) ≤ CΦ1

K (x1, x2) pointwise on T1 for some C = O (1) so that

∫

T1

ϕEv
2 ≤ C ′ (p+ 1)2

∫

T1

ϕEΦ
1
Kv

2.

Since ϕEΦ
1
K ≤ C̃ΦK pointwise on K we have proved the assertion for T1.

Case T3: The proof for the trapezoid T3 follows by symmetry.

Case T2: Next, we will consider the trapezoid T2 and first note that by interchanging the
x1, x2-variables the case becomes equivalent to the estimate

∫

T1

ϕẼv
2 ≤ C ′ (p+ 1)2

∫

T1

Φ
(3)
K v2 v ∈ Pp (T1) ,

where ϕẼ is the qudratic edge bubble for the edge Ẽ =
(
0
0

)
,
( 1/2√

3/2

)
with explicit form

ϕẼ (x1, x2) =
2√
3
x2

(
1− x1 −

x2√
3

)
.

This time, the bubble function ϕẼ, restricted to the line
(
x̂1
0

)
+ sv, is given by

ψ̃x̂1 (s) := ϕẼ ◦ χ (x̂1, s) =

√
3 + 1

3
s (L (x̂1)− s) ∀

(
0 ≤ x̂1 ≤ 1/2
0 ≤ s ≤ L1 (x̂1)

)
.

The function ψ̃x̂1 satisfies the assumptions of Lemma B.8 so that

∫

T1

ϕẼv
2 =

∫ 1/2

0

(∫ L1(x̂1)

0

ψ̃x̂1 (s) v̂
2ds

)
dx1

≤ C (p+ 1)2
∫ 1/2

0

(∫ L1(x̂1)

0

ψ̃x̂1 (s) Φ[0,L1(x̂1)] (s) v̂
2ds

)
dx̂1.

Now we can argue as for the Case of T1 to obtain
∫

T1

ϕẼv
2 ≤ C ′ (p+ 1)2

∫

T1

ϕẼΦ
1
Kv

2.

Since ϕẼΦ
1
K ≤ C̃ΦK pointwise on K the assertion follows for T2.

Case T4: The proof for the trapezoid T4 again follows by symmetry from the case T2.

Case T5: On T5 we have the pointwise estimate ϕE ≤ CΦ
(3)
K and the estimate for T5 is

trivial.
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