Generator polynomial matrices of the Galois hulls of multi-twisted codes

available from arXiv:2305.15237

Patrick Solé
joint work with
Ramy TakiEIDin

CNRS/I2M, Marseilles, France,

Cyclic codes

Let \mathcal{C} be a linear code over \mathbb{F}_{q} of length n, or equivalently, a subspace of \mathbb{F}_{q}^{n}. We call \mathcal{C} cyclic if it is invariant under the cyclic shift which is given by the linear transformation

$$
\mathcal{T}:\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right) \mapsto\left(a_{n-1}, a_{0}, a_{1}, \ldots, a_{n-2}\right)
$$

on \mathbb{F}_{q}^{n}. The polynomial representation of $\left(a_{0}, a_{1}, \ldots, a_{n-2}, a_{n-1}\right) \in \mathbb{F}_{q}^{n}$ is $\sum_{i=0}^{n-1} a_{i} x^{i}$.
This map induces an \mathbb{F}_{q}-vector space isomorphism between \mathbb{F}_{q}^{n} and the quotient ring $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$.
Hence, a cyclic code has the structure of an ideal in $\mathbb{F}_{q}[x] /\left\langle x^{n}-1\right\rangle$.
A cyclic code over \mathbb{F}_{q} of length n can also be viewed as an ideal in the polynomial ring $\mathbb{F}_{q}[x]$ containing $\left\langle x^{n}-1\right\rangle$.

Constacyclic codes

Same definition with the shift replaced by the constashift of constant λ

$$
\mathcal{T}_{\lambda}:\left(c_{0}, c_{1}, c_{2}, \ldots, c_{n-1}\right) \mapsto\left(\lambda c_{n-1}, c_{0}, c_{1}, c_{2}, \ldots, c_{n-2}\right)
$$

This gives \mathcal{C} the structure of an ideal in $\mathbb{F}_{q}[x] /\left\langle x^{n}-\lambda\right\rangle$.
Ideals of $\mathbb{F}_{q}[x] /\left\langle x^{n}-\lambda\right\rangle$ are in a one-to-one correspondence with ideals of $\mathbb{F}_{q}[x]$ containing $\left\langle x^{n}-\lambda\right\rangle$.
Example: Negacyclic codes for the Lee metric. Let $q=5$ and $n=2$. A perfect code is obained for

$$
<12>=\{00,12,24,31,43\}
$$

Quasi-cyclic codes

If \mathcal{C} is a quasi-cyclic code (QC) over \mathbb{F}_{q} of length $n=m \ell$, of index ℓ and co-index m, then \mathcal{C} is invariant under

$$
\begin{aligned}
\mathcal{T} & :\left(c_{0,1}, c_{0,2}, \ldots, c_{0, \ell}, c_{1,1}, c_{1,2}, \ldots, c_{1, \ell}, \ldots, c_{m-1,1}, c_{m-1,2}, \ldots, c_{m-1, \ell}\right) \\
& \mapsto\left(c_{m-1,1}, c_{m-1,2}, \ldots, c_{m-1, \ell}, c_{0,1}, c_{0,2}, \ldots, c_{0, \ell}, \ldots, c_{m-2,1}, c_{m-2,2}\right.
\end{aligned}
$$

This gives \mathcal{C} the structure of an $\mathbb{F}_{q}[x]$ - submodule of
$\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m}-1\right\rangle$.
Submodules of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m}-1\right\rangle$ are in one-to-one correspondence with submodules of $\left(\mathbb{F}_{q}[x]\right)^{\ell}$ containing the submodule $\oplus_{j=1}^{\ell}\left\langle x^{m}-1\right\rangle$.
Example: Shortened Hamming code $[6,4,3]_{2}$, with $\ell=2, m=3$

$$
H=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 0
\end{array}\right)
$$

Generalized Quasi-cyclic codes

Similar to QC codes but with a variable co-index. This gives \mathcal{C} the structure of an $\mathbb{F}_{q}[x]$-submodule of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m_{j}}-1\right\rangle$.
Submodules of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m_{j}}-1\right\rangle$ are in one-to-one
correspondence with submodules of $\left(\mathbb{F}_{q}[x]\right)^{\ell}$ containing the submodule $\oplus_{j=1}^{\ell}\left\langle x^{m_{j}}-1\right\rangle$.
Example: Cordaro-Wagner code $[10,2,6]_{2}$, with $m_{1}=3, m_{2}=4, m_{3}=3$

$$
G=\left(\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Quasi-twisted codes

Similar to QC codes but with nontrivial shift constant.
This gives \mathcal{C} the structure of an $\mathbb{F}_{q}[x]$-submodule of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m}-\lambda\right\rangle$.
Submodules of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m}-\lambda\right\rangle$ are in one-to-one correspondence with submodules of $\left(\mathbb{F}_{q}[x]\right)^{\ell}$ containing the submodule $\oplus_{j=1}^{\ell}\left\langle x^{m}-\lambda\right\rangle$.
Example: tetracode $[4,2,3]_{3}$, with $\lambda=-1$ and $\ell=m=2$.

$$
G=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 2 & 1
\end{array}\right)
$$

Multi-twisted codes

If \mathcal{C} is a Λ - MT code over \mathbb{F}_{q} of length $n=\sum_{j=1}^{\ell} m_{j}$ and shift constants $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$, then \mathcal{C} is invariant under
$\mathcal{T}_{\Lambda}:\left(c_{0,1}, c_{1,1}, \ldots, c_{m_{1}-1,1}, c_{0,2}, c_{1,2}, \ldots, c_{m_{2}-1,2}, \ldots, c_{0, \ell}, c_{1, \ell}, \ldots, c_{m_{\ell}-1, \ell}\right.$ $\mapsto\left(\lambda_{1} c_{m_{1}-1,1}, c_{0,1}, \ldots, c_{m_{1}-2,1}, \lambda_{2} c_{m_{2}-1,2}, c_{0,2}, \ldots, c_{m_{2}-2,2}, \ldots, \lambda_{\ell} c_{m_{\ell}-1, \ell}, c_{0, \ell}, \ldots, c_{m_{\ell}-2, \ell}\right)$

This gives \mathcal{C} the structure of an $\mathbb{F}_{q}[x]$-submodule of

$$
\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m_{j}}-\lambda_{j}\right\rangle .
$$

Submodules of $\oplus_{j=1}^{\ell} \mathbb{F}_{q}[x] /\left\langle x^{m_{j}}-\lambda_{j}\right\rangle$ are in one-to-one correspondence with the submodules of $\left(\mathbb{F}_{q}[x]\right)^{\ell}$ containing the submodule $\oplus_{j=1}^{\ell}\left\langle x^{m_{j}}-\lambda_{j}\right\rangle$.

Historical perspective

I tried to list the earliest or most important articles inroducing the following classes of codes.

- Cyclic codes: (Prange, 1957), (Bose and Ray-chaudhuri, 1960), (Hocquenghem, 1959)
- Constacyclic codes: (Berlekamp, 1968), (Krishna, Sarwate, 1990)
- Quasi-cyclic codes: (C.L. Chen, W.W. Peterson, E.J. Weldon, 1969), (Kasami, 1974)
- Quasi-twisted codes: (Aydin et al 2001)
- Generalized Quasi-cyclic codes: (Siap, Kuhlan, 2005)
- Multitwisted codes: (Aydin et al., 2017)

Generator polynomial matrices

If \mathcal{C} is QC , it has a generator polynomial matrix (GPM) \mathbf{G} such that

$$
\mathbf{A G}=\operatorname{diag}\left(x^{m}-1\right) I_{\ell} .
$$

The dimension of \mathcal{C} is, taking determinant of both sides

$$
\operatorname{dim}(\mathcal{C})=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=m \ell-\operatorname{deg}(\operatorname{det}(\mathbf{G}))
$$

GPM matrices of MT codes

Thus, \mathcal{C} has a GPM \mathbf{G} such that

$$
\mathbf{A G}=\operatorname{diag}\left[x^{m_{j}}-\lambda_{j}\right] . \quad \text { (Identical Equation) }
$$

The dimension of \mathcal{C} is $\operatorname{dim}(\mathcal{C})=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=\sum_{j=1}^{\ell} m_{j}-\operatorname{deg}(\operatorname{det}(\mathbf{G}))$.

The Hermite normal form of \mathbf{G} yields the reduced GPM of \mathcal{C}. If N denotes the order of \mathcal{T}_{Λ}, then $N=\operatorname{lcm}\left\{t_{1} m_{1}, t_{2} m_{2}, \ldots, t_{\ell} m_{\ell}\right\}$, where t_{i} is the multiplicative order of λ_{i}.

Duality

The Euclidean dual

$$
\mathcal{C}^{\perp}=\left\{\mathbf{a} \in \mathbb{F}_{q}^{n} \mid\langle\mathbf{c}, \mathbf{a}\rangle=0 \quad \forall \mathbf{c} \in \mathcal{C}\right\}
$$

Let $q=p^{e}$ and let $0 \leq \kappa<e$. The κ-Galois dual of \mathcal{C} is

$$
\mathcal{C}^{\perp_{\kappa}}=\left\{\mathbf{a} \in \mathbb{F}_{q}^{n} \mid\langle\mathbf{c}, \mathbf{a}\rangle_{\kappa}=0 \quad \forall \mathbf{c} \in \mathcal{C}\right\}
$$

where

$$
\langle\mathbf{c}, \mathbf{a}\rangle_{\kappa}=\sum_{i=1}^{n} c_{i} a_{i}^{p^{\kappa}}=\sum_{i=1}^{n} c_{i} \sigma^{\kappa}\left(a_{i}\right)=\left\langle\mathbf{c}, \sigma^{\kappa}(\mathbf{a})\right\rangle .
$$

It follows that $\mathcal{C}^{\perp_{\kappa}}=\sigma^{e-\kappa}\left(\mathcal{C}^{\perp}\right)$. In addition,
(1) If \mathcal{C} is cyclic, then $\mathcal{C}^{\perp_{\kappa}}$ is cyclic.
(2) If \mathcal{C} is λ-constacyclic, then $\mathcal{C}^{\perp_{\kappa}}$ is $\sigma^{e-\kappa}\left(\lambda^{-1}\right)$-constacyclic.
(3) If \mathcal{C} is QC , then $\mathcal{C}^{\perp_{\kappa}}$ is QC .
(9) If \mathcal{C} is $\Lambda-\mathrm{MT}$, then $\mathcal{C}^{\perp_{\kappa}}$ is $\sigma^{e-\kappa}\left(\Lambda^{-1}\right)-\mathrm{MT}$.

GPM of the duals

Let \mathcal{C} be a Λ-MT code over $\mathbb{F}_{p^{e}}$ of index ℓ and block lengths $\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$, where $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$. Let \mathbf{G} be the reduced GPM of \mathcal{C} and let \mathbf{A} be the polynomial matrix satisfying the identical equation of \mathbf{G}. For any $0 \leq \kappa<e$, construct the polynomial matrix \mathbf{H} such that for each $1 \leq i \leq \ell$
$\operatorname{Col}_{i}(\mathbf{H}) \equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{m_{j}}\right] \mathbf{A}\left(\frac{1}{x}\right) \operatorname{diag}\left[x^{-d_{j}}\right]\right) \quad\left(\bmod x^{m_{i}}-\frac{1}{\lambda_{i}}\right)$.
(1) Then \mathbf{H} is a GPM for \mathcal{C}^{\perp}.
(2) Hence $\mathbf{H}_{\kappa}=\sigma^{e-\kappa}(\mathbf{H})$ is a GPM for $\mathcal{C}^{\perp_{\kappa}}$.

Structure of the dual of MT codes

We shall now consider a sufficient condition under which the Galois hull of a MT code is MT as well.
Let $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ and let \mathcal{C} be a Λ-MT code over \mathbb{F}_{q} of index ℓ and block lengths ($m_{1}, m_{2}, \ldots, m_{\ell}$).
If $\lambda_{j}^{-p^{e-\kappa}}=\lambda_{j}$ for $1 \leq j \leq \ell$, then the Galois hull of $C, h_{\kappa}(\mathcal{C})$ is Λ-MT code over \mathbb{F}_{q} of index ℓ and block lengths $\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$.

Numerical Example I

Let $p=2, e=4, q=16, n=9, \ell=3, m_{1}=3, m_{2}=2, m_{3}=4$, and $\lambda_{1}=\lambda_{2}=\lambda_{3}=1$. Consider the GQC code \mathcal{C} over \mathbb{F}_{q} of index ℓ, co-indices (m_{1}, m_{2}, m_{3}), and reduced GPM

$$
\mathbf{G}=\left(\begin{array}{ccc}
x^{2}+x+1 & 1 & \theta^{5} x+\theta^{5} \\
0 & x+1 & \theta^{5} x^{2}+\theta^{5} \\
0 & 0 & x^{3}+x^{2}+x+1
\end{array}\right)
$$

where $\theta \in \mathbb{F}_{q}$ such that $\theta^{4}+\theta+1=0$. The matrix that satisfies the identical equation of \mathbf{G} is

$$
\mathbf{A}=\left(\begin{array}{ccc}
x+1 & 1 & 0 \\
0 & x+1 & \theta^{5} \\
0 & 0 & x+1
\end{array}\right)
$$

Numerical Example II

The construction of a GPM \mathbf{H} for the Euclidean dual \mathcal{C}^{\perp} gives

$$
\begin{gathered}
\operatorname{Col}_{i}(\mathbf{H}) \equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{3}, x^{2}, x^{4}\right] \mathbf{A}\left(\frac{1}{x}\right) \operatorname{diag}\left[x^{-2}, x^{-1}, x^{-3}\right]\right) \\
\left(\bmod x^{m_{i}}-1\right)
\end{gathered}
$$

for $i=1,2,3$. That is,

$$
\mathbf{H}=\left(\begin{array}{ccc}
x+1 & 0 & 0 \\
x^{2} & x+1 & 0 \\
0 & \theta^{5} x & x+1
\end{array}\right)
$$

If we let $\kappa=3$, then the κ-Galois dual $\mathcal{C}^{\perp_{3}}$ of \mathcal{C} is GQC as well, with GPM

$$
\mathbf{H}_{3}=\sigma(\mathbf{H})=\left(\begin{array}{ccc}
x+1 & 0 & 0 \\
x^{2} & x+1 & 0 \\
0 & \theta^{10} x & x+1
\end{array}\right)
$$

Numerical Example III

We claim that \mathcal{C} is κ-Galois self-orthogonal. In fact, $\mathcal{C} \subseteq \mathcal{C}^{\perp_{3}}$ if and only if $\mathbf{G}=\mathbf{M H}_{3}$ for some polynomial matrix \mathbf{M}. Our claim is true because $\mathbf{G}=\mathbf{M} \mathbf{H}_{3}$ for

$$
\mathbf{M}=\left(\begin{array}{ccc}
1 & 1 & \theta^{5} \\
x^{2} & x+1 & \theta^{5} x+\theta^{5} \\
\theta^{10} x^{3} & \theta^{10} x^{2}+\theta^{10} x & x^{2}+1
\end{array}\right)
$$

Previous work I

Let \mathcal{C} be a Λ-MT code over $\mathbb{F}_{p^{e}}$ of index ℓ and block lengths $\left(m_{1}, m_{2}, \ldots, m_{\ell}\right)$, where $\Lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$. Let \mathbf{G} be the reduced GPM of \mathcal{C} and let \mathbf{A} be the polynomial matrix satisfying the identical equation of \mathbf{G}. For any $0 \leq \kappa<e$, construct the polynomial matrix \mathbf{H} such that for each $1 \leq i \leq \ell$
$\operatorname{Col}_{i}(\mathbf{H}) \equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{m_{j}}\right] \mathbf{A}\left(\frac{1}{x}\right) \operatorname{diag}\left[x^{-d_{j}}\right]\right) \quad\left(\bmod x^{m_{i}}-\frac{1}{\lambda_{i}}\right)$.
(1) Then \mathbf{H} is a GPM for \mathcal{C}^{\perp}.
(2) Hence $\mathbf{H}_{\kappa}=\sigma^{e-\kappa}(\mathbf{H})$ is a GPM for $\mathcal{C}^{\perp_{\kappa}}$.

Previous work II

Let \mathcal{C} be a linear code over $\mathbb{F}_{p^{e}}$ of length n with a generator matrix S. For any $0 \leq \kappa<e$,

$$
\operatorname{Rank}\left(S \sigma^{\kappa}\left(S^{t}\right)\right)=\operatorname{dim}(\mathcal{C})-\operatorname{dim}\left(h_{\kappa}(\mathcal{C})\right)
$$

Published: 27 September 2019

Galois hulls of linear codes over finite fields
 Hongwei Liu \& Xu Pan ${ }^{\boxtimes}$ Designs, Codes and Cryptography 88, 241-255 (2020)

Theorem 3.1 Let C be an $[n, k]$ linear code over \mathbb{F}_{q} with a generator matrix G. Let h be the dimension of the ℓ-Galois hull $h_{\ell}(C)=C \bigcap C^{\perp_{\ell}}$ of C, and let $r=k-h$. Then there exists a generator matrix G_{0} of C such that

$$
G_{0} \sigma^{\ell}\left(G_{0}^{T}\right)=\left(\begin{array}{ll}
O_{h \times h} & H_{h \times r} \\
O_{r \times h} & P_{r \times r}
\end{array}\right),
$$

where $O_{h \times h}$ and $O_{r \times h}$ are respectively zero matrices of sizes $h \times h$ and $r \times h$, and the rank $r(Q)$ of $Q=\binom{H_{h \times r}}{P_{r \times r}}$ is r. Furthermore, the $\operatorname{rank} r\left(G \sigma^{\ell}\left(G^{T}\right)\right)$ of $G \sigma^{\ell}\left(G^{T}\right)$ is r for any generator matrix G of C.

Research program

Can we determine the dimension of $h_{\kappa}(\mathcal{C})$ for a MT code \mathcal{C} from a GPM instead of a generator matrix?
Can we provide a GPM for $h_{\kappa}(\mathcal{C})$?

A canonical QC code attached an MT code

With each GPM G of an MT code we will associate a QC code of index ℓ and co-index N,

$$
N=\operatorname{lcm}\left\{t_{1} m_{1}, t_{2} m_{2}, \ldots, t_{\ell} m_{\ell}\right\}
$$

where t_{j} is the multiplicative order of λ_{j} in the relevant finite field. Let \mathbf{G} be a GPM of a Λ-MT code, where $\Lambda^{-p^{-\kappa}}=\Lambda$. We define
$\mathfrak{B}_{\mathbf{G}} \equiv \mathbf{G} \operatorname{diag}\left[\frac{x^{N}-1}{x^{m_{j}}-\lambda_{j}}\right] \sigma^{\kappa}\left(\mathbf{G}\left(\frac{1}{x}\right) \operatorname{diag}\left[x^{m_{j}}\right]\right)^{t}\left(\bmod \left(x^{N}-1\right)\right)$
such that entries of $\mathfrak{B}_{\mathrm{G}}$ are of degree at most $N-1$. Again, by G $\left(\frac{1}{x}\right)$ we mean to replace x by $\frac{1}{x}$ in \mathbf{G}.

The dimension of the hull I

Let $\mathcal{Q}_{\mathbf{G}}$ be the row span of $\mathfrak{B}_{\mathbf{G}}$. This code is QC of length $N \ell$ and index ℓ over \mathbb{F}_{q}, and is generated as an $\mathbb{F}_{q}[x]$-module by the rows of the polynomial matrix

$$
\binom{\mathfrak{B}_{\mathbf{G}}}{\left(x^{N}-1\right) \mathbf{I}_{\ell}} .
$$

Furthermore, the dimension of $\mathcal{Q}_{\mathbf{G}}$ as an \mathbb{F}_{q}-vector space is

$$
\operatorname{dim}\left(\mathcal{Q}_{\mathbf{G}}\right)=\operatorname{dim}(\mathcal{C})-\operatorname{dim}\left(h_{\kappa}(\mathcal{C})\right)
$$

In particular, the code \mathcal{C} is κ-Galois self-orthogonal iff

$$
\operatorname{dim}\left(\mathcal{Q}_{\mathbf{G}}\right)=0
$$

It is κ-Galois LCD iff $\operatorname{dim}\left(\mathcal{Q}_{\mathbf{G}}\right)=\operatorname{dim}(\mathcal{C})$.

The dimension of the hull II

The dimension $\operatorname{dim}\left(h_{\kappa}(\mathcal{C})\right)$ can be computed from the determinantal divisors of $\mathfrak{B}_{\mathbf{G}}$.
$\operatorname{dim}\left(h_{\kappa}(\mathcal{C})\right)=\operatorname{dim}(\mathcal{C})+\operatorname{deg}\left(\underset{0 \leq i \leq \ell}{\operatorname{gcd}}\left\{\left(x^{N}-1\right)^{\ell-i} \mathfrak{d}_{i}\left(\mathfrak{B}_{\mathbf{G}}\right)\right\}\right)-N \ell$
where $\mathfrak{d}_{i}\left(\mathfrak{B}_{\mathbf{G}}\right)$ is the i-th determinantal divisor of $\mathfrak{B}_{\mathbf{G}}$. The code \mathcal{C} is κ-Galois LCD if and only if $\operatorname{dim}\left(\mathcal{Q}_{\mathbf{G}}\right)=\operatorname{dim}(\mathcal{C})$ if and only if

$$
\operatorname{deg}\left(\underset{0 \leq i \leq \ell}{\operatorname{gcd}}\left\{\left(x^{N}-1\right)^{\ell-i} \mathfrak{d}_{i}\left(\mathfrak{B}_{\mathbf{G}}\right)\right\}\right)=N \ell-\operatorname{dim}(\mathcal{C})
$$

The last slide

Merci beaucoup!!!!! Viel dank!!!!
Grazie Mille!!!!
Grazcha fich!!!!

