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Abstract

It is well known that standard h-version finite element discretisations for Helmholtz’
equation suffer from the following stability condition: “The mesh width h of the finite
element mesh has to satisfy k2h < 17, where k denotes the wave number. This condition
rules out the reliable numerical solution of Helmholtz equation in three dimensions for
large wave numbers k 2 50.

In our paper, we will present a refined finite element theory for highly indefinite
Helmholtz problems where the stability of the discretisation can be checked through an
“almost invariance” condition.

As an application, we will consider a one-dimensional finite element space for the
Helmholtz equation and apply our theory to prove stability under the weakened condition
hk < 1 and optimal convergence estimates.

1 Introduction

In this paper, we will consider the numerical solution of the Helmholtz equation by the finite
element method. Let 2 C R? be a bounded Lipschitz domain with boundary I'. The Helmholtz
problem in the classical form with Robin boundary conditions is given by

—Au—FKu=f inQ,
%—l—iku:g on 02, (1.1)

where we assume throughout the paper that the wave number is positive and bounded away
from zero, i.e., k > ko > 0.
The variational form is given by seeking u € H! () such that

a(u,v) = / (Vu, V1) — k%ﬁ—l—ik/u@z / f5+/gﬁ =: F'(v) Yo e H (Q). (1.2)
0 r Q0 r
We equip the space H' () with the norm

1/2
2 2
lully = (Jul} g+ 42 ullfa)

which is obviously equivalent to the H!'-norm.
For Lipschitz domains, it is well known that a trace estimate holds.
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Lemma 1.1 There exists a constant Cy, depending only on 2 and ko such that
vue HY2(09) : Nullgzn) < Cu llully -

Theorem 1.2 Let Q) be a bounded Lipschitz domain. Then, there is a constant C (2, k) > 0
such that for all f € (H' (), g € H-Y2(T), the unique solution u of problem (1.2) satisfies

lullye < € (@ 8) (1 oy + N9liz-s72r))

For a proof, we refer to [15, Proposition 8.1.3].
The explicit dependence of the constant C' (€2, k) on the wave number is more subtle to
derive. The following proposition is taken from [15, Proposition 8.1.4].

Proposition 1.3 Let Q2 be a bounded star-shaped domain with smooth boundary or a bounded
convex domain. Then, there is Creg > 0 (depending only on Q) such that for any f € L* (),
g € HY2(09Q), the solution of the Helmholtz problem satisfies

ltllae < Creg (130 + lgll 2o ) -

|U|H2(Q) < Creg {Cf,gk + ||g||H1/2(BQ)}
with
Crg = [Ifllr2) + 19/l 200 -
Furthermore, we will need an estimate for the continuity constant.

Theorem 1.4 Let €2 be a bounded Lipschitz domain. Then, there exists C. > 0 depending
only on Q such that for all u,v € H' (Q)

|B (u, 0)] < Celully [0l

The proof can be found in [15, Lemma 8.1.6].

This problem can be numerically solved by the finite element method. We recall here a
convergence estimate for finite elements. Let S C H' (Q2) be the space of continuous, piecewise
linear finite elements on a regular finite element mesh G with maximal step size h and ug the
corresponding Galerkin solution. We assume the approximation property for piecewise linear
finite elements: There exists a constant Cj,, depending only on {2 and the minimal angles in
the triangulation such that, for all v € H? (), there holds

nf (= vl oy + B Ju = vligagay ) < Caph? ([0l ey + kllelle) (1.3)

Theorem 1.5 Let Q2 be a bounded star-shaped domain with smooth boundary (or a bounded
convex domain). Then, there exist positive constants Cy, Co, C3 depending only on £ and the
angles of the triangulation so that, under the assumption (1 + k?)h < C4, there holds

R C
inf sup ea(u v) > 2
S Tl ol = T+ R

The finite element solution ug satisfies
Ju— sl < Cs it lu— vl < CCxCapCraghk (Igllssaony + 171200 )

where C' only depends on ky.



Proof. The proof follows by combining [15, Proposition 8.2.7], Theorem 1.3, and (1.3).
This behavior of the finite element error is rather unsatisfactory since the stability condition
on the mesh width, namely “kh is sufficiently small”, is quite strong.

In [4], a generalized finite element method was presented in one dimension, where the
stability “k%h < 1 is relaxed to “kh < 17. Explicit basis functions for this finite element
method have been presented in [12]. However, the proofs in these papers rely on the explicit
knowledge of the discrete Green’s function and, hence, do not carry over to higher dimensions.

On the other hand, the general stability and convergence analysis which was developed in
[15] do not yield improved estimates when applied to the generalized finite element method.

In this paper, we will generalize the theory in [15] to yield optimal error estimates for
generalized finite element methods for the Helmholtz problem. As an important side effect,
this theory can be used as a guideline for the construction of modified finite element methods
for the Helmholtz problem since it links the discrete stability and convergence of the Galerkin
discretization to an “almost invariance property” of the finite element space which can be
stated qualitatively as follows:

“If the right-hand side of the Helmholtz problem is a function in the (modified) finite
element space, then, the corresponding continuous Helmholtz solution must lie “almost” in

the (modified) finite element space itself (in the sense that a certain approximation property
holds).”

More formally, let S denote a (modified) finite element space and let 7, denote the solution
operator for the continuous (adjoint) Helmholtz problem. Then, the space S should satisfy

TS ~ S.

We call this property an “almost invariance property” and will specify the precise meaning of
“x~” in this paper.

The literature on the development of high order and special finite elements for Helmholtz’
problems at high wave number is vast, see, e.g., [6], [8], [9], [10], [16], [2]. In most cases, the
goal of these approaches is to reduce the dispersion error, resp. the pollution effect of the finite
element discretization when approximating waves. However, a general convergence analysis
in 2D and 3D (which is explicit in the wave number and the mesh size/polynomial degree)
is missing in most cases for these new types of finite elements. (For one-dimensional studies
see, e.g., [12], [13], [14], [4].) Instead numerical comparisons are performed or a quantitative
dispersion analysis is carried out, see, e.g. [1], [3], [6], [7], [8], [9], [11], [14], [16], [2], [5]. In
contrast to these techniques, the goal of our paper is to provide a theory which can serve as
the basis for the convergence analysis of new finite elements for the Helmholtz equation.

2 Stability and Convergence Theory

2.1 Discrete Stability

In this section, we will develop a theory where the stability of Galerkin’s method can be
formulated in terms of an “almost invariance property” of a finite element space.

Let S denote a finite-dimensional subspace of H' () and we assume always that the
approximation property (1.3) holds. In this section, we will derive a condition for the space
S such that the discrete inf-sup constant can be bounded away from zero.
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Let v € S and put v = u + z, where z € H! () will be chosen later. Then,
a(u,v) =a(u,u) +a(u,z) = |lully +a(u,z) — 2k ||u||g + ik/ |ul® . (2.1)
r
Choose z as the unique solution of:

a(v,z) =2k* (u,v) — ik/ruﬂ Yo e H' (Q). (2.2)

We choose v = u as a test function in (2.2) and, hence, equation (2.1) simplifies to
2
a (u,v) = [[ully .
Let T; : S — H' () denote the solution operator to problem (2.2), i.e.,
z =T (u).

Define the space )
T.(S)=:S c H (Q).

We need an approximation property for the space S. Let

n(S):= sup inf —HIE (1) — vlly

and assume 7 (S) — 0 as dim S — 0. (2.3)
ues\{0} VS [l

Remark 2.1 The quantity n (S) measures the “almost invariance” of the space S under the
solution operator Ty, of the adjoint Helmholtz problem. The space S would be invariant under
Tr if and only if n(S) = 0. It turns out that the construction of finite dimensional spaces S
with n (S) = 0 is too complicated and the “almost invariance condition”

n(S) sl

which we will be derived later (cf. (2.4)) gives much more flexibility in the construction of the
finite element spaces.

For u € S, let z = 7}, (u) and denote by zg € S the best approximation of z with respect
to the H-norm. Then,

2
ja (u, u+z5)| = la(u,u+ 2)[ = a(u,z = z5)| > |lully, = Cellully Iz = 2slly
2 2
> |lullyy = Cen (5) [[ully, -
Choose S with dim S sufficiently large that C.n (S) < 3. Then,
Lo
(25| > 5 [l
Note that Proposition 1.3 implies
12l < Creg (1520 gy + Il omy ) < okl
with C3 = Creg (1 + Cy;). Finally,
[+ zslly < Nullyg + 2l + 12 = 2l < (1 + Csk 4 Cen (5)) [Jull -

In summary, we have proved that the approximation property

1
Ccn(S) < 5

leads to the discrete stability estimate of the finite element solution.
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Theorem 2.2 Let the assumptions of Proposition 1.3 be valid. Assume that the space S
satisfies

Cn (S) < % (2.4)

Then, the discrete inf-sup constant can be estimated by

1
inf sup o (w, v)]

. 2.5
ues ot Tl ol = (3 + 2C3k) (2.5)

Remark 2.3 In the standard case of linear finite elements 5271, one can prove (cf. [15, Proof
of Prop. 8.2.7])
n(S) < chk? (2.6)

which, in combination with (2.4), leads to the very restrictive condition on the mesh width:

hi? < 1.

Remark 2.4 The measure of almost invariance gives guidelines for the construction of gen-
eralized finite element spaces: If the space S satisfies n (S) < chk, the stability of the Galerkin
discretization can be proved under the condition hk < 1.

2.2 Convergence Analysis

In this section, we will prove the convergence of Galerkin’s method. We assume throughout
this section that the assumptions of Proposition 1.3 hold and the stability condition (2.4) is
satisfied.

In the first step, we will estimate the L?-error by the H'-error and employ the Aubin-
Nitsche technique. The Galerkin error is denoted by e = v — ug.

Let ¢» € H' (Q) be the unique solution of the adjoint problem

a (v, ) = (e,v)12(q) Vo e H' (Q). (2.7)

Let S : L? (2) — H' (Q) denote the solution operator to this problem, i.e., 1) = Spe, and

define S
n(S) = sup  inf —H K — vllag
weL2(Q)\{0} V€S ||w||L2(Q)

We assume that 77(S) — 0 as dimS — oo. Let 15 denote the best approximation of v in
(2.7) with respect to the ||-||,,-norm. Thus, the L*-error can be estimated by

lellZe@y = a (e, ¥) < ale, =) < Cellelly 1 = ¥slly
< Cen () llelly Nlell L2 gy - (2.8)

By using a Cauchy inequality for some ¢ > 0, we obtain

Cui (9) el
2 c 2
lellzay < =5 | e llellia@ + 7 |-

% finishes the proof of the auxiliary L2-estimate:

Ceh
lell 2y < Cen (5) llelly, - (2.9)

The choice € =

)



To estimate the H-norm of the error we proceed as follows. For any vg € S, it holds
lell3, = Re (a(e,e)) + { el — Rea(e,e)}
(2.9) )
= Rea(e,u —vg) + 2k el a0 < Cellelly 1 = vslly + 2 (kCef (S))* [lell,

Now, we choose S with dim S sufficiently large that

2 (kC7j (5))* < 5 (2.10)

N —

Then, we arrive at the final estimate
lelly, < 2Cc [lu = vs]ly,

Theorem 2.5 Assume that conditions (2.4) and (2.10) are satisfied and that the assumptions
of Proposition 1.3 hold.
Then
lell < 2C. i u = vl (211)

The L*-error satisfies
lell 2y < Cep (S) llelly -

Remark 2.6 The error estimate (2.11) shows that the standard Galerkin error estimate for
coercive bilinear forms, i.e.,

Ce\ .
< J— —
lell, < (1 +2 ) inf fJu —vlly,,

15 too pessimistic since the quotient of the continuity constant C,. and the discrete inf-sup
constant v grows linearly in k (cf. (2.5) and Theorem 1.4),

C./v < (3+2Csk) C,,
where C,. and C3 are independent of k.

Remark 2.7 In the standard case of linear finite elements S,?’l, one can prove (cf. [15, Proof
of Prop. 8.2.7]
n(S) < Chk (2.12)

which, in combination with (2.10), leads to the very restrictive condition on the mesh width:
hk? < 1.

For a modified finite element space the estimates (2.6), (2.12) can be improved.

3 Application to a One-Dimensional Modified Finite El-
ement Space

In this section, we will consider a one-dimensional modified finite element space and analyze
its stability and convergence properties by using the theory of the previous section.
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3.1 The Method

We define the finite element space for the Helmholtz problem as the span of some basis
functions which, on each element satisfy the homogeneous Helmholtz equation. We restrict
here to the one-dimensional case. Let 2 = (—1,1) and let G = (7, : 1 < m < n) denote a
partitioning of Q into intervals 7, := (2,,_1, Z;n). The mesh points satisfy

—l=zrg<1<...<xp1 <z = 1.
The basis functions b, are defined by (cf. [12])

sink (r — 1)

- ifrer,andm>1,
sink (T, — Tm-1)

VO<m<n: by,(r):= sink (r — Tpy1)
sink (T, — Tmy1)
0 otherwise.

(3.1)

if x € 7,41 and m < n,

Note that these basis functions satisfy the homogeneous Helmholtz equation in every interval
7 € G. Furthermore, the function b,, has value 1 in z,, and vanishes at all other grid points.
Finally, the support of the basis function is the same as the support of the usual piecewise
linear hat functions.
Let S :=span{b; : 0 <i < n}. The Galerkin method for problem (1.2) is given by seeking
u € S such that
a(u,v) = F(v) Yv e S.

Theorem 3.1 Let the assumptions of Proposition 1.3 be satisfied. There exists constants
ag > 0 and C independent of k > ko such that the Galerkin solution exists for all kh < «y
and satisfies the error estimates

lu—uslly <Ch and |lu—us[;2q) < Ch?k.
The constant C' depends on the data f and g.
Proof. We will estimate 1 (S), n (5’ > and the interpolation error in the remaining sections

by
n(s)<Chh, n(S)<Ch flu—w], < Ch.

The combination with Theorem 2.2 and Theorem 2.5 yields the proof. m

3.2 Estimate of 7 (S)

We start with the estimate of the quantity 7 (S) as defined in (2.3). The basic tool will be the
mapping behavior of the operator 75 on the space S. The strong formulation of the adjoint
problem (2.2) is given by

—Az — k?z=2k*>u in Q,

0z/0n —ikz =iku on 0f). (3:2)

Lemma 3.2 Let kh < . Then, for the one-dimensional model problem, there holds
n(S) < C5Capkh

with n as in (2.3). The positive constant C5 depends only on .
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Proof. The exact solution to problem (3.2) in one dimension is given by

1 . -1) . 1) .
z(x) =ik / 1u(s) etls=elgs 4 <—“(2 ) gik+o) —#el’fﬂ—x)). (3.3)

TV N
=:z1 =:z9

J/

We will approximate z by interpolation. For a continuous function u € C° (ﬁ), the global
interpolation operator Il and its restriction II,, to an element 7,, are defined by

(Tu) (x) :== Zulbl (x) x €,
(I,,u) (x) ::Z_um_lbm_l () + Upbm (x) T € T,

where the basis functions b; are defined as in (3.1). For the approximation of z we choose
2" .= Iz and estimate the error z — 2™ with respect to the L?-norm and the H'-seminorm.
Let

2™ =1z, and 2" :=Tlz.
From 2, € S we conclude that z; — 2" = 0 and it remains to estimate the error z; — I1z;. Fix
an element 7,, = (z;,_1,%m). For x € 7, = (X1, Tn), We obtain

21 (2) = 1k {1 + Gppe 1F7 ) + ik/ u(s) eMs=elds,

. N )
=w1 e

=iwy

where the numbers 9,,_1, d,, are defined by

Tm—1 1
Om—1 ::/ u(s)e *ds and 6, ::/ u (s) e*ds.

-1

Let
wi™ = T,,w; and  wd™ = I,,w,.
Then, 2™| = w4+ wy*. Since w; — wi™ = 0 it remains to estimate the error wy; — wy™.

An integratinz)n by parts yields

wy () = 2u (x) + u (Ty_1) €FEEm=1) oy () Rl =)

. J/

x Tm
+ / u' (s) eF@=)ds / u' (s) R0 s (3.4)
Tm—1 €z J/
~ -
For 4y = —1,0,1, define UL‘“ := II,,v, and observe that vy — vi® = 0. Hence, it remains to

estimate the differences v, — v/ift for 1 = £1. The standard linear interpolation of v, is given
by

T — Ty T — Ty

V,int (7) := vy (1) + v, ()

m—1 — Tm Ty — Tm—1 ‘
(Note that V™ interpolates v as well). Then
= o = (o= V) (V= )

8



and we will estimate both terms separately. Standard interpolation estimates yield for r = 0,1

the estimate

< Coph? " }UZ L)

[CRA

L2 (1)

By using u” = —k?u, the second derivative of v/, can be written in the form
vy = —pkPu (z) +iku (x) — pkPv,, p==+l1.

This leads to the estimate

v <K Nl o,y + B 10 | 2,y + K2 10l ey

"
.U'HLQ(Tm)

Now, a Cauchy-Schwarz inequality applied to v, in (3.4) results in

HUHHL2(7—m) S hm HUIHLQ(Tm) .

Thus, we have proved
[ < V3 L+ ) [l

with o as in the Assumptions of this lemma and this leads to

|

(0, — Vi) < Cap V2 (1+ ag) (kR) [Jull,

L2(tp,)
The difference V" — v** can be estimated by
"(V/int _ v;m)(?") s < Cph? " (ant)” .
Recall .
i (z) = P $mm_—11 /Tm u' () e F@=s) s,
A Cauchy-Schwarz inequality leads to
h

HUifItHLz(Tm) 3 HUIHB(Tm)-

An analogous estimate holds for v'%. Now, (vI*)" = —k20'™ and we arrive at
int\” !
(GO ISR COY T oy

Thus,

I

in int ()
H(Vu f-w t)

< Caph' ™" (kR)? 1| s, -

L2(7m)
This leads to the final estimate

(Z . Zint)(r)’ + k,l—r

L?(7m)

kl—r S k,l—r

int (1)
L2(7) (,U“ o VH t)

int int
(Vo —w

< (kN)*" Cuap (V2 (1+ 00) + 00 ) [l

) (r)

L3 (7im)

(3.5)



3.3 Estimate of 7 (5)

In this section, we will estimate the constant 7 (S) and recall its definition

| Spw — UHH

Y

n(S)= sup inf
weL2(Q)\{0} VES HwHL2(Q)

where S, is the solution operator to the adjoint problem: For given w € L*(f), find ¢ €
H' () such that
a(v,9) = (w,v)2q) Vo e H' (Q).

The strong formulation in one dimension is given by

—) — k%) =w in €,
¢ (=1) =ik (1) AY' (1) =iky (1).

Lemma 3.3 Let kh < . Then, for the one-dimensional model problem, there holds
7 (S) < CeCaph.
The positive constant Cg depends only on .

Proof. The exact solution of problem (3.6) is

1 eik|s—w\
V() = z/ w (s) ds. (3.7)
Fix an element 7, = (z;,_1, T;). By using the notation as in the proof of Lemma 3.2, we get

Y = p1 + pa,

where p; € S and p, is given by

po () ! / w(s) el s,

N ﬁ Tm—1
Let piit := I1,,po. The affine interpolant of p, (and also of pi'*) on 7,, is given by
0 T —x T — Tt
Py (2) = p (2m-1) T 4 po () —————.
m—1 " Tm m — Tm—1

Standard interpolation estimates show

|2 =P < Coh® " 5l

L2 ()
The second derivative can be written in the form
P () = —w (x) — k*py (x)

and we arrive at the estimate

kh
||p/2,||L2(Tm) <l g2z, + 9 lwll 2, -
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Thus

H (p2 _ P;m)(?“))

For the other term, we get

L2(tm) < Coph®™" (1 + ) 1wl 22z,

S Caph2—7'

H int Pmt (r) o (p12nt)

L2(7m)

and (by the same arguments as for (3.5))

kh
int 2 int
H(p2 ) L) =k H HL2(Tm) < D) [l 2,y
Thus, we have proved
K | (o2 — i)™ < Coph (k0) " (14 20 ) ]
P2 — Py L) P 510 L2(7pm)

from which the assertion follows. m

3.4 Estimate of the approximation property

It remains to estimate the infimum in (2.11) for the one-dimensional case.

Lemma 3.4 For any f, let u be the solution of (1.2) in the one-dimensional case. Then, the
interpolant Ilu € S satisfies
|u — Iul|,, < CsCaph.

Proof. Let u, and u; be defined as the solutions of

—Auy, — k*u, =0 in Q, and —Auy — Kup=f inQ,
%—i—ikug:g on 052, %—l—ikuf:O on 0S2.

Then, u = u, + uy. Note that u, is a linear combination of e*'¥*. Since e*'** € S the
corresponding Galerkin error coincides with the exact solution u, and it remains to investigate

inf [[uy — ]|,
inf [luy — vl

The function uy is given by

1 —ik|s—x|
x):—i/_lf(s)e 5% ds

and coincides with (3.7) by replacing w by f and k by —k therein. Hence, we may repeat all
steps of the proof of Lemma 3.3 to obtain

Huf . ulntHH < C6Caph
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