Generator polynomial matrices of the Galois hulls of multi-twisted codes

available from arXiv:2305.15237

Patrick Solé joint work with Ramy TakiElDin

CNRS/I2M, Marseilles, France,

Cyclic codes

Let \mathcal{C} be a linear code over \mathbb{F}_q of length n, or equivalently, a subspace of \mathbb{F}_q^n . We call \mathcal{C} cyclic if it is invariant under the cyclic shift which is given by the linear transformation

$$\mathcal{T}:(a_0,a_1,\ldots,a_{n-2},a_{n-1})\mapsto(a_{n-1},a_0,a_1,\ldots,a_{n-2})$$

on \mathbb{F}_q^n . The polynomial representation of

$$(a_0, a_1, \ldots, a_{n-2}, a_{n-1}) \in \mathbb{F}_q^n$$
 is $\sum_{i=0}^{n-1} a_i x^i$.

This map induces an \mathbb{F}_q -vector space isomorphism between \mathbb{F}_q^n and the quotient ring $\mathbb{F}_q[x]/\langle x^n-1\rangle$.

Hence, a cyclic code has the structure of an ideal in $\mathbb{F}_q[x]/\langle x^n-1\rangle.$

A cyclic code over \mathbb{F}_q of length *n* can also be viewed as an ideal in the polynomial ring $\mathbb{F}_q[x]$ containing $\langle x^n - 1 \rangle$.

Constacyclic codes

Same definition with the shift replaced by the constashift of constant $\boldsymbol{\lambda}$

$$\mathcal{T}_{\lambda}: (c_0, c_1, c_2, \ldots, c_{n-1}) \mapsto (\lambda c_{n-1}, c_0, c_1, c_2, \ldots, c_{n-2})$$

This gives C the structure of an ideal in $\mathbb{F}_q[x]/\langle x^n - \lambda \rangle$.

Ideals of $\mathbb{F}_q[x]/\langle x^n - \lambda \rangle$ are in a one-to-one correspondence with ideals of $\mathbb{F}_q[x]$ containing $\langle x^n - \lambda \rangle$. <u>Example:</u> Negacyclic codes for the Lee metric . Let q = 5 and n = 2. A perfect code is obtined for

$$<12>=\{00,12,24,31,43\}.$$

Quasi-cyclic codes

If C is a quasi-cyclic code (QC) over \mathbb{F}_q of length $n = m\ell$, of index ℓ and co-index m, then C is invariant under

$$\mathcal{T}: (c_{0,1}, c_{0,2}, \dots, c_{0,\ell}, c_{1,1}, c_{1,2}, \dots, c_{1,\ell}, \dots, c_{m-1,1}, c_{m-1,2}, \dots, c_{m-1,\ell}) \\ \mapsto (c_{m-1,1}, c_{m-1,2}, \dots, c_{m-1,\ell}, c_{0,1}, c_{0,2}, \dots, c_{0,\ell}, \dots, c_{m-2,1}, c_{m-2,2}, \dots)$$

This gives C the structure of an $\mathbb{F}_q[x]$ - submodule of

$$\oplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^m-1\rangle.$$

Submodules of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^m - 1 \rangle$ are in one-to-one correspondence with submodules of $(\mathbb{F}_q[x])^{\ell}$ containing the submodule $\bigoplus_{j=1}^{\ell} \langle x^m - 1 \rangle$. Example: Shortened Hamming code $[6, 4, 3]_2$, with $\ell = 2, m = 3$

$$H = egin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 \ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

Generalized Quasi-cyclic codes

Similar to QC codes but with a variable co-index. This gives C the structure of an $\mathbb{F}_q[x]$ -submodule of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^{m_j} - 1 \rangle$. Submodules of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^{m_j} - 1 \rangle$ are in one-to-one

correspondence with submodules of $(\mathbb{F}_q[x])^{\ell}$ containing the submodule $\bigoplus_{j=1}^{\ell} \langle x^{m_j} - 1 \rangle$. Example: Cordaro-Wagner code $[10, 2, 6]_2$, with $\overline{m_1 = 3}, m_2 = 4, m_3 = 3$

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Quasi-twisted codes

Similar to QC codes but with nontrivial shift constant. This gives C the structure of an $\mathbb{F}_q[x]$ -submodule of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^m - \lambda \rangle$. Submodules of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^m - \lambda \rangle$ are in one-to-one correspondence with submodules of $(\mathbb{F}_q[x])^{\ell}$ containing the submodule $\bigoplus_{j=1}^{\ell} \langle x^m - \lambda \rangle$. <u>Example:</u> tetracode [4, 2, 3]₃, with $\lambda = -1$ and $\ell = m = 2$.

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 2 & 1 \end{pmatrix}$$

Multi-twisted codes

If C is a Λ - MT code over \mathbb{F}_q of length $n = \sum_{j=1}^{\ell} m_j$ and shift constants $\Lambda = (\lambda_1, \lambda_2, \dots, \lambda_{\ell})$, then C is invariant under

$$\mathcal{T}_{\Lambda} : (c_{0,1}, c_{1,1}, \dots, c_{m_1-1,1}, c_{0,2}, c_{1,2}, \dots, c_{m_2-1,2}, \dots, c_{0,\ell}, c_{1,\ell}, \dots, c_{m_\ell-1,\ell})$$

$$\mapsto (\lambda_1 c_{m_1-1,1}, c_{0,1}, \dots, c_{m_1-2,1}, \lambda_2 c_{m_2-1,2}, c_{0,2}, \dots, c_{m_2-2,2}, \dots, \lambda_\ell c_{m_\ell-1,\ell}, c_{0,\ell}, \dots, c_{m_\ell-2,\ell})$$

This gives C the structure of an $\mathbb{F}_q[x]$ -submodule of

$$\oplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^{m_j}-\lambda_j\rangle.$$

Submodules of $\bigoplus_{j=1}^{\ell} \mathbb{F}_q[x]/\langle x^{m_j} - \lambda_j \rangle$ are in one-to-one correspondence with the submodules of $(\mathbb{F}_q[x])^{\ell}$ containing the submodule $\bigoplus_{j=1}^{\ell} \langle x^{m_j} - \lambda_j \rangle$.

Historical perspective

I tried to list the earliest or most important articles inroducing the following classes of codes.

- Cyclic codes: (Prange, 1957), (Bose and Ray-chaudhuri, 1960), (Hocquenghem, 1959)
- Constacyclic codes: (Berlekamp, 1968), (Krishna, Sarwate, 1990)
- Quasi-cyclic codes: (C.L. Chen, W.W. Peterson, E.J. Weldon, 1969), (Kasami, 1974)
- Quasi-twisted codes: (Aydin et al 2001)
- Generalized Quasi-cyclic codes: (Siap, Kuhlan, 2005)
- Multitwisted codes: (Aydin et al., 2017)

Generator polynomial matrices

If ${\mathcal C}$ is QC, it has a generator polynomial matrix (GPM) ${\boldsymbol G}$ such that

$$\mathbf{AG} = \operatorname{diag}(x^m - 1)I_{\ell}.$$

The dimension of $\ensuremath{\mathcal{C}}$ is, taking determinant of both sides

$$\dim (\mathcal{C}) = \deg (\det (\mathbf{A})) = m\ell - \deg (\det (\mathbf{G})).$$

GPM matrices of MT codes

Thus, C has a GPM **G** such that $\mathbf{AG} = \operatorname{diag} \left[x^{m_j} - \lambda_j \right]. \quad (\text{Identical Equation})$

The dimension of
$$C$$
 is $\dim (C) = \deg (\det (\mathbf{A})) = \sum_{j=1}^{\ell} m_j - \deg (\det (\mathbf{G})).$

The Hermite normal form of **G** yields the reduced GPM of C. If *N* denotes the order of \mathcal{T}_{Λ} , then $N = \operatorname{lcm}\{t_1m_1, t_2m_2, \ldots, t_\ell m_\ell\}$, where t_i is the multiplicative order of λ_i .

The Euclidean dual

$$\mathcal{C}^{\perp} = \{ \mathbf{a} \in \mathbb{F}_{q}^{n} \mid \langle \mathbf{c}, \mathbf{a} \rangle = 0 \quad \forall \mathbf{c} \in \mathcal{C} \}.$$

Let $q = p^e$ and let $0 \le \kappa < e$. The κ -Galois dual of C is $C^{\perp_{\kappa}} = \{ \mathbf{a} \in \mathbb{F}_q^n \mid \langle \mathbf{c}, \mathbf{a} \rangle_{\kappa} = 0 \quad \forall \mathbf{c} \in C \}$

where

$$\langle \mathbf{c}, \mathbf{a} \rangle_{\kappa} = \sum_{i=1}^{n} c_i \; a_i^{p^{\kappa}} = \sum_{i=1}^{n} c_i \; \sigma^{\kappa} \left(a_i \right) = \langle \mathbf{c}, \sigma^{\kappa} \left(\mathbf{a} \right) \rangle.$$

It follows that $\mathcal{C}^{\perp_{\kappa}} = \sigma^{e-\kappa} \left(\mathcal{C}^{\perp} \right)$. In addition,

- **1** If C is cyclic, then $C^{\perp_{\kappa}}$ is cyclic.
- 2 If C is λ -constacyclic, then $C^{\perp_{\kappa}}$ is $\sigma^{e-\kappa}(\lambda^{-1})$ -constacyclic.
- **3** If C is QC, then $C^{\perp_{\kappa}}$ is QC.
- If C is Λ -MT, then $C^{\perp_{\kappa}}$ is $\sigma^{e-\kappa}(\Lambda^{-1})$ -MT.

GPM of the duals

Let C be a Λ -MT code over \mathbb{F}_{p^e} of index ℓ and block lengths $(m_1, m_2, \ldots, m_\ell)$, where $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. Let **G** be the reduced GPM of C and let **A** be the polynomial matrix satisfying the identical equation of **G**. For any $0 \le \kappa < e$, construct the polynomial matrix **H** such that for each $1 \le i \le \ell$

$$\operatorname{Col}_{i}(\mathbf{H}) \equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{m_{j}}\right]\mathbf{A}\left(\frac{1}{x}\right)\operatorname{diag}\left[x^{-d_{j}}\right]\right) \pmod{x^{m_{i}}-\frac{1}{\lambda_{i}}}.$$

1 Then **H** is a GPM for \mathcal{C}^{\perp} .

2 Hence
$$\mathbf{H}_{\kappa} = \sigma^{\mathbf{e}-\kappa}(\mathbf{H})$$
 is a GPM for $\mathcal{C}^{\perp_{\kappa}}$

Structure of the dual of MT codes

We shall now consider a sufficient condition under which the Galois hull of a MT code is MT as well. Let $\Lambda = (\lambda_1, \lambda_2, ..., \lambda_\ell)$ and let \mathcal{C} be a Λ -MT code over \mathbb{F}_q of index ℓ and block lengths $(m_1, m_2, ..., m_\ell)$.

If $\lambda_j^{-p^{e-\kappa}} = \lambda_j$ for $1 \le j \le \ell$, then the Galois hull of C, $h_{\kappa}(C)$ is Λ -MT code over \mathbb{F}_q of index ℓ and block lengths $(m_1, m_2, \ldots, m_\ell)$.

Numerical Example I

Let p = 2, e = 4, q = 16, n = 9, $\ell = 3$, $m_1 = 3$, $m_2 = 2$, $m_3 = 4$, and $\lambda_1 = \lambda_2 = \lambda_3 = 1$. Consider the GQC code C over \mathbb{F}_q of index ℓ , co-indices (m_1, m_2, m_3) , and reduced GPM

$$\mathbf{G} = \begin{pmatrix} x^2 + x + 1 & 1 & \theta^5 x + \theta^5 \\ 0 & x + 1 & \theta^5 x^2 + \theta^5 \\ 0 & 0 & x^3 + x^2 + x + 1 \end{pmatrix}$$

where $\theta \in \mathbb{F}_q$ such that $\theta^4 + \theta + 1 = 0$. The matrix that satisfies the identical equation of **G** is

$$\mathbf{A} = egin{pmatrix} x+1 & 1 & 0 \ 0 & x+1 & heta^5 \ 0 & 0 & x+1 \end{pmatrix}$$

The construction of a GPM $\boldsymbol{\mathsf{H}}$ for the Euclidean dual \mathcal{C}^{\bot} gives

$$\begin{aligned} \operatorname{Col}_{i}\left(\mathbf{H}\right) &\equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{3}, x^{2}, x^{4}\right]\mathbf{A}\left(\frac{1}{x}\right)\operatorname{diag}\left[x^{-2}, x^{-1}, x^{-3}\right]\right) \\ & (\operatorname{mod}\,x^{m_{i}}-1) \end{aligned}$$

for i = 1, 2, 3. That is,

$${f H} = egin{pmatrix} x+1 & 0 & 0 \ x^2 & x+1 & 0 \ 0 & heta^5 x & x+1 \end{pmatrix}.$$

If we let $\kappa=$ 3, then the $\kappa\text{-}\mathsf{Galois}$ dual \mathcal{C}^{\perp_3} of \mathcal{C} is GQC as well, with GPM

$$\mathbf{H}_{3} = \sigma(\mathbf{H}) = \begin{pmatrix} x+1 & 0 & 0 \\ x^{2} & x+1 & 0 \\ 0 & \theta^{10}x & x+1 \end{pmatrix}$$

٠

Numerical Example III

We claim that C is κ -Galois self-orthogonal. In fact, $C \subseteq C^{\perp_3}$ if and only if $\mathbf{G} = \mathbf{MH}_3$ for some polynomial matrix \mathbf{M} . Our claim is true because $\mathbf{G} = \mathbf{MH}_3$ for

$$\mathbf{M} = \begin{pmatrix} 1 & 1 & \theta^5 \\ x^2 & x+1 & \theta^5 x + \theta^5 \\ \theta^{10} x^3 & \theta^{10} x^2 + \theta^{10} x & x^2 + 1 \end{pmatrix}$$

Previous work I

Let C be a Λ -MT code over \mathbb{F}_{p^e} of index ℓ and block lengths $(m_1, m_2, \ldots, m_\ell)$, where $\Lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. Let **G** be the reduced GPM of C and let **A** be the polynomial matrix satisfying the identical equation of **G**. For any $0 \le \kappa < e$, construct the polynomial matrix **H** such that for each $1 \le i \le \ell$

$$\operatorname{Col}_{i}(\mathbf{H}) \equiv \operatorname{Row}_{i}\left(\operatorname{diag}\left[x^{m_{j}}\right]\mathbf{A}\left(\frac{1}{x}\right)\operatorname{diag}\left[x^{-d_{j}}\right]\right) \pmod{x^{m_{i}}-\frac{1}{\lambda_{i}}}.$$

1 Then **H** is a GPM for \mathcal{C}^{\perp} .

2 Hence
$$\mathbf{H}_{\kappa} = \sigma^{\mathbf{e}-\kappa}(\mathbf{H})$$
 is a GPM for $\mathcal{C}^{\perp_{\kappa}}$

Previous work II

Let C be a linear code over \mathbb{F}_{p^e} of length n with a generator matrix S. For any $0 \le \kappa < e$,

$$\operatorname{Rank}\left(S\sigma^{\kappa}\left(S^{t}\right)\right) = \dim\left(\mathcal{C}\right) - \dim\left(h_{\kappa}\left(\mathcal{C}\right)\right)$$

Published: 27 September 2019 Galois hulls of linear codes over finite fields Hongwei Liu & Xu Pan Designs, Codes and Cryptography 88, 241–255 (2020)

Theorem 3.1 Let C be an [n, k] linear code over \mathbb{F}_q with a generator matrix G. Let h be the dimension of the ℓ -Galois hull $h_{\ell}(C) = C \bigcap C^{\perp_{\ell}}$ of C, and let r = k - h. Then there exists a generator matrix G_0 of C such that

$$G_0 \sigma^{\ell}(G_0^T) = \begin{pmatrix} O_{h \times h} & H_{h \times r} \\ O_{r \times h} & P_{r \times r} \end{pmatrix},$$

where $O_{h \times h}$ and $O_{r \times h}$ are respectively zero matrices of sizes $h \times h$ and $r \times h$, and the rank r(Q) of $Q = \begin{pmatrix} H_{h \times r} \\ P_{r \times r} \end{pmatrix}$ is r. Furthermore, the rank $r(G\sigma^{\ell}(G^{T}))$ of $G\sigma^{\ell}(G^{T})$ is r for any generator matrix G of C.

Research program

Can we determine the dimension of $h_{\kappa}(\mathcal{C})$ for a MT code \mathcal{C} from a GPM instead of a generator matrix?

Can we provide a GPM for $h_{\kappa}(\mathcal{C})$?

A canonical QC code attached an MT code

With each GPM **G** of an MT code we will associate a QC code of index ℓ and co-index N,

$$N = \operatorname{lcm} \left\{ t_1 m_1, t_2 m_2, \ldots, t_\ell m_\ell \right\},\,$$

where t_j is the multiplicative order of λ_j in the relevant finite field. Let **G** be a GPM of a Λ -MT code, where $\Lambda^{-p^{-\kappa}} = \Lambda$. We define

$$\mathfrak{B}_{\mathbf{G}} \equiv \mathbf{G} \operatorname{diag} \left[\frac{x^{N} - 1}{x^{m_{j}} - \lambda_{j}} \right] \sigma^{\kappa} \left(\mathbf{G} \left(\frac{1}{x} \right) \operatorname{diag} \left[x^{m_{j}} \right] \right)^{t} \pmod{\left(x^{N} - 1 \right)}$$

such that entries of $\mathfrak{B}_{\mathbf{G}}$ are of degree at most N-1. Again, by $\mathbf{G}\left(\frac{1}{x}\right)$ we mean to replace x by $\frac{1}{x}$ in \mathbf{G} .

The dimension of the hull I

Let $\mathcal{Q}_{\mathbf{G}}$ be the row span of $\mathfrak{B}_{\mathbf{G}}$. This code is QC of length $N\ell$ and index ℓ over \mathbb{F}_q , and is generated as an $\mathbb{F}_q[x]$ -module by the rows of the polynomial matrix

$$\begin{pmatrix} \mathfrak{B}_{\mathbf{G}}\\ \left(x^{N}-1\right)\mathbf{I}_{\ell} \end{pmatrix}$$

Furthermore, the dimension of $\mathcal{Q}_{\mathbf{G}}$ as an \mathbb{F}_{q} -vector space is

$$\dim\left(\mathcal{Q}_{\mathsf{G}}\right) = \dim\left(\mathcal{C}\right) - \dim\left(h_{\kappa}\left(\mathcal{C}\right)\right).$$

In particular, the code C is κ -Galois self-orthogonal iff

$$\dim\left(\mathcal{Q}_{\mathbf{G}}\right)=0.$$

It is κ -Galois LCD iff dim $(\mathcal{Q}_{\mathbf{G}}) = \dim (\mathcal{C})$.

The dimension of the hull II

The dimension $\dim (h_{\kappa}(\mathcal{C}))$ can be computed from the determinantal divisors of $\mathfrak{B}_{\mathbf{G}}$.

$$\dim \left(h_{\kappa}\left(\mathcal{C}\right)\right) = \dim \left(\mathcal{C}\right) + \mathsf{deg}\left(\gcd_{0 \leq i \leq \ell}\left\{\left(x^{N} - 1\right)^{\ell - i} \mathfrak{d}_{i}\left(\mathfrak{B}_{\mathsf{G}}\right)\right\}\right) - N\ell$$

where $\vartheta_i(\mathfrak{B}_{\mathbf{G}})$ is the *i*-th determinantal divisor of $\mathfrak{B}_{\mathbf{G}}$. The code \mathcal{C} is κ -Galois LCD if and only if dim $(\mathcal{Q}_{\mathbf{G}}) = \dim(\mathcal{C})$ if and only if

$$\deg\left(\gcd_{0\leq i\leq \ell}\left\{\left(x^{N}-1\right)^{\ell-i}\mathfrak{d}_{i}\left(\mathfrak{B}_{\mathbf{G}}\right)\right\}\right)=N\ell-\dim\left(\mathcal{C}\right).$$

The last slide

Merci beaucoup!!!!! Viel dank!!!! Grazie Mille!!!! Grazcha fich!!!!