Can we use convolutional codes in the McEliece Cryptosystem?

P. Almeida, M. Beltrá, D. Napp, C. Sebastião

8th June 2023

- In block codes a long block of fixed length is transmitted:

$$
\mathbf{u} G=\mathbf{v}
$$

- In convolutional codes a continuous sequence of shorter vectors is transmitted:

$$
\mathbf{u}=\left(\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right) \Longrightarrow \mathbf{u}_{s} D^{s}+\cdots+\mathbf{u}_{2} D^{2}+\mathbf{u}_{1} D+\mathbf{u}_{0}=: \mathbf{u}(D)
$$ the information vector.

- In block codes a long block of fixed length is transmitted:

$$
\mathbf{u} G=\mathbf{v}
$$

- In convolutional codes a continuous sequence of shorter vectors is transmitted:
$\mathbf{u}=\left(\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right) \Longrightarrow \mathbf{u}_{s} D^{s}+\cdots+\mathbf{u}_{2} D^{2}+\mathbf{u}_{1} D+\mathbf{u}_{0}=: \mathbf{u}(D)$ the information vector.

Encoding with a convolutional encoder

$$
\begin{aligned}
& \cdots+\mathbf{u}_{2} D^{2}+\mathbf{u}_{1} D+\mathbf{u}_{0} \xrightarrow{G(D)=G_{0}+G_{1} D+G_{2} D^{2}+\ldots+G_{m} D^{m}} \\
& \cdots+\underbrace{\left(\mathbf{u}_{2} G_{0}+\mathbf{u}_{1} G_{1}+\mathbf{u}_{0} G_{2}\right)}_{\mathbf{v}_{2}} D^{2}+\underbrace{\left(\mathbf{u}_{1} G_{0}+\mathbf{u}_{0} G_{1}\right)}_{\mathbf{v}_{1}} D+\underbrace{\mathbf{u}_{0} G_{0}}_{\mathbf{v}_{0}}
\end{aligned}
$$

Definition

A convolutional code \mathcal{C} of rate k / n is an $\mathbb{F}[D]$-submodule of $\mathbb{F}[D]^{n}$ of rank k given by a polynomial encoder matrix $G(D) \in \mathbb{F}^{k \times n}[D]$,

$$
\mathcal{C}=\operatorname{Im}_{\mathbb{F}[D]} G(D)=\left\{\mathbf{u}(D) G(D): \mathbf{u}(D) \in \mathbb{F}^{k}[D]\right\}
$$

The polynomial:

$$
\begin{aligned}
& \mathbf{u}(D) G(D)=\left(\mathbf{u}_{0}+\mathbf{u}_{1} D+\cdots+\mathbf{u}_{s} D^{s}\right)\left(G_{0}+G_{1} D+\cdots+G_{m} D^{m}\right) \\
& \quad=\mathbf{u}_{0} G_{0}+\left(\mathbf{u}_{1} G_{0}+\mathbf{u}_{0} G_{1}\right) D+\left(\mathbf{u}_{2} G_{0}+\mathbf{u}_{1} G_{1}+\mathbf{u}_{0} G_{2}\right) D^{2}+\cdots
\end{aligned}
$$

Can be represented by constant matrices:

Original McEliece PKC:

Original McEliece PKC:

Secret key: G, S and P where

- $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code \mathcal{C} capable of correcting t errors,
- $S \in \mathbb{F}^{k \times k}$ an invertible matrix
- $P \in \mathbb{F}^{n \times n}$ a permutation matrix.

Original McEliece PKC:

Secret key: G, S and P where

- $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code \mathcal{C} capable of correcting t errors,
- $S \in \mathbb{F}^{k \times k}$ an invertible matrix
- $P \in \mathbb{F}^{n \times n}$ a permutation matrix.

Public key: $G^{\prime}=S G P$ and t.

Original McEliece PKC:

Secret key: G, S and P where

- $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code \mathcal{C} capable of correcting t errors,
- $S \in \mathbb{F}^{k \times k}$ an invertible matrix
- $P \in \mathbb{F}^{n \times n}$ a permutation matrix.

Public key: $G^{\prime}=S G P$ and t.
The codes used: Goppa codes or QC MDPC.

Original McEliece PKC:

Secret key: G, S and P where

- $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code \mathcal{C} capable of correcting t errors,
- $S \in \mathbb{F}^{k \times k}$ an invertible matrix
- $P \in \mathbb{F}^{n \times n}$ a permutation matrix.

Public key: $G^{\prime}=S G P$ and t.
The codes used: Goppa codes or QC MDPC.

A major drawback

Requires very large keys

Original McEliece PKC:

Secret key: G, S and P where

- $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code \mathcal{C} capable of correcting t errors,
- $S \in \mathbb{F}^{k \times k}$ an invertible matrix
- $P \in \mathbb{F}^{n \times n}$ a permutation matrix.

Public key: $G^{\prime}=S G P$ and t.
The codes used: Goppa codes or QC MDPC.

A major drawback

Requires very large keys

How to reduce them?
Change the G. It would be ideal to use GRS

A new Variant of the McEliece cryptosystem

Classic McEliece cryptosystem:

Encoder G of a linear block code allows to correct t errors:

$$
G^{\prime}=S G P
$$

S an invertible matrix and P a permutation. Alice sends

$$
\mathbf{y}=\mathbf{u} G^{\prime}+\mathbf{e}
$$

Bob computes

$$
\mathbf{y} P^{-1}=\mathbf{u} S G+\mathbf{e} P^{-1}
$$

and decodes

$$
(\mathbf{u} S) G \Longrightarrow \mathbf{u} S \Longrightarrow \mathbf{u}
$$

Proposal:

We construct our public convolutional encoder $G^{\prime}(D)$ as

$$
G^{\prime}(D)=S(D) G P\left(D^{-1}, D\right) .
$$

Proposal:

We construct our public convolutional encoder $G^{\prime}(D)$ as

$$
G^{\prime}(D)=S(D) G P\left(D^{-1}, D\right) .
$$

Alice sends

$$
\mathbf{y}(D)=\mathbf{u}(D) G^{\prime}(D)+\mathbf{e}(D) \Longrightarrow
$$

Bob computes

$$
\mathbf{y}(D) T\left(D^{-1}, D\right)=(\mathbf{u}(D) S(D)) G+\mathbf{e}(D) P^{-1}\left(D^{-1}, D\right)
$$

and finally decodes

$$
(\mathbf{u}(D) S(D)) G \Longrightarrow \mathbf{u}(D) S(D) \Longrightarrow \mathbf{u}(D)
$$

- Let $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code admitting an efficient decoding algorithm which can correct up to t errors.
- Let $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code admitting an efficient decoding algorithm which can correct up to t errors.
- An invertible polynomial matrix

$$
S(D)=S_{1} D+S_{2} D^{2}+\cdots+S_{m-1} D^{m-1} \in \mathbb{F}^{k \times k}[D],
$$

whose inverse is in $\mathbb{F}^{k \times k}(D)$

- Let $G \in \mathbb{F}^{k \times n}$ be an encoder of an (n, k) block code admitting an efficient decoding algorithm which can correct up to t errors.
- An invertible polynomial matrix

$$
S(D)=S_{1} D+S_{2} D^{2}+\cdots+S_{m-1} D^{m-1} \in \mathbb{F}^{k \times k}[D]
$$

whose inverse is in $\mathbb{F}^{k \times k}(D)$

- An invertible rational polynomial matrix

$$
P\left(D^{-1}, D\right)=P_{-1} D^{-1}+P_{0}+P_{1} D
$$

whose inverse is of the form

$$
\begin{equation*}
T\left(D^{-1}, D\right)=P^{-1}\left(D^{-1}, D\right)=T_{-1} D^{-1}+T_{0}+T_{1} D \tag{1}
\end{equation*}
$$

and such that each row of each coefficient matrix T_{i}, $i \in\{-1,0,1\}$, has no more than ρ nonzero elements.

Summary:

Secret key: $S(D), G$, and $P\left(D^{-1}, D\right)$.
Public key: $G^{\prime}(D)=S(D) G P\left(D^{-1}, D\right)$ and t / ρ.

Summary:

Secret key: $S(D), G$, and $P\left(D^{-1}, D\right)$.
Public key: $G^{\prime}(D)=S(D) G P\left(D^{-1}, D\right)$ and t / ρ.

Encryption: Alice selects an error vector $\mathbf{e}(D)$ satisfying

$$
\operatorname{wt}\left(\left(\mathbf{e}_{i}, \mathbf{e}_{i+1}, \mathbf{e}_{i+2}\right)\right) \leq \frac{t}{\rho},
$$

for all $0 \leq i \leq s+m-2$, and encrypts $\mathbf{u}(D)$ as

$$
\mathbf{y}(D)=\mathbf{u}(D) G^{\prime}(D)+\mathbf{e}(D)
$$

Decryption: Bob multiplies $\mathbf{y}(D)$ from the right by $T\left(D^{-1}, D\right)=P^{-1}\left(D^{-1}, D\right)$ to obtain

$$
\mathbf{y}(D) T\left(D^{-1}, D\right)=\mathbf{u}(D) S(D) G+\mathbf{e}(D) T\left(D^{-1}, D\right)
$$

he decodes each coefficient using G and finally he recovers the message $\mathbf{u}(D)$ from $\mathbf{u}(D) S(D)$.

Using Generalized Reed-Solomon codes

We need to protect G with $S(D) G P\left(D^{-1}, D\right)$

Using Generalized Reed-Solomon codes

We need to protect G with $S(D) G P\left(D^{-1}, D\right)$
We impose the following conditions on $P\left(D^{-1}, D\right)$ and $T\left(D^{-1}, D\right)$:

- each nonzero column of P_{i} has at least two nonzero elements;
- each nonzero row of T_{i} has exactly two nonzero elements.

Using Generalized Reed-Solomon codes

We need to protect G with $S(D) G P\left(D^{-1}, D\right)$
We impose the following conditions on $P\left(D^{-1}, D\right)$ and $T\left(D^{-1}, D\right)$:

- each nonzero column of P_{i} has at least two nonzero elements;
- each nonzero row of T_{i} has exactly two nonzero elements.

Does there exist a large class of such matrices?

Using Generalized Reed-Solomon codes

We need to protect G with $S(D) G P\left(D^{-1}, D\right)$
We impose the following conditions on $P\left(D^{-1}, D\right)$ and $T\left(D^{-1}, D\right)$:

- each nonzero column of P_{i} has at least two nonzero elements;
- each nonzero row of T_{i} has exactly two nonzero elements.

Does there exist a large class of such matrices?

How to build them?

Building $P\left(D^{-1}, D\right)$

Lemma

Let T be a block matrix of the form

$$
T=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

where A_{11} and A_{22} are non singular. Then,

$$
\text { a) }|T|=\left|A_{11}\right|\left|A_{22}-A_{21} A_{11}^{-1} A_{12}\right| \text {. }
$$

b) If T is non singular, the inverse of T is

$$
\left[\begin{array}{cc}
\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & -A_{11}^{-1} A_{12}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1} \\
-A_{22}^{-1} A_{21}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)^{-1} & \left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}
\end{array}\right] .
$$

building $T\left(D^{-1}, D\right)$

We propose a class of matrices $T\left(D^{-1}, D\right)$ of the following form:

$$
T\left(D^{-1}, D\right)=\Pi\left[\begin{array}{c|c}
A\left(D^{-1}, D\right) & \beta A\left(D^{-1}, D\right) \\
\hline A\left(D^{-1}, D\right) & A\left(D^{-1}, D\right)
\end{array}\right],
$$

with n even, $\beta \notin\{0,1\}, \Pi \in \mathbb{F}^{n \times n}$ be a permutation matrix and the matrices $A=A\left(D^{-1}, D\right)$ are randomly generated satisfying the following conditions:
(1) A is an upper triangular matrix;
(2) The entries of the principal diagonal of A are of the form D^{j}, with $j \in\{-1,0,1\}$, in such a way that there are δ_{j} entries with power D^{j}, satisfying

$$
\delta_{-1}=\delta_{1} ;
$$

(3) Each row of A has at most one entry of the form γD^{j} for each exponent $j \in\{-1,0,1\}$, with $\gamma \in \mathbb{F} \backslash\{0\}$;
(9) All nonzero entries of a column of A have the same exponent of D.

Costruction of $S(D)$

- As for the construction of
$S(D)=S_{1} D+S_{2} D^{2}+\cdots+S_{m-1} D^{m-1}$ we only require, besides of being invertible, to have the first coefficients with rank less than k.

Costruction of $S(D)$

- As for the construction of $S(D)=S_{1} D+S_{2} D^{2}+\cdots+S_{m-1} D^{m-1}$ we only require, besides of being invertible, to have the first coefficients with rank less than k.
- These weak restrictions on $S(D)$ will allow to generate large parts of the S_{i} completely at random.

Strong Keys

Strong Keys are interesting to hinder ISD attacks. Consider:

$$
\mathbf{u}_{0} \widetilde{G}=\mathbf{y}_{I}
$$

Strong Keys

Strong Keys are interesting to hinder ISD attacks. Consider:

$$
\mathbf{u}_{0} \widetilde{G}=\mathbf{y}_{I}
$$

We require:

- $\mathcal{C}=\operatorname{Im} \widetilde{G}$ to have distance $=1$
- the reciprocal code $\widetilde{\mathcal{C}^{\mathbf{r}}}=\operatorname{Im} \widetilde{G^{r}}$ to have distance 1 .

Many strong keys

n	k	m	$\left(d_{-1}, d_{0}, d_{1}\right)$	$\left(r_{1}, r_{2}, \ldots, r_{m-1}\right)$	percentage strong keys
72	48	6	$(24,24,24)$	$(16,32,48,32,16)$	34.4%
72	48	10	$(24,24,24)$	$(16,16,24,32,48,32,24,16,16)$	23.4%
108	72	6	$(36,36,36)$	$(24,48,72,48,24)$	64.4%
108	72	10	$(36,36,36)$	$(24,24,36,48,72,48,36,24,24)$	44.2%
108	84	6	$(36,36,36)$	$(28,56,84,56,28)$	71.6%
108	84	10	$(36,36,36)$	$(28,28,42,56,84,56,42,28,28)$	55.2%
120	84	6	$(40,40,40)$	$(28,56,84,56,28)$	77.0%
120	84	10	$(40,40,40)$	$(28,28,42,56,84,56,42,28,28)$	60.4%
144	96	6	$(48,48,48)$	$(32,64,96,64,32)$	83.4%
144	96	10	$(48,48,48)$	$(32,32,48,64,96,64,48,32,32)$	62.2%
144	108	6	$(48,48,48)$	$(36,72,108,72,36)$	89.0%
144	108	10	$(48,48,48)$	$(36,36,54,72,108,72,54,36,36)$	74.0%
180	120	6	$(60,60,60)$	$(40,80,120,80,40)$	89.6%
180	120	10	$(60,60,60)$	$(40,40,60,80,120,80,60,40,40)$	76.8%
180	132	6	$(60,60,60)$	$(44,88,132,88,44)$	90.8%
180	132	10	$(60,60,60)$	$(44,44,66,88,132,88,66,44,44)$	83.6%

Table: Percentage of strong keys.

ATTACKS AGAINST THE PROPOSED CRYPTOSYSTEM

There are two main attacks to the McEliece PKC

- Plaintext recovery
- ISD attacks on the full rank sliding matrix
- Sequential plaintext recovery attacks
- Structural attacks

ISD attacks on the full rank sliding matrix

Let

$$
\left.\begin{array}{rl}
\mathbf{y}_{\text {total }} & =\left[\begin{array}{llll}
\mathbf{y}_{0} & \mathbf{y}_{1} & \cdots & \mathbf{y}_{s+m}
\end{array}\right], \\
\mathbf{u}_{\text {total }} & =\left[\begin{array}{lllll}
\mathbf{u}_{0} & \mathbf{u}_{1} & \cdots & \mathbf{u}_{s}
\end{array}\right], \\
\mathbf{e}_{\text {total }} & =\left[\begin{array}{llllll}
\mathbf{e}_{0} & \mathbf{e}_{1} & \cdots & \mathbf{e}_{s+m}
\end{array}\right], \\
G_{\text {total }}=\left[\begin{array}{ccccccc}
G_{0}^{\prime} & G_{1}^{\prime} & G_{2}^{\prime} & \cdots & G_{m}^{\prime} & & \\
& G_{0}^{\prime} & G_{1}^{\prime} & G_{2}^{\prime} & \cdots & G_{m}^{\prime} & \\
& & \ddots & \ddots & \ddots & & \ddots \\
& & & G_{0}^{\prime} & G_{1}^{\prime} & G_{2}^{\prime} & \cdots
\end{array} G_{m}^{\prime}\right.
\end{array}\right] .
$$

An attacker could consider

$$
\mathbf{y}_{\text {total }}=\mathbf{u}_{\text {total }} G_{\text {total }}+\mathbf{e}_{\text {total }}
$$

ISD attacks on the full rank sliding matrix

Let

$$
\begin{gathered}
\mathbf{y}_{\text {total }}=\left[\begin{array}{llll}
\mathbf{y}_{0} & \mathbf{y}_{1} & \cdots & \mathbf{y}_{s+m}
\end{array}\right] \\
\mathbf{u}_{\text {total }}=\left[\begin{array}{lllll}
\mathbf{u}_{0} & \mathbf{u}_{1} & \cdots & \mathbf{u}_{s}
\end{array}\right] \\
\mathbf{e}_{\text {total }}=\left[\begin{array}{llllll}
\mathbf{e}_{0} & \mathbf{e}_{1} & \cdots & \mathbf{e}_{s+m}
\end{array}\right] \\
G_{\text {total }}=\left[\begin{array}{ccccccc}
G_{0}^{\prime} & G_{1}^{\prime} & G_{2}^{\prime} & \cdots & G_{m}^{\prime} & \\
& G_{0}^{\prime} & G_{1}^{\prime} & G_{2}^{\prime} & \cdots & G_{m}^{\prime} & \\
& & \ddots & \ddots & \ddots & & \ddots
\end{array}\right. \\
\end{gathered}
$$

An attacker could consider

$$
\mathbf{y}_{\text {total }}=\mathbf{u}_{\text {total }} G_{\text {total }}+\mathbf{e}_{\text {total }}
$$

Far too large matrices even with optimization of ISD algorithms

Sequential plaintext recovery attacks

If an attacker is able to obtain $\mathbf{u}_{0}, \mathbf{e}_{0}$, then \Longrightarrow
$D^{-1}\left(\mathbf{y}(D)-\mathbf{u}_{0} G^{\prime}(D)-\mathbf{e}_{0}\right)$ and attack $\mathbf{u}_{1}, \mathbf{e}_{1}$ and so on.

Sequential plaintext recovery attacks

If an attacker is able to obtain $\mathbf{u}_{0}, \mathbf{e}_{0}$, then \Longrightarrow
$D^{-1}\left(\mathbf{y}(D)-\mathbf{u}_{0} G^{\prime}(D)-\mathbf{e}_{0}\right)$ and attack $\mathbf{u}_{1}, \mathbf{e}_{1}$ and so on.

However, the equations that involve only \mathbf{u}_{0} are represented by

$$
\mathbf{u}_{0} \widetilde{G}=\mathbf{y}_{I}+\mathbf{e}_{I}
$$

and the code generated by the rows of \widetilde{G} is $\widetilde{\mathcal{C}}$. If $G^{\prime}(D)$ is a strong key then $\widetilde{\mathcal{C}}$ has distance equal to 1 and then recovering \mathbf{u}_{0} is difficult in the presence of errors.

Structural attacks

If one consider the code generated by $\mathcal{G}=U G \Delta \Gamma$, with $U \in \mathbb{F}^{k \times k}$ non singular, $\Delta \in \mathbb{F}^{n \times n}$ non singular diagonal and $\Gamma \in \mathbb{F}^{n \times n}$ a permutation matrix, then, any triplet

$$
\left\{\mathcal{S}(D)=S(D) U^{-1}, \mathcal{G}=U G \Delta \Gamma, \mathcal{P}\left(D^{-1}, D\right)=(\Delta \Pi)^{-1} P\left(D^{-1}, D\right)\right\}
$$

can be used to decode the ciphertext.

Structural attacks

If one consider the code generated by $\mathcal{G}=U G \Delta \Gamma$, with $U \in \mathbb{F}^{k \times k}$ non singular, $\Delta \in \mathbb{F}^{n \times n}$ non singular diagonal and $\Gamma \in \mathbb{F}^{n \times n}$ a permutation matrix, then, any triplet

$$
\left\{\mathcal{S}(D)=S(D) U^{-1}, \mathcal{G}=U G \Delta \Gamma, \mathcal{P}\left(D^{-1}, D\right)=(\Delta \Pi)^{-1} P\left(D^{-1}, D\right)\right\}
$$

can be used to decode the ciphertext.
Again, far too many possibilities

Public key sizes and ciphertext sizes

	n	k	m	s	WF Full Rank	Public Key	Ciphertext size
	72	48	6	31	$2^{128.88}$	169344	19152
	72	48	10	32	$2^{130.16}$	266112	21672
	108	72	6	21	$2^{131.77}$	381024	21168
	108	72	6	47	$2^{257.22}$	381024	40824
	108	72	10	20	$2^{131.64}$	598752	23436
	120	84	6	19	$2^{130.65}$	493920	21840
	120	84	10	17	$2^{129.85}$	776160	776160
New	120	84	10	45	$2^{259.47}$	23520	
	144	96	6	15	$2^{130.17}$	474144	25344
	144	108	10	40	$2^{259.51}$	1368576	58752
	144	108	10	83	$2^{512.95}$	1368576	1209600
	180	120	6	28	$2^{256.46}$	1330560	20400
	180	132	6	63	$2^{513.10}$	100800	
	180	132	10	31	$2^{260.38}$	60480	
Classic	2960	2288			2^{128}	1537536	672
McEliece	6960	5413			2^{256}	8373911	1547
	8192	6528			2^{256}	10862592	1664
GRS with	784	496			$2^{128.1}$	1428480	6637664

Table: Parameters, work forces and public key sizes (in bits) of PKC

Conclusions

- The keys obtained are significantly smaller

Conclusions

- The keys obtained are significantly smaller
- The proposed scheme seems secure but many many possible variants using convolutional codes are possible, i.e, it allows a lot of flexibility (we are waiting for the attacks)
- Use of convolutional codes with low degree instead of block code
- Avoid starting and finishing from the zero state
- Using particular matrices P for allowing more errors at the beginning, etc

Conclusions

- The keys obtained are significantly smaller
- The proposed scheme seems secure but many many possible variants using convolutional codes are possible, i.e, it allows a lot of flexibility (we are waiting for the attacks)
- Use of convolutional codes with low degree instead of block code
- Avoid starting and finishing from the zero state
- Using particular matrices P for allowing more errors at the beginning, etc
- One main drawback is that the length of the messages are longer than the ones used in most common public-key encryption schemes (this seems difficult to avoid when using convolutional codes).

Thanks for your attention and the organization!

