Complete b-Symbol Weight Distribution of Some Irreducible Cyclic Codes

Ferruh Özbudak

Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, 34956, İstanbul, Turkey ferruh.ozbudak@sabanciuniv.edu

May 31, 2023
(1) Preliminaries
(2) Motivation \& Open Problem
(3) The Main Results

4 References

Preliminaries

- \mathbb{F}_{q} : finite field with q elements.
- $\mathbb{F}_{q}^{*}: \mathbb{F}_{q} \backslash\{0\}$.
- $q=p^{e}, p=$ char \mathbb{F}_{q} and p is odd.
- $r \geq 2$: an even integer.
- $n N=q^{r}-1$, where n, N are positive integers.
$-\operatorname{gcd}\left(\frac{q^{r}-1}{q-1}, N\right)=2$.
- $2 \leq b \leq n-1$: an integer.
- $\eta \in \mathbb{F}_{q^{r}}$: a primitive $\left(q^{r}-1\right)$-th root of 1 , or equivalently a primitive element of $\mathbb{F}_{q^{r}}$.
$-\mathcal{I}_{r}: \mathbb{F}_{q^{r}} \rightarrow \mathbb{F}_{q}$: the trace map defined as $x \mapsto x+x^{q}+\cdots+x^{q^{r-1}}$.
- $w(\mathbf{x})$ or $w_{H}(\mathbf{x})$: the Hamming weight of $\mathbf{x} \in \mathbb{F}_{q}^{N}$.
- The b-symbol Hamming weight $w_{b}(\mathbf{x})$ of $\mathbf{x}=\left(x_{0}, \ldots, x_{N-1}\right) \in \mathbb{F}_{q}^{N}$ is defined as the Hamming weight of $\pi_{b}(\mathbf{x})$, where

$$
\begin{equation*}
\pi_{b}(\mathbf{x})=\left(\left(x_{0}, \ldots, x_{b-1}\right),\left(x_{1}, \ldots, x_{b}\right), \cdots,\left(x_{N-1}, \ldots, x_{b+N-2(\bmod N)}\right)\right) \tag{1}
\end{equation*}
$$

is in $\left(\mathbb{F}_{q}^{b}\right)^{N}$. When $b=1, w_{1}(\mathbf{x})$ is exactly the Hamming weight of \mathbf{x}.

- For any $\mathbf{x}, \mathbf{y} \in \mathbb{F}_{q}^{N}$, we have $\pi_{b}(\mathbf{x}+\mathbf{y})=\pi_{b}(\mathbf{x})+\pi_{b}(\mathbf{y})$, and the b-symbol distance (b-distance for short) $d_{b}(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} is defined as $d_{b}(\mathbf{x}, \mathbf{y})=w_{b}(\mathbf{x}-\mathbf{y})$.
- Let $A_{i}^{(b)}$ denote the number of codewords with b-symbol Hamming weight i in a code C of length n. The b-symbol Hamming weight enumerator of C is defined by

$$
1+A_{1}^{(b)} T+A_{2}^{(b)} T+\cdots+A_{N}^{(b)} T^{n}
$$

Motivation

- Ding et al. established a Singleton-type bound for b-symbol codes.
- Let $q \geq 2$ and $b \leq d_{b}(C) \leq n$. If C is an $\left(n, M, d_{b}(C)\right)_{q} b$-symbol code, then we have $M \leq q^{n-d_{b}(\bar{C})+b}$.
- An $\left(n, M, d_{b}(C)\right)_{q} b$-symbol code \mathbb{C} with $M=q^{n-d_{b}(C)+b}$ is called a maximum distance separable (MDS for short) b-symbol code.
- For $a \in \mathbb{F}_{q^{r}}$, let $c(a) \in \mathbb{F}_{q}^{n}$ be the codeword defined as

$$
c(a)=\left(\mathcal{T r}\left(a \eta^{0 \cdot N}\right), \operatorname{Tr}\left(a \eta^{1 \cdot N}\right), \ldots, \mathcal{T} r\left(a \eta^{j \cdot N}\right), \ldots, \mathcal{T} r\left(a \eta^{(n-1) \cdot N}\right)\right)
$$

where $0 \leq j \leq n-1$.

Definition

Let $2 \leq b \leq r$ be an integer. It follows from [13, Corollary 4.1] that the set $\left\{1, \eta^{N}, \eta^{2 N}, \ldots, \eta^{(b-1) N}\right\}$ is linearly independent over \mathbb{F}_{q}. Let $\mathcal{P}(b)$ be the subset of cardinality $\left(q^{b}-1\right) /(q-1)$ in $\mathbb{F}_{q^{r}}^{*}$ defined as

$$
\begin{aligned}
\mathcal{P}(b)= & \bigcup_{j=1}^{b-1}\left\{\eta^{(j-1) N}+x_{1} \eta^{j N}+\cdots+x_{b-j} \eta^{(b-1) N}: x_{1}, \cdots, x_{j} \in \mathbb{F}_{q}\right\} \\
& \cup\left\{\eta^{(b-1) N}\right\} .
\end{aligned}
$$

Definition
For $2 \leq b \leq r$, let

$$
\mu(b)=\mid\left\{x \in \mathcal{P}(b): x \text { is a square in } \mathbb{F}_{q^{r}}^{*}\right\} \mid .
$$

Example

Here are some numerical examples about $\mu(b)$ which computed by Magma.

p	q	r	N	b	$\mu(b)$
3	3	2	2	2	$2=\frac{q^{r}-1}{2(q-1)}$
3	3	4	2	2	3
3	3	4	2	3	8
3	3	4	2	4	$20=\frac{q^{r}-1}{2(q-1)}$
5	5	2	2	2	$3=\frac{q^{q}-1}{2(q-1)}$
5	5	4	2	2	4
5	5	4	2	3	18
5	5	4	2	4	$78=\frac{q^{r}-1}{2(q-1)}$
3	9	2	2	2	$5=\frac{q^{-1}}{2(q-1)}$
3	9	4	2	2	4
3	9	4	2	3	50
3	9	4	2	4	$410=\frac{q^{r}-1}{2(q-1)}$
3	9	6	2	2	4
3	9	6	2	3	51
3	9	6	2	4	401
3	9	6	2	5	3728
3	9	6	2	6	$33215=\frac{q^{r}-1}{2(q-1)}$
5	25	2	2	2	$13=\frac{q^{r}-1}{2(q-1)}$
5	25	4	2	2	11
5	25	4	2	3	338
5	25	4	2	4	$8138=\frac{q^{r}-1}{2(q-1)}$

Open Problem

Determine the invariant $\mu(b)$ when $2 \leq b<r$ or give good lower and upper bounds to $\mu(b)$.

The Main Results

Theorem

Let $a \in \mathbb{F}_{q^{r}}^{*}$. Assume that $2 \leq b<r$. Then we determine $w_{b}(c(a))$ explicitly as follows:

- If $p \equiv 1 \bmod 4$ and a is a square in $\mathbb{F}_{q^{r}}^{*}$, then

$$
\begin{aligned}
w_{b}(c(a))= & \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}+(q-1) q^{r / 2}}{q}\right) \\
& +\frac{2 \mu(b)(q-1) q^{r / 2}}{N q^{b}}
\end{aligned}
$$

- If $p \equiv 1 \bmod 4$ and a is a non-square in $\mathbb{F}_{q^{r}}^{*}$, then

$$
\begin{aligned}
w_{b}(c(a))= & \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}-(q-1) q^{r / 2}}{q}\right) \\
& -\frac{2 \mu(b)(q-1) q^{r / 2}}{N q^{b}}
\end{aligned}
$$

Theorem (Continue...)

- If $p \equiv 3 \bmod 4$ and a is a square in $\mathbb{F}_{q^{r}}^{*}$, then

$$
\begin{aligned}
w_{b}(c(a))= & \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}+(-1)^{e r / 2}(q-1) q^{r / 2}}{q}\right) \\
& +\frac{2 \mu(b)(-1)^{e r / 2}(q-1) q^{r / 2}}{N q^{b}}
\end{aligned}
$$

- If $p \equiv 3 \bmod 4$ and a is a non-square in $\mathbb{F}_{q^{r}}^{*}$, then

$$
\begin{aligned}
w_{b}(c(a))= & \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}-(-1)^{e r / 2}(q-1) q^{r / 2}}{q}\right) \\
& -\frac{2 \mu(b)(-1)^{e r / 2}(q-1) q^{r / 2}}{N q^{b}}
\end{aligned}
$$

Remark

The Hamming weight distribution of the above cyclic codes has been considered in [9], and C is a wto-weight code under the Hamming metric. In this paper we consider b-symbol weight distribution of such codes. Using the map π_{b} in (1), the problem becomes Hamming weight distribution of some 2-weight cyclic codes over the alphabet $\mathbb{F}_{q} \times \cdots \mathbb{F}_{q}=F_{q}^{b}$, which is not a field. We remark that two-weight irreducible cyclic codes over finite fields were characterized in [12], and it would be interesting to obtain such a characterization over the alphabet \mathbb{F}_{q}^{b}. We think that this would be related to Open Problem above.

n.

Corollary

For $2 \leq b \leq r-1$, the b-symbol Hamming weight enumerator of C is

$$
A(T)=1+\frac{q^{r}-1}{2}\left(T^{u_{1}}+T^{u_{2}}\right)
$$

where
$u_{1}= \begin{cases}\frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}+(q-1) q^{r / 2}}{q}\right)+\frac{2 \mu(b)(q-1) q^{r / 2}}{N q^{b}} & \text { if } p \equiv 1 \bmod 4, \\ \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}+(-1)^{e r / 2}(q-1) q^{r / 2}}{q}\right)+\frac{2 \mu(b)(-1)^{e r / 2}(q-1) q^{r / 2}}{N q^{b}} & \text { if } p \equiv 3 \quad \bmod 4,\end{cases}$
and

$$
u_{2}= \begin{cases}\frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}-(q-1) q^{r / 2}}{q}\right)-\frac{2 \mu(b)(q-1) q^{r / 2}}{N q^{b}} & \text { if } p \equiv 1 \quad \bmod 4 \\ \frac{q^{b}-1}{N(q-1) q^{b-1}}\left(q^{r}-\frac{q^{r}-(-1)^{r / 2}(q-1) q^{r / 2}}{q}\right)-\frac{2 \mu(b)(-1)^{e r / 2}(q-1) q^{r / 2}}{N q^{b}} & \text { if } p \equiv 3 \quad \bmod 4\end{cases}
$$

For $r \leq b<n-1$, the b-symbol Hamming weight enumerator of C is

$$
A(T)=1+\left(q^{r}-1\right) T^{n}
$$

Moreover, C is an MDS b-symbol code when $b=r$.

References

1. Y. Cassuto and M. Blaum: Codes for symbol-pair read channels, in Proc. Int. Symp. Inf. Theory, Austin, TX, USA, Jun. (2010), pp. 988-992
2. Y. Cassuto and M. Blaum: Codes for symbol-pair read channels, IEEE Trans. Inform. Theory 57 (2011), no. 12, pp. 8011-8020.
3. Y. Cassuto and S. Litsyn: Symbol-pair codes: Algebraic constructions and asymptotic bounds, in Proc. Int. Symp. Inf. Theory, St. Petersburg, Russia, Jul./Aug. (2011), pp. 2348-2352.
4. Y.M. Chee, L. Ji, H.M. Kiah, C. Wang and J. Yin: Maximum distance separable codes for symbol pair read channels, IEEE Trans. Inform. Theory, 59 (2013), no. 11, pp. 7259-7267.
5. Y.M. Chee, H.M. Kiah, C. Wang and J. Yin: Maximum distance separable symbol-pair codes, In: Proc. IEEE Int. Symp. Inf. Theory, Cambridge, MA, USA, (2012), 2886-2890.
6. B. Chen, L. Lin and H. Liu: Constacyclic symbol-pair codes: lower bounds and optimal constructions, IEEE Trans. Inform. Theory 63 (2017) no. 12, pp. 7661-7666.
7. B. Ding, G. Ge, J. Zhang, T. Zhang and Y. Zhang: New constructions of MDS symbol-pair codes. Des. Codes Cryptogr., 86 (2018) no. 4, pp. 841-859.
8. B. Ding, T. Zhang and G. Ge: Maximum distance separable codes for b-symbol read channels, Finite Fields Appl., 49 (2018), pp. 180-197.
9. C. Ding and J. Yang: Hamming weights in irreducible cyclic codes, Discrete Math. 313 (2013), no. 4, pp. 434-446.
10. X. Kai, S. Zhu, and P. Li: A construction of new MDS symbol-pair codes, IEEE Trans. Inform. Theory 61 (2015), no. 11, pp. 5828-5834.
11. R. Lidl and H. Niederreiter: Finite Fields, Second Edition, Encyclopedia of Mathematics and its Applications, 20, Cambridge University Press, Cambridge, 1997.
12. B. Schmidt and C. White, All two-weight irreducible cyclic codes?, Finite Fields Appl. 8 (2002), no. 1, pp. 1-17.
13. M. Shi, F. "Ozbudak and P. Sol'e : Geometric Approach to b-Symbol Hamming Weights of Cyclic Codes, IEEE Trans. Inform. Theory, accepted, 2021.
14. Z. Sun, S. Zhu and L. Wang: The symbol-pair distance distribution of a class of repeated-root cyclic codes over Fpm, Cryptogr. Commun.,10 (2018), no. 4, pp. 643-653.
15. E. Yaakobi, J. Bruck and P. H. Siegel: Constructions and Decoding of Cyclic Codes Over b-Symbol Read Channels, IEEE Trans. Inform. Theory 62 (2016), no. 4, pp. 1541-1551.

Lastly...

Thank you!

