The AL Basis for the solution of elliptic
problems in heterogeneous media.

L. Grasedyck* I. Greff' S. Sauter?

January 17, 2011

In this paper, we will show that, for elliptic problems in heterogeneous me-
dia, there exists a local (generalized) finite element basis (AL basis) consisting

of O <(10g %)dﬂ) basis functions per nodal point such that the convergence

rates of the classical finite element method for Poisson-type problems are
preserved. We provide several numerical examples beyond our theory, where
even O(1) basis functions per nodal point are sufficient to preserve the con-
vergence rates.

1 Introduction

The efficient numerical modelling of elliptic problems in heterogeneous media is of funda-
mental and practical importance and arises in applications such as composite materials,
porous media and turbulent transport. If the geometric details, e.g., inclusions in the
material, have complicated structure and/or are tiny, then the resolution of all details
by conventional finite elements becomes too costly — especially for three-dimensional
problems.

In the recent years, many types of generalized finite element methods have been de-
veloped where the characteristic physical behavior of the solution is incorporated in the
shape of the trial functions so that the geometric details may not be resolved by the
finite element mesh while the goal is to preserve the asymptotic convergence rates also
for these coarse-scale discretizations. Early papers on this topic are [1], [2]. We omit
an extensive list of references on the construction of generalized finite element methods
because our goal here is not to introduce a new method but to discuss the general the-
oretical question: What is the minimal dimension of a generalized finite element space
for elliptic problems with rough coefficients such that the “textbook”-convergence of
polynomial finite elements is preserved.
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In this paper we shall deal with the following problem. Let Q@ C R? be a bounded
Lipschitz domain and let the diffusion matrix A € L*° (Q, RdXd) be uniformly elliptic:

sym
0 < a=essinf inf {Av, v) < esssup sup {Av, v) = < 0. (1)
z€Q veRd\{0} (v, V) z€Q  veRI\{0} (v,v)

For m € No, let H™ (2) denote the usual Sobolev space with norm ||| ;m g and let
H{" (2) be the closure of C§° (£2) with respect to the norm H'”H’”(Q)‘ The dual space of

H{" () is denoted by H™™ ().
For given f € L?(Q), we are seeking u € H{ () such that

o (u,v) = /Q (AVu, Vo) = /Q fo=F() VoeH(Q). )

The abstract conforming Galerkin method to this problem is given by specifying a finite-
dimensional subspace S C H} () and seeking ug € S such that

a(ug,v) = F (v) Vo e S.
For conventional finite elements the space S is based on a regular (in the sense of Cia-
rlet [5]) finite element mesh G = {7;: 1 <7 < N} consisting of shape-regular simplices
7;. The mesh width is given by H = max {diam 7 : 7 € G}.

We assume that € is polygonal (polyhedral in 3-d) and G defines a disjoint covering
of €. The space of continuous, piecewise linear finite elements is given by

S={ueH;(Q)|VT€G u €Pr}. (3)

Let b; denote the usual local nodal basis of S (“hat functions”) and their support is
denoted by
w; = supp b;. (4)

It is well known that — as long as the mesh G does not resolve the (possible) discontinu-
ities and oscillations of A — the “textbook”-convergence rates of linear finite elements
are substantially reduced.

In this paper we will address the following question: Is there a set of basis functions
bij € H& (Q),1<7<p,1<i<n:=dim(5), such that

supp b; j C w;

and the linear convergence property (cf. Definition 1) holds?
Definition 1 (Linear Convergence Property) Leta(-,-) be asin (2) and S be as in

(3) with supports w; of basis functions as in (4). Let S C HE (Q) be a finite dimensional
subspace which satisfies

S =span{b;; |1 <j<p,1<i<n and suppb;j Cw;}. (5)

S has the linear convergence property (LCP) if, for any f € L?(Q) the solution to
the problem of finding ug € S such that

a(uS~,v):/fv YoeS
Q

satisfies the error estimate

where C' only depends on « and B (cf. (1)).



Remark 2 Note that the linear convergence property is defined for a given set of sup-
ports w;. More generally, one could also include an optimal choice of these supports in
the definition. This would be appropriate if the (possibly low) regularity of the solution
is not distributed uniformly over the domain. Our simplified definition is suitable for
problems where the diffusion coefficient is rough/oscillating over the whole domain and
a quasi-uniform mesh G is an adequate choice.

We will prove a) theoretically that, by choosing the number p in (5) proportionally to
0] (logdJrl %), such a set of basis functions exists and b) by numerical experiments that
there exist problems of the form (2) with very complicated diffusion matrix where, still,
the choice p = O (1) is sufficient.

We emphasize that our construction of b; ; is very costly and we consider our results
rather as a theoretical insight than a practical method. Forthcoming papers will address
the question how to construct the basis b; ; efficiently.

For problems with periodic coefficient A = Ay (g) or locally periodic coefficient A () =
A (-, %) (with slowly varying functions Ag (-) resp. Ag(+,-)) the convergence of finite
elements, generalized finite elements as well as methods based on homogenization-type
techniques has been analyzed in the literature (see, e.g., [11], [8] — for a more general,
non-periodic setting see [12]). In contrast, we do not impose any assumption on the
structure of A but only assume uniform ellipticity and continuity for the corresponding
bilinear form. Our results rely strongly on the approximability of the Green’s function
for general elliptic problems (see [3]).

2 The AL Basis

Let L : H} (Q) — H~1(Q) denote the operator associated to the bilinear form a (-, ).
Let the standard finite element basis be denoted by b; (cf. (4)) and set

B; := L1, i€Z:={1,2,...,n}.
Recall the definition of the supports w; as in (4).

Remark 3 The condition suppb;; C w; in (5) on the localness of the basis func-
tions implies the sparsity of the arising stiffness matriz and is crucial for the com-
putational/storage complexity of the discretization. Without this condition, the basis B;
would be a very good choice preserving the optimal error estimates. However, the func-
tions B;, in general, are non-local and the generation of the system matrix would be
prohibitively expensive.

Next, we define simplex layers around w; by the following recursion. Let w;q := w;
and define, for j =0,1,2,.. .,

Wij1 1= U{T’ | 7€ G and w; j NT # 0}.
We set w} := w; m, where m is chosen such that
ndiamw; < dist (w;, Owy) (6)

for some sufficiently small 0 < 7 = O (1). As an assumption on the local quasi-uniformity
of the mesh we assume that m =m(n) < C.

To reduce technicalities we assume that, for all 1 <4 < m, the sets w; and w} are
convex.



For an index i € Z, we define a nearfield and a farfield by setting!
P = {j €T | 0<|wNsuppb;|} and I := T\7Per,
Then, we set
X' .= gpan {Bj|w; | je ﬂar}
and
Ve = span {b,B; | j € TP
Note that the functions in XZ-far are L-harmonic in w, i.e., any v € Xfar satisfies
/ (AVo,Vuw) =0  Yw € Hy (w}).
Wi

It turns out that the space Xfar can be approximated by a low dimensional space and
we employ the construction which has been proposed in [3].

We introduce intermediate layers between w; and w}, by setting 7; o := dist (w;, OwY)
and

Tij 1= <1 — %) 73,0 1<5 <4,

where ¢ will be fixed later. The intermediate layers are given by
Dz"j = {l’ S w; | dist (:c,wz-) < ri,j}, 0<y5<Y,

and satisfy w; = D; o C D;y—1 C ... C D;jp C wj. For p > 0, let G, denote a Cartesian
tensor mesh on R? consisting of d-dimensional elements (hypercubes) with side lengths
p and let

diam D; ;
Qm?={DmﬂT‘T€Qmpﬁ=———4ﬂ},

k

where k € N>; will be fixed later. For ¢t € G; ;, we denote the characteristic function for
t by x; : Q — R. We define

Vi = span { (Pxy),, |t €Gij},
where P : L? () — X is the L2-orthogonal projection. Then,
‘7far o ‘7far + i}far + + i}far (7)
i = Vi0 i1 T T Vi

and, finally,

Obviously, we have

14 14
VP C HG(Q),  dimVP <) #Gi; <) k= (0+ 1)k
j=0 j=0

"For a measurable subset M C R?, we set | M| := Jul



Definition 4 (AL basis) For any support w; (cf. (4)) the set of AL basis functions
consists of the functions b;Bj, j € IP°*, and of the functions

bPx, Vt€G, 0<qg<L

The general notation is b; j, 1 < j < p, 1 <1i < n, where p := dim (Vifa]r + V;near), The
corresponding generalized finite element space is given by

VAL = (Vlnear + Vlfar> + (‘/’QHGB.T + V’Qfar> 4.+ (Vr{lear + Vgar> ]

Remark 5 Since the index m in the definition of w} is independent of H, we have

dim V;** = O (1). As a consequence of the error analysis it will turn out that dim VZ-far =
(0] (logdJrl %)

The Galerkin discretization for the generalized finite element space Vjy, is given by
seeking uay, € Var, such that

a(uap,v) = F (v) Vv € VL. (8)

3 Error Analysis

The error analysis is based on the results in [3]. The constants in the error estimates
of this section depend on a and 8 € Rsg without writing this dependence explicitly.
Our emphasis is to prove that the estimates are uniform for all diffusion matrices A €
L (9, RdXd) which satisfy (1). Note that the assumptions on A imply

sym

-1
HL ‘|H§(Q)<—H—1(Q) <C
Assumption 6 The domains w;, Wi (cf. (4) and (6)) are convex and satisfy (6) for
somen 2 1.
The constant

= Inear
Co= g #I7

depends only on the shape-regularity of the finite element mesh G and the number m =
O (1) (depending on the local quasi-uniformity of G) in the definition of w}.
Finally, there exists a constant C, such that

#I <C,H™“.

Theorem 7 Let u denote the solution of (2). Let the parameters £ and k in the definition
of the farfield part of Va1, be chosen according to

. 2+d . 1 [ 2¢of?
E.-max{?,[mongogH-‘} and k:= [(6—1)-‘

for some co = O (1). Let uay, be the corresponding Galerkin solution (cf. (8)). Then,
the error estimate

||u — UALHHI(Q) <CH ||f||L2(Q)
holds while 1
dim Var, < CaN¢* < Cyl~"log™™ .



Proof. Let Ps : L?(Q) — S denote the L?-orthogonal projection onto S. For f €
L?(Q), let w = L™'f. Then, the substitution of f by Psf leads to a consistent pertur-
bation

Ju =L Psf| ;1) < C I = Psfllyg-1i0) < CHIf |2y - ©

We introduce the nearfield and the farfield parts of f with respect to some i € Z by

Z'near = Z (PSf)Jb] and ffar = Z (PSf)JbJ

jeIzpear JeIfar

where (Psf); := (Psf) (z;) and z; is the nodal point corresponding to b;. Then,

IPSf ZbL 1 near+ZbL 1 far.

i=1 yrear far
? u;

Since u°®" € V"% the approximation problem is reduced to the approximation of ufar

Note that the functlon ufar L €X; far " As a consequence of the approximation results in
[3] (for the details see [4, Lemma 4, Proof of Theorem 5 by choosing g < 1/2 and p « ¢
therein.]) there exists @ € Vfor (cf. (7)) such that

e — gy SOHT VLt ey =01 (10)
with s = 2+ d/2. The approximation of u finally is given by
n n
=) wf®+ b € Var.
i=1 i=1
By using (9) and a triangle inequality we obtain
e = lli1() < CH {2 ( e
HY(Q)

The second sum can be estimated by combining the Leibniz rule for products with a
triangle inequality, a Holder’s inequality, an inverse inequality for b;, and (10):

n
( far _ ~far> ‘ < Z <||bl||L°°(wz
H(Q) =1

1904l e |

far _ ~far
) 2

H(w;)

L2(wi)>

L2(w;)

far ~far
uM —

<CH$ 1ZHVL 1 far

< CH*! Z <HVL—1PSfHL2(wi) + HVL_l near“ﬂ(w,))

1=1

n
< CH 7 (1l + | oIV L2,
=1



In order to estimate the last sum we use the representation of L' via the Green’s
function

near /G T y near( )dy,

where the estimate

sup||VGa;y||L,, <Cgape with «a,fasin (1), p:=—-—= —¢

for any 0 < e < A5 follows from [9, Theorem 1.1 and (1.12)] for d > 3 and from |7,
Remark 2.19] for d = 2. For d = 1 the estimate

G (2,9)|| poo(ey < Ca
SUp [|G (2,9)| e < Clas

follows from [10, (10.14)]. In the following we work out only the case d > 2 while the
case d = 1 can be derived analogously. Hence,
2

HVL_l nearHL2 _/ /v G l‘ y) near( )dy dx

d
< Chape Wil 17 o) < ChapH N 700

for p = Mg(%% > 2. From [6, Proposition 3.10 (choosing p’ «— p, p < 2, & < 0 therein)]

we conclude that
dd—e(1—-d)—2)
d+e(1—d)

2 - 2
177 oy < HCIF 720 ¢:=
so that
- - 2
HVL ! nearHLQ(w ) = Cd ,a, 3, £H2 2 ”onear”LQ( ) < Cioz,ﬁﬁHQ 2 HPSf”LQ(w:‘) )

2
where q := 5d(d€(dl) - Hence,

n
_ — 2
S IVE o) < ClapeH? 2qZ:HPSf“LQ( 0 < ChapH N 20
; =1

In summary, we have proved (by using ¢ <1 for all e € [0,1/ (d — 1)])
lu = ll g1y < CH || fllp2) + CH ™ 'Wn (||f||L2(Q) +H ||f||L2(Q))

Assumpt. 6
<o (B CHET ) | g

and the choice of s yields the assertion. m

4 Numerical Experiment

We have shown theoretically that O (logdJrl + ) degrees of freedom per nodal point are
sufficient for problems with general L*° diffusion coefficients in order to obtain linear
convergence rates with respect to the H 1 (©)-norm.

In this section, we will investigate whether our complexity estimates are sharp for cer-
tain (complicated) choices of the diffusion coefficient A (x) (which in some cases violate



the assumptions on uniform boundedness on A (-)). Interestingly, for all considered ex-
amples which satisfy assumption (1) uniformly in o and (3, only 1 degree of freedom per
coarse grid nodal point is sufficient for optimal convergence rates if the basis functions
are properly designed. We have tested many choices of A (-) — however we will describe
only three characteristic examples here for sake of brevity and explain the (heuristic)
reasons for these choices in the following.

Choice of Right-Hand Sides

As a subset of all possible right-hand sides we consider real valued plane waves of the
. NT
form f; :=sin(2m (¢;,-)), &; = (sin 55, C0s %) ,7=1,...,20.
We expect (and observe) that these choices of right-hand sides generate solutions

which exhibit very different directions of oscillations so that the use of only four shape
functions per element is a critical test for approximability.

Generalized Finite Element Space and Error Measure

Recall that for the Poisson problem — discretized by continuous, piecewise bilinear ele-
ments — the textbook convergence order for the relative L?({2)-error is given by O (hQ)
and for the relative H'(Q)-error by O (h). For simplicity we consider the L?({)-error
rather than the H'(Q)-error. Although we have not considered a periodic example (in
order to avoid special effects which, possibly, only arise in a periodic setting), the oscil-
latory behavior of the diffusion coefficient for all the numerical examples is (relatively)
uniformly distributed over the domain — that is the reason why we employed a uniform
Cartesian grid of mesh width H for setting up the (generalized) finite element spaces.

To make the construction of the generalized finite element space S computable we
choose a sufficiently small mesh width » = H? and denote by S, the usual linear P;
finite element space on the fine mesh. The subspace S is chosen as a subspace of Sj,.
Let u denote the Galerkin solution for the fine mesh Sj which we use as the “nearly
exact” reference solution and let ug be the Galerkin solution for the space S. The
relative error is given by ||u —ugl|,. @ / ull2(q)- For our numerical experiments, it
turns out that the size of the local norms are distributed uniformly over the domain,
i.e., they satisfy |[ull;2(;) ~ H ||lullj2(q) ~ H and |lu —us|| 2y ~ H ||lu— “5”1:2(9) for
all 7 € Gy. This justifies to investigate the convergence of the local relative L?-error
lu = us||z2()/ [[ull f2(r) for all fine grid Galerkin solutions u € Sj, corresponding to the
right-hand sides f;. From the numerical point of view this is a much simpler task. Hence,
we construct only the local basis functions for a single cell

1 1 1 1
T.—[ —H,Q] X [2—H,2]EQH.
The local space S |- is obtained by an SVD of the fine grid solutions as follows.

Let the vector c¢; be the coefficient vector of the Galerkin solution u; € Sj; with
respect to the standard bilinear “hat” basis on the fine mesh for the right-hand side f;.
We denote by c; - the restriction of ¢; to the values at vertices of the cell 7. We define
the matrix A columnwise

A= [CI,T | T | 620,7]

and compute the left and right singular vectors v;,w; as well as the corresponding



singular values o, ; of A. By the inequality

k
”A - Z UTUT,Tw;EHQ < Ork+1-
r=1
We conclude that
k
llcjr —Eirll2 < 0rkt1, where &= ZUTUTyr(wr)j
r=1

holds. This says that the first &k left singular vectors v, of A define a k-dimensional
space Sy := span{v, | r = 1,...,k} for the cell 7 such that we can approximate the 7-
parts of the coefficients of all solutions u; in S, up to an error of size o, 1. Note that
quadratic convergence with respect to the relative L? (7)-norm is equivalent to quadratic
convergence of the ratio o7 5/0- 1 as a function of H.

Decay of singular values

In this section we consider three numerical examples, all of them for the domain 2 =
[—1,1] x[—1, 1] and the bilinear form @ as defined in (2). We compute the singular values
for the cell 7 and investigate their decay behavior. In the first experiment (Problem
1) the diffusion coefficient is oscillatory:

B cos(2nx? /H) + cos(2my/H)
1 (% +@+y)°)

Ai(z,y) = vie,y)I with v(z,y) =2

and I denoting the 2 x 2 identity matrix. Note that this coefficient satisfies assumption
(1) with a = % and 8 = £.

For comparison we have used standard P1 finite elements and a sufficient quadrature
(regular refinement to fine-scale) for the setup of the stiffness matrix in order to compute
the approximate solution up.

The results in Table 1 show that for Problem 1 with fine scale oscillations the optimal
shape functions preserve the quadratic convergence rate (cf. Figures 1,2 for a plot of the
four shape functions), whereas the P1 finite elements are not sufficient for quadratic or
even linear convergence rates.

Problem 1
H = AL | Ratio P1 | Ratio
0.25 1.59._o 4.65._9
0.125 7.76e_3 | 2.04 2.75._o | 2.91
0.0625 1.82._3 | 4.26 1.83..9 | 2.18
0.03125 || 4.44._4 | 4.10 1.59. 5 | 1.15

Table 1: Convergence rates for the optimal shape functions (AL) and standard P1 shape
functions (P1) for a non-periodic oscillating coefficient.

In the second experiment (Problem 2) we consider a singularly perturbed diffusion

coefficient: )

3 2
Y 2 . in(22
Ay (z,y) = diag(d(x,y), H*), o(x,y):= 2 + Sln(H3/2)’

where now a becomes small as H — 0.



Problem 2
H = AL | Ratio P1 | Ratio
0.25 5.75¢_3 1.93._1
0.125 1.97._35 | 2.92 2.06._1 | 0.94
0.0625 9.04._4 | 2.18 2.23._1 1 0.92
0.03125 || 2.93._4 | 3.09 2.36.—1 | 0.94

Table 2: Convergence rates for the optimal shape functions (AL) and standard P1 shape
functions (P1) for a singularly perturbed Problem.

In the case of the singularly perturbed Problem 2 we observe in Table 2 at least linear
convergence. Note that the coefficient A in this case is not uniformly elliptic as H — 0
and, hence, the assumptions for the theory are violated. This was the only example,
where the convergence rates are found to be clearly less than quadratic.

In the last experiment (Problem 3) we choose for each 7;,1 < i < N, a random
coefhicient

As|r, =~I with v drawn randomly (uniform) from {0.01,0.1,1,10,100}.

The relative approximation errors are averaged over 10 random samples of As.
The results in Table 3 show that even for this medium-contrast random coefficient the
rate of convergence is quadratic.

Problem 3
H= Avg | Ratio Min Max
0.25 3.10e_1 1.80e—1 | 4.06._1
0.125 7.80e—2 | 3.97 6.20e—2 | 9.17._2
0.0625 1.84._o | 4.24 1.63c_2 | 2.04¢_2
0.03125 || 4.33.—3 | 4.25 4.22. 3 | 4.48._3

Table 3: Convergence rates for the optimal shape functions for a random diffusion coef-
ficient (average, minimal and maximal error from 10 samples).

The numerical experiments were conducted with the HLIB (http://www.hlib.org)
software library. We conclude that for all test examples only four (properly selected)
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Figure 1: The first and second shape function for the oscillatory coeff. of Problem 1.
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Figure 2: The third and fourth shape function for the oscillatory coeff. of Problem 1.

basis functions per cell preserve the convergence with respect to the relative L? norm

even

for cases where the diffusion coefficient is rather complicated.
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