
Sparse Convolution Quadrature for TimeDomain Boundary Integral Formulations of theWave Equation by Cuto� and Panel-ClusteringW. Hackbusch1, W. Kress1 and S. Sauter21 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germanyfwh,kressg@mis.mpg.de2 Universit�at Z�urich, Switzerland stas@math.unizh.ch1 IntroductionThis paper is concerned with the numerical solution of the wave equationin an unbounded domain. Problems governed by the wave equation arise inmany physical applications such as electromagnetic wave propagation or thecomputation of transient acoustic waves. When such problems are formulatedin unbounded domains, the approach of retarded potentials allows a transfor-mation of partial di�erential equations into space-time integral equations onthe bounded surface of the scatterer.Although this approach goes back to the early 1960s (cf. [11]) the develop-ment of fast numerical methods for integral equations in the �eld of hyperbolicproblems is still in its infancies compared to the vast of fast methods for el-liptic boundary integral equations (cf. [24] and references therein). Existingnumerical discretisation methods include collocation methods with some sta-bilisation techniques (cf. [2], [3], [6], [7], [8], [22], [23]) and Laplace-Fouriermethods coupled with Galerkin boundary elements in space (cf. [1], [5], [9],[12]). Numerical experiments can be found, e.g., in [13]. In [10], a fast versionof the marching-on-in-time (MOT) method is presented which is based ona suitable plane wave expansion of the arising potential which reduces thestorage and computational costs.In this paper, we consider the convolution quadrature method for the timediscretisation (cf. [18], [19], [20], [21]), and develop a panel-clustering methodto obtain a data-sparse approximation of the underlying boundary integralequations. In [14], we have developed and analysed a simple cut-o� strategywhich reduces the number of entries in the system matrix which have to becomputed while the rest is set to zero. The use of panel-clustering will furtherreduce the storage and computational complexity.In [25], [26], and [27] Lubich's convolution quadrature method is appliedto problems such as viscoelastic and poroelastic continua.



2 W. Hackbusch, W. Kress and S. Sauter2 Formulation of the ProblemWe consider a scattering problem in an exterior domain. For this, let 
 � R3be an unbounded Lipschitz domain with boundary � . Let �u be the solutionto the wave equation @2t �u = ��u+ f ; in 
 � (0; T ) ;�u(�; 0) = u0 in 
 ;�ut(�; 0) = u1 in 
 ;�u = 0 on � � (0; T ) ;for some time interval (0; T ) and given data f , u0 and u1.To formulate the di�erential equation as a boundary integral equation, weintroduce an incident solution v and a di�racted solution u in the whole R3 ,with �uj
 = (u+ v)j
 , where v solves the open space problem@2t v = �v + fp in R3 � (0; T ) ;v(�; 0) = u0p in R3 ;vt(�; 0) = u1p in R3 ;where fp, uip are prolongations of f and ui to the whole R3 , respectively.Given the solution to the above problem, v, u solves the homogeneous waveequation @2t u = �u in 
 � (0; T ) ; (1a)u(�; 0) = @tu(�; 0) = 0 in 
 ; (1b)u = g on � � (0; T ) ; (1c)where g = �vj��(0;T ).When considering a discretisation of the above partial di�erential equationon the unbounded domain 
, one has to introduce an arti�cial boundary withadditional boundary conditions. This is avoided by transforming the partialdi�erential equation into a boundary integral equation. For this, we employan ansatz as a single layer potentialu(x; t) = Z t0 Z� k(kx� yk; t� �)�(y; �)d�yd� ; (x; t) 2 
 � (0; T ) ; (2)where k(d; t) is the fundamental solution of the wave equation,k(d; t) = �(t� d)4�d ; (3)�(t) being the Dirac delta distribution. Inserting (2) into (1a), we see thatthe di�erential equation is satis�ed. Also, the initial conditions are satis�ed.An equation for the unknown density � is obtained by taking the limit to the



Sparse Convolution Quadrature for the Wave Equation 3boundary. Since the single layer potential is continuous across the boundary,we obtain the following boundary integral equation for �,Z t0 Z� k(kx� yk; t� �)�(y; �)d�yd� = g(x; t) 8(x; t) 2 � � (0; T ) : (4)Note that only the two-dimensional surface � is involved in this equationand not the three-dimensional domain 
. This is one major advantage forthe numerical solution process compared to �nite element or �nite volumemethods.3 Convolution Quadrature MethodDiscretising (4) directly in space and time, e.g., with a Galerkin method inspace and a collocation method in time, involves the treatment of the Diracdelta distribution. The resulting integration domains for a boundary elementmethod are given by the intersection of the light cone (of �nite width) withthe triangles or quadrilaterals of the surface mesh which can be of quite gen-eral shape and, hence, numerical quadrature becomes rather complicated. Inaddition, care needs to be taken to obtain an unconditionally stable scheme.The convolution quadrature approach for the time discretisation leads toan unconditionally stable scheme (see [20]). The resulting integration domainsare just the boundary elements themselves. Furthermore, the approach allowsa data-sparse approximation of the system matrix by panel-clustering.To explain the convolution quadrature method, we consider a convolutionof the form (f ? g)(t) = Z t0 f(t� �)g(�)d� ; t � 0 : (5)Choosing a stepsize �t, (5) can be approximated by a discrete convolution(f ?�t g)(tn) which will be based on the inverse Laplace transformf(t) = 12�i Z�+iR f̂(s)estdsfor some � > 0. The inverse Laplace transform is de�ned if f̂ is analyticand for Re s > �, jf̂(s)j � cjsj�� for some c < 1 and � > 0. Inserting thisrepresentation of f(t) into (5), we obtain(f ? g)(t) = 12�i Z�+iR f̂(s)yg(s; t)ds with yg (s; t) := Z t0 es(t��)g(�)d� :Observe that the function yg(s; �) satis�es the di�erential equation @ty(s; �) =sy(s; �) + g, which can be approximated by a p-th order linear multistepmethod,



4 W. Hackbusch, W. Kress and S. SauterkXj=0 �jyn+j�k(s) = �t kXj=0 �j (syn+j�k(s) + g((n+ j � k)�t)) ; (6)with starting values y�k(s) = : : : = y�1(s) = 0. We assume that su�cientlymany time derivatives of g vanish at t = 0. Formally, a p -th order approxi-mation of (5) is then given by(f ?�t g)(tn) = 12�i Z�+iR f̂(s)yn(s)ds : (7)To see that (7) can be written as a discrete convolution, we multiply (6) by�n for j�j < 1 and Re (�)�t > � and sum over n to obtain1Xn=0 yn�n = �(�)�t � s��1 1Xn=0 g(n�t)�n ;with (�) := Pkj=0 �j�k�jPkj=0 �j�k�j . Doing the same for (7), we obtain1Xn=0(f ?�t g)(tn)�n = 12�i Z�+iR f̂(s)(�)�t � sds 1Xn=0 g(n�t)�n= 1Xn=0 f̂ �(�)�t � g(n�t)�n ;where we have employed Cauchy's integral formula in the last step. If wede�ne !�tn by f̂ �(�)�t � = 1Xn=0!�tn �n ;we have1Xn=0(f ?�t g)(tn)�n = 1Xn=0!�tn �n 1Xm=0 g(m�t)�m = 1Xn=00@ nXj=0 !�tn�jg(j�t)1A �n :Thus (f ?�t g)(tn) = nXj=0 !�tn�jg(j�t) ;which has the form of a discrete convolution.



Sparse Convolution Quadrature for the Wave Equation 54 Time Discretisation: Convolution Quadrature MethodIn our case, the convolution coe�cients are spatial boundary integral op-erators. The continuous convolution in (4) is approximated by the discreteconvolution,nXj=0 Z� !�tn�j(kx� yk)�j�t(y)d�y = g(x; tn) ; n = 1; : : : ; N; x 2 � ; (8)where the convolution coe�cients !�tn (d) are functions of d = kx� yk deter-mined by k̂�d; (�)�t � = 1Xn=0!�tn (d)�n: (9)As a multistep method, we use the second order accurate, A-stable BDF2method with (�) = 12(�2 � 4� + 3) :The coe�cients of the power series (9) can be obtained by the Taylor expan-sion of k̂(d; (�)�t ) = e� (�)�t d4�d about � = 0,!�tn (d) = 1n! @nk̂(d; (�)�t )@�n ������=0 = 1n! 14�d @ne� (�)�t d@�n ������=0 :It can also be shown that!�tn (d) = 1n! 14�d � d2�t�n=2 e� 3d2�tHn r 2d�t! ; (10)where Hn are the Hermite polynomials.5 Space Discretisation. Galerkin Boundary ElementMethodsFor the space discretisation, we employ a standard Galerkin boundary elementmethod with piecewise constant or piecewise linear basis functions. Let G bea regular (in the sense of Ciarlet [4]) boundary element mesh on � consistingof shape regular, possibly curved triangles �i. Let P0 and P1 denote the spaceof constant and linear functions, respectively. We denote byS�1;0 := �u 2 L1 (� ) : 8�i 2 G : uj�i 2 P0	



6 W. Hackbusch, W. Kress and S. Sauterthe space of piecewise constant, discontinuous functions, and byS0;1 := �u 2 C0 (� ) : 8�i 2 G : (u � �i)j�i 2 P1	the space of continuous, piecewise linear functions, where �i denotes a regularmapping of the curved triangle �i to a planar reference triangle.As a basis for S�1;0 we choosebi(x) = �ij ; if x 2 �jand the basis for S0;1 consists of the standard hat functions on the planarreference triangle, lifted to the surface � by the mapping �i. We generallyrefer to the boundary element space by S and its basis by (bi)Mi=1. The meshwidth h is given by the maximum triangle diameter in G.For the Galerkin boundary element method, we replace �n�t in (8) by some�n�t;h 2 S and impose the integral equation in a weak form. The fully discreteproblem consists of �nding �n�t;h 2 S, n = 1; 2; : : : ; N , of the form�n�t;h(y) = MXi=1 �n;ibi(y) ;such thatnXj=0 MXi=1 �j;i Z� Z� !�tn�j(kx� yk)bi(y)bk(x)d�yd�x = Z� g(x; tn)bk(x)d�x(11)for all 1 � k �M and n = 1; : : : ; N . This can be written as a linear systemnXj=0An�j�j = gn ; n = 1; : : : ; N ; (12)with the vectors �j = (�j;i)Mi=1 and the matrices(An)k;i := Z� Z� !�tn (kx� yk)bi(y)bk(x)d�yd�x ;and (gn)k = Z� g(x; tn)bk(x)d�x :6 Sparse Approximation of the Matrices An by Cuto�6.1 Cuto� Strategy and Perturbation AnalysisThe matrices An are full matrices. Thus, storage requirements and compu-tational complexity for the solution of the fully discrete problem using fast



Sparse Convolution Quadrature for the Wave Equation 7iterative methods are proportional to M2. However, a substantial part of thematrix consists of small entries and can be replaced by 0. To see this, we recallthe de�nition of the convolution coe�cients!�tn (d) = 1n! 14�d � d2�t�n=2 e� 3d2�tHn r 2d�t! : (13)For n = 0, we have !�t0 (d) = e� 32 d�t4�d ;with a singularity at d = 0 and, for n = 1,!�t1 (d) = 1�t e� 32 d�t2� :In Fig. 1, we plot !�tn (d) for �t = 1 and di�erent n. For general �t, we havethe relation !�tn (d) = �t�1!1n� d�t� :The convolution functions have their maximum near d = tn. Away from thismaximum, the coe�cients decay fast. Using bounds for the Hermite polyno-mials, it can be shown (cf. [14]) that outside the intervalI�tn;" := htn � 3p�tptnj log "j; tn + 3p�tptnj log "ji (14)we have j!�tn (d)j � "4�d 8d =2 I�tn;" : (15)Given an error tolerance ", we only consider those entries of An , for whichthe possible values of kx� yk lie inside I�tn;". The remaining entries are set tozero. Let P" � f1; : : : ;Mg � f1; : : : ;Mg be de�ned byP" := �(i; j) : 9 (x; y) 2 supp bi \ supp bj , s.t. kx� yk 2 I�tn;"	 : (16)This induces a sparse approximation ~An by(~An)i;j := � (An)i;j if (i; j) 2 P";0 otherwise. (17)Instead of solving (12), we solve for an approximate solution ~�j = �~�j;i�Mi=1,nXj=0 ~An�j ~�j = gn ; n = 1; : : : ; N ; (18)



8 W. Hackbusch, W. Kress and S. Sauter
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(c) n = 200Fig. 1. The convolution weights !�tn (d) for �t = 1 and di�erent values of n.and we have the approximate solution~�n�t;h(y) := MXi=1 ~�n;ibi(y) : (19)In [14], the following theorem is proven.Theorem 1. Let the exact solution � (�; t) of (4) be in Hm+1 (� ) for anyt 2 [0; T ]. There exists a constant C > 0 such that, for all cuto� parameters" in (17) with 0 < " < Ch�t3, the solution ~��t;h in (19) exists and satis�esthe error estimate~�n�t;h � � (�; tn)H�1=2(� ) � Cg(T )�"h�1�t�5 +�t2 + hm+3=2� ;where Cg depends on the boundary data g.Corollary 1. Let the assumptions in Theorem 1 be satis�ed. Let�t2 � hm+3=2 ; (20)



Sparse Convolution Quadrature for the Wave Equation 9and choose " � h7m=2+25=4:Then the solution ~�n�t;h exists and converges with optimal rate~�n�t;h � � (�; tn)H�1=2(� ) � Cg(T )hm+3=2 � Cg(T )�t2:6.2 E�cient Algorithmic RealisationBefore we present a way to further reduce the storage requirements, we takea look at the solution procedure. The problem to be solved is~�n = ~A�10  gn � n�1Xi=0 ~An�i~�i! ; n = 0; 1; : : : ; N : (21)A straightforward way to solve (21) is to compute �gn �Pn�1i=0 ~An�i~�i� andthen to solve the system for each n. The required work is however proportionalto N2. When using the following algorithm (cf. [16]) the computational costsare proportional to N log2N . The procedure depends on a (small) controlparameter r.Algorithm 1 (Recursive solver for block triangular system)Comment: Main programbeginsolve triangular(0; N);end;Comment: The recursive subroutine solve triangular is de�ned as fol-lows.procedure solve triangular(a; b : integer) ;beginif b� a � r � 1 thenfor n := a to b do~�n := ~A�10  gn � n�1Xi=a ~An�i ~�i! (22)endelse beginm := � b+a2 � ;solve triangular(a;m� 1) ;for n := m to b do gn := gn � m�1Xi=a ~An�i~�i (23)



10 W. Hackbusch, W. Kress and S. Sauterend;solve triangular(m; b) ;end;end;When using fast iterative methods, the computational costs for (22) areproportional to r2 matrix vector multiplications. It will turn out (cf. The-orem 2 and Table 1) that the matrix vector multiplications have the com-plexity O �M1+ 1316�m8 �. The special form of (23) allows the use of thediscrete fast Fourier transform (see, e.g., [17]) and the updates of g canbe done in O �M1+ 1316�m8 (b� a) log (b� a)� operations. The proceduresolve triangular calls itself twice with half the dimension. The total com-putational cost sums up O �M1+ 1316�m8 N log2N� (cf. [17]).6.3 Storage RequirementsThe approximation of the matrices An by sparse approximations ~An resultsin reduced storage requirements, and consequently reduced computationalcomplexity for the solution of the wave equation. To determine the storagerequirements for the sparse matrices, assume that the dimension M of theboundary element space satis�esc1h�2 �M � C1h�2: (24)We further assume that there is a moderate constant C such that for any1 � i �M , the subsetPi := fj 2 f1; : : : ;Mg : (i; j) 2 P"g ;with P" as in (16), satis�es]Pi � Cmax(1; p�t t3=2n logMh2 ) : (25)This assumption can be derived from the assumption that ch2 � supp bj �Ch2 and that the area ofRi;n := �y 2 � : 9x 2 supp bi : kx� yk 2 I�tn;"	satis�es jRi;nj � Cp�t t3=2n j log(")j (Ri;n is part of a ring with radius tn andthe same width as the interval I�tn;".). Due to Corollary 1, j log "j � logM .With these assumptions, the number of nonzero matrix entries in ~A canbe estimated by MXi=1 ]Pi � CM maxn1;p�t t3=2n h�2 logMo :Relation (20) allows to substitute p�t and the combination with (24) yields



Sparse Convolution Quadrature for the Wave Equation 11Table 1. Storage requirements for ~Anm = 0 m = 1tn = O(�t logM) CM1+ 14 log2M CMtn = O(1) Ct3=2n M1+ 1316 logM Ct3=2n M1+ 1116 logMTheorem 2. The number of nonzero entries in the sparse approximation ~Anis bounded from above byCM maxn1; t3=2n M 1316� 18m logMo :We distinguish between four cases: The case of piecewise constant and piece-wise linear boundary elements (m = 0, andm = 1, respectively) and small andlarge n (tn = O(�t logM) and tn = O(1), respectively). The storage require-ments for the di�erent cases are summarised in Table 1. For small n, the stor-age requirements are signi�cantly decreased. In Section 7, we present a methodfor further reducing the storage requirements even when tn > O(�t logM).7 Panel-ClusteringThe panel-clustering method was developed in [15] for the data-sparse approx-imation of boundary integral operators which are related to elliptic boundaryvalue problems. Since then, the �eld of sparse approximations of non-localoperators has grown rapidly and nowadays advanced versions of the panel-clustering method are available and a large variety of alternative methodssuch as wavelet discretisations, multipole expansions, H-matrices etc. exist.However, these fast methods (with the exception of H-matrices) are developedmostly for problems of elliptic type while the data-sparse approximation ofretarded potentials is to our knowledge still in its infancies. In this section,we develop the panel-clustering method for retarded potentials.7.1 The AlgorithmThe panel-clustering can be applied as soon as tn > O(�t jlog "j). (Note thatfor the �rst time steps the simple cuto� strategy reduces the computationalcomplexity much more signi�cantly than for the later time steps, see Table1.) For tn > O(�t jlog "j), the matrices An in (12) are partitioned into sub-blocks B := Anjs�t for some index set s � t � f1; : : : ;Mg � f1; : : : ;Mg.The subblocks are either replaced by zero, if the block entries are su�cientlysmall, or they are replaced by low rank matrices. To explain this approach indetail we �rst introduce the basic notation.Let I := f1; 2; : : : ;Mg denote the degrees of freedoms for the space dis-cretisation.



12 W. Hackbusch, W. Kress and S. SauterDe�nition 1 (Cluster). A cluster t is a subset of I. If t is a cluster, thecorresponding subdomain of � is �t := Si2t supp (bi). The cluster box Qt �R3 is the minimal axisparallel cuboid which contains �t and the cluster sizeLt is the maximal side length of Qt.The clusters are collected in a hierarchical cluster tree TI .De�nition 2 (Cluster Tree). A tree TI is a cluster tree if the followingconditions are satis�ed.1. The nodes in TI are clusters.2. The root of TI is I.3. The leaves of TI are the degrees of freedom, i.e., L(TI) = I and thetree hierarchy is given by a father/son relation: For each interior nodet 2 TI n L(TI), the set of sons sons(t) of t is the minimal subset inTIn ftg such that t = [s2sons(t)sholds. Vice versa, the father of any s 2 sons(t) is t.The standard construction of the cluster tree TI is based on a recursive bisec-tion of an axisparallel cuboid ~B which contains � . The bisection of ~B yields anauxiliary binary tree T ~B. Then, the clusters in TI are given by collecting, forany box ~B 2 T ~B, the indices i 2 I which satis�es �i 2 ~B, where �i denotes thenodal point for the i-th degree of freedom. Clusters in TI which coincide withtheir father are removed from TI and empty clusters are removed as well.The kernel function k is approximated on �t � �s, where (t; s) is a pairof clusters which satisfy the following condition. Recall the de�nition of theinterval I�tn;" as in ( 14).De�nition 3. Let " > 0 and n > C jlog "j. Let 0 < � < 1 be some controlparameter. A pair of clusters (t; s) 2 TI � TI is admissible at time step tn if8 (x; y) 2 Qt �Qs : kx� yk =2 I�tn;" (26a)or (26a) is violated and max fLt; Lsg � ��tnb: (26b)The power b in (26b) is a �xed number which is related to the accuracy ofresulting discretisation.A theoretical bound on b is b � 1=4 under the condition n � C jlog "j. Numer-ical experiments indicate that the choice b � 0:3 also preserves the optimalconvergence rates. This is shown in a forthcoming paper.The following algorithm subdivides I � I into a matrix part P sparse, cor-responding to pairs of indices where the matrix has to be assembled in the



Sparse Convolution Quadrature for the Wave Equation 13conventional way, a zero part P 0 where the corresponding matrix entries areset to zero and a panel-clustering part P pc, where the system matrix is approx-imated by panel-clustering. Note that the father/son relation of the clustertree induces a father/son structure for pairs of clusters b = (c; s) bysons (b) :=8>><>>: sons (c)� sons (s) if sons (c) 6= ; and sons (s) 6= ;c� sons (s) if sons (c) = ; and sons (s) 6= ;sons (c)� s if sons (c) 6= ; and sons (s) = ;; if sons (c) 6= ; and sons (s) 6= ;Algorithm 2 Let n > C jlog "j. The minimal admissible block partition-ing of I � I at time step tn is obtained as the result of the proceduredivide�(I; I) ; P sparse; P pc; P 0� de�ned by (cf. [15])procedure divide�b; P sparse; P pc; P 0�;beginif (b is non-admissible and sons (b) = ;) then P sparse := P sparse[fbgelse if (b satis�es (26a) then P 0 := P 0 [ fbgelse if (b satis�es (26b) then P pc := P pc [ fbgelse for all eb 2 sons (b) do divide�eb; P sparse; P pc; P 0� ;end;Remark 1. The set P sparse is empty in most cases since the cluster sizes of theleaves satisfy Lfig = O (h)while relation (20) implies for the bound in (26b )��tnb = O ��hm=2+3=4nb� ;where m = 0 for constant and m = 1 for linear elements. Hence after a fewtime steps, ��tnb � Ch and any pair b with sons (b) = ;, i.e., i; j 2 I,satis�es (26a) or (26b).Next, we explain the data sparse approximation on the blocks b = (c; s) 2P pc. Since !�tn (kx� yk) is de�ned inQc�Qs we may de�ne its approximationby �Ceby�sev interpolation:!�tn (kx� yk) � �!�tn (kx� yk) = X�;�2(N�q)3 L(�)c (x)L(�)s (y)!�tn (kx� � y�k);(27)where L(�)c (resp. L(�)s ) are the tensorised versions of the q�th order Lagrangepolynomials (properly scaled and translated to Qc resp. Qs ) correspondingto the tensorised �Ceby�sev nodes x� for Qc resp. y� for. Qs).



14 W. Hackbusch, W. Kress and S. SauterThe matrix An is the representation of the bilinear form an : S � S ! R;an (�;  ) := Z� Z� !�tn (kx� yk)�(y) (x)d�yd�xwith respect to the nodal basis (bi)Mi=1. We introduce the convention that,for any function ' 2 S, the coe�cient vector in the basis representation isdenoted by ' = ('i)Mi=1, i.e., ' =PMi=1 'ibi.The sparse approximation of an by our combined cuto� and panel-clustering strategy is given byan (�;  ) � X(i;j)2P sparse  i�j (Asparsen )i;j+ Xb=(�;s)2Ppc X�;�2(N�q)3 �S(n)b ��;� J (�)� ( ) J (�)s (�) ;with the sparse matrix part of An(Asparsen )i;j := �R�fig R�fjg !�tn (kx� yk)bj (y) bi (x) d�yd�x if (i; j) 2 P sparse;0 otherwise, (28)the interaction matrix S(n)b�S(n)b ��;� := !�tn (kx� � y�k) 0 � �i; �i � q, 1 � i � 3and the inuence coe�cientsJ (�)� ( ) :=Xi2�  i Z�� L(�)� (x)bi (x) d�x; 0 � �i; �i � q, 1 � i � 3:The algorithmic realisation of the sparse matrix multiplication based on thisapproximation of the bilinear form and the recursive computation of the in-uence coe�cients J (�)� ( ) are structured as follows.Phase 1: Computation and storage of the Galerkin operator(a) Generate and store the cluster tree and the partitioning of I � I intoP sparse, P pc, and P 0.Introduce recursive tree levels 0 � ` � `max by TI (0) = fIg andTI (`+ 1) := f� 2 TI : 9s 2 TI (`) with \� is son of s"g :Let `min denote the minimal index such that (i) there exists � 2 TI (`min)with L� � ��tnb and (ii) for all 0 � ` < `min and � 2 TI (`) there holdsL� > ��tnb.



Sparse Convolution Quadrature for the Wave Equation 15(b) Compute and store the nonzero entries of the matrix Asparsen .(c) Compute and store the basis inuence coe�cientsJ (�)fig (bi) := Zsupp(bi) L(�)fig (x) bi (x) d�x; 1 � i �M; � 2 (N�q )3 : (29)(d) Compute and store the interaction matrices S(n)b for all b 2 P pc.Phase 2: Evaluation of a matrix-vector multiplication ' = An (a) For all � 2 TI (`max), for all � 2 (N�q )3 computeJ (�)� ( ) =  iJ (�)fig (bi) :For ` = `max � 1; `max � 2; : : : ; `min, for all � 2 TI (`) and all � 2 (N�q )3computeJ (�)� ( ) = Xs2sons(�) X�2(N�q)3 �;�;sJ (�)s ( ) with �;�;s := L(�)� (x(�)s ) :(b) Let T pcI := fc 2 TI j 9s 2 TI : (c; s) 2 P pcgand, for c 2 T pcI , letP pcright (c) := fs 2 TI j (c; s) 2 P pcg .For all c 2 T pcI and all � 2 (N�q )3 computeR(�)c ( ) := Xs2Ppcright(c) X�2(N�q)3 �S(n)b ��;� J (�)s ( ) :(c) For ` = `min; `min + 1; : : : ; `max � 1, � 2 TI (`), s 2 sons (�), and all� 2 (N�q )3 computeR(�)s ( ) := R(�)s ( ) + X�2(N�q)3 �;�;sR(�)� ( ) :For all fig 2 TI (`max) do'i := X�2(N�q)3R(�)fig ( ) J (�)fig (bi) :(d) Evaluate (by taking into account the sparsity of An)' := '+Asparsen  :



16 W. Hackbusch, W. Kress and S. Sauter7.2 Error AnalysisWe proceed with the error analysis of the resulting perturbed Galerkin dis-cretisation which leads to an a-priori choice of the interpolation order q suchthat the convergence rate of the unperturbed discretisation is preserved.Standard estimates for tensorised �Ceby�sev-interpolation yieldsupz2Qc�Qs ��!�tn (kzk)� �!�tn (kzk)�� � (30)CLq+1 �1 + log5 q�22q+1 (q + 1)! maxi2f1;2;3g supz2Qc�Qs ��@q+1zi ! (kzk)�� ;where C > 0 is some constant independent of all parameters, L denotes themaximal side length of the boxes Qc and Qs and Qc � Qs is the di�erencedomain fx� y : (x; y) 2 Qc �Qsg.Theorem 3. For b = (c; s) 2 P pc, let (x; y) 2 �c � �s and n � C jlog "j.Assume that the partial derivatives of !�tn (kx� yk) satisfymax1�i�3 ��@qzi!�tn (kzk)�� j � cqq!kzk�1� 1�tnb�q 8z 2 Qc �Qs (31a)with b as in De�nition 3. Thenj�!�tn (kx� yk)� !�tn (kx� yk)j � C1dist (Qc; Qs) �C2 L�tnb�q+1 (31b)with L as in (30).Note that in a forthcoming paper, the validity of assumption (31a) will bederived.Theorem 4. Let " > 0 and n > Cj log2 "j for some C. Let the assumptionsof Theorem 3 be satis�ed and the interpolation order chosen according to q �jlog "j = log 2.(a) Let b =(c; s) 2 P pc be admissible for some 0 < � � �0 and su�cientlysmall �0 = O (1). Thenj!�tn (kx� yk)� �!�tn (kx� yk)j � C "kx� yk 8 (x; y) 2 �c � �s (32a)for some C independent of n and �t.(b) Let b =(c; s) 2 P 0. Then��!�tn (kx� yk)�� � "kx� yk 8 (x; y) 2 �c � �s : (32b)



Sparse Convolution Quadrature for the Wave Equation 17Proof. Assume that (c; s) 2 P pc. Then, due to Condition (26b), we obtainfrom Theorem 3 the estimatej�!�tn (kx� yk)� !�tn (kx� yk)j � C1dist (Qc; Qs) (C2�)q+1 :The distance can be estimated by means of Condition (26b). For all (x; y) 2Qc �Qs, there holdskx� yk � dist (Qc; Qs) +p3 (Lc + Ls) � dist (Qc; Qs) + 2p3��tnb: (33)Because (c; s) 2 P pc, Condition (26a) is violated and there exists (x; y) 2Qc � Qs such that kx� yk 2 I�tn;". Thus, by taking into account nb � n, weobtaindist (Qc; Qs) � kx� yk �p3 (Lc + Ls) � tn � 3p�tptnj log "j � 2p3��tnb= tn�1� 3 j log "jpn � 2p3�� � tn10for n > 15j log2 "j and 0 � � � �0 with �0 = �40p3��1. Hence,dist (Qc; Qs) � tn10 � 2�2p3��tnb� (34)for all 0 � � � �0.The combination of (33) and (34) yields1dist (Qc; Qs) � 32 kx� ykand j�!�tn (kx� yk)� !�tn (kx� yk)j � 3C12 kx� yk (C2�)q+1 :Finally, the condition �0 � (2C2)�1 implies that the interpolation orderq � jlog "jlog 2leads to an approximation which satis�esj�!�tn (kx� yk)� !�tn (kx� yk)j � C1"2 kx� yk :For (c; s) 2 P 0, the assertion follows from (15).In [14] an analysis of the perturbation error has been derived. Since itis only based on abstract approximations which satisfy an error estimate oftype (32a) and (32b), we directly obtain a similar convergence theorem alsofor the panel clustering method. In the following, we denote by ~�n�t;k 2 Sthe solution at time tn of the Galerkin discretization with cuto� strategy andpanel-clustering.



18 W. Hackbusch, W. Kress and S. SauterTheorem 5. Let the assumption of Theorem 4 be satis�ed. We assume thatthe exact solution � (�; t) is in Hm+1 (� ) for any t 2 [0; T ]. Then there existsC > 0, such that for all cuto� parameters " in (14) such that 0 < " < Ch�t3and interpolation orders q � jlog "j = log 2, the solution ~��t;h with cuto� andpanel-clustering satis�es the error estimate~�n�t;h � � (�; tn)H�1=2(� ) � Cg (T )�"h�1�t�5 +�t2 + hm+3=2� :Corollary 2. Let the assumptions of Theorem 5 be satis�ed. Let �t � hm+3=2and choose " � h7m=2+25=4. Then, the solution ~��t;h exists and converges withoptimal rate~�n�t;h � � (�; tn)H�1=2(� ) � Cg (T )hm+3=2 � Cg (T )�t2.7.3 Complexity EstimatesIn this subsection, we investigate the complexity of our data-sparse approxi-mation of the wave discretisation. Since we will introduce numerical quadra-ture methods for approximating the integrals (28) and (29) (for possiblycurved panels) in a forthcoming paper, we here restrict ourselves to the storagecomplexity of our data-sparse approximation scheme and discuss the compu-tational complexity in a forthcoming paper. In this section, we always employthe theoretical value 1=4 for the exponent b in (26b).Sparse approximation of the system matrix ~An.To simplify the complexity analysis we assume that only the simple cuto�strategy and not the panel-clustering method is applied for the �rst timesteps: 1 � n � CmaxnlogM;Mm� 12o ; (35)where the constant C depends only on the control parameter �. Note thatthe second argument in max f�; �g ensures that P sparse = ; and the matrixAsparse vanishes (cf. Remark 1). By using Theorem 2 and (20), the numberof nonzero entries of ~An in this case is of orderM maxnMm� 12 logM;M 14� 12m log5=2Mo = �M1+ 14 log5=2M m = 0;M1+ 12 logM m = 1;where the leading constant in O (�)-estimate depends only on �. Note that�t = O �N�1�. Hence, relation (20) implies N � M m4 + 38 allows to esti-mate the number of n's in (35) bymaxnlogM;Mm� 12o � N maxnM�m4 � 38 logM;M 34m� 78o :



Sparse Convolution Quadrature for the Wave Equation 19Hence, the total cost for storing these matrices ~An is given by�NM 78+m2 log�m M� with �m := � 7=2 if m = 0;1 if m = 1:Basis inuence coe�cients.The number of basis inuence coe�cients (cf. (29)) is bounded byO �M log3M� :Since this step has to be computed and stored only once for all all timesteps the cost for this step (and the generation of the cluster tree as well) isnegligible compared to the minimal cost O (NM) of the whole algorithm.Inuence Matrices.First, we compute the cardinality of P pc. Note that the maximal diameterof a cluster t 2 TI satisfying condition (26b) is bounded byLt � ��tnb:An assumption on the cluster tree and the geometric shape of the surfaceis that ���(x; y) 2 � � � j kx� yk 2 I�tn;"	�� = O �p�t t3=2n jlog "j� ;where j!j denotes the area measure of some ! � � � � . Hence, for su�-ciently small �t the number of pairs of clusters satisfying (26b) is boundedby O p�t t3=2n jlog "j(��tnb)4 ! : (36)The storage requirements per matrix S(n)b are given by q6 � log6 " andthis leads to a storage complexity ofO n3=2�4b jlog "j7�t2 ! : (37)Using the relations as in Corollary 2�t2 � hm+3=2, " � h7m=2+25=4, M = O �h�2�we see that (37) is equivalent to (we here use 4b = 1)O �n1=2 jlogM j7Mm=2+3=4� :



20 W. Hackbusch, W. Kress and S. SauterTable 2. Storage requirements for the panel clustering approximation and sparseapproximationfull matrix representation cuto� strategy panel clustering+cuto� strategym = 0 O �NM2� O �NM1+ 1316 logM� O �NM1� 116 jlogM j7�m = 1 O �NM2� O �NM1+ 1116 logM� O �NM1+ 916 jlogM j7�To compute the total storage cost we sum over all n 2 f0; 1; : : : ; Ng toobtainNXn=0n 12 jlog "j7M m2 + 34 � CN 32 jlogM j7M m2 + 34 � CNM 5m8 + 1516 jlogM j7� C � NM 1516 jlogM j7 m = 0;NM1+ 916 jlogM j7 m = 1:Note that the storage cost for the temporary quantities in Phase 2 of thepanel-clustering algorithm is proportionally to M log3M and, hence, negligi-ble compared to the other components of the algorithm.The total storage requirements are summarised in Table 2. The table showsthat the panel-clustering method combined with the cuto� strategy reducesthe storage amount very signi�cantly. For piecewise constant boundary ele-ments we even get a storage complexity with behaves better than linearly, i.e.,O (NM).8 ConclusionsIn this paper, we have followed the convolution quadrature approach by Lu-bich and combined it with Galerkin BEM for solving the retarded potentialboundary integral formulation of the wave equation. The main goal was todevelop fast and sparse algorithms for this purpose, i.e., a simple a-priori cut-o� strategy where the number of matrix elements which have to be computedis substantially reduced and a signi�cant portion of the matrix is replaced byzero. The panel-clustering method is applied to the remaining blocks whichfurther reduces the computational costs.In a forthcoming paper, we will introduce an e�cient quadrature methodand analyse the e�ect of these additional perturbations.References1. A. Bamberger and T. Ha-Duong. Formulation variationelle espace-temps pourle calcul par potentiel retard�e d'une onde acoustique. Math. Meth. Appl. Sci.,8:405{435 and 598{608, 1986.
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