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Reed-Solomon are AG codes

Let Fq = {0, α1, . . . , αq−1}, α = (α1, . . . , αq−1) ∈ Fq−1
q and the

evaluation map

evα : Fq[x ]<k
// Fq−1

q

p(x) // (p(α1), . . . , p(αq−1))

RSq(n = q − 1, k) = Im α.

α1, . . . , αq−1 are the affine coordinates of the points in A1 − P0

Fq[x ]<k are the rational functions over P1 with at most k − 1
poles at P∞ (and nowhere else)
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Goppa codes

X , irreducible smooth projective curve of genus g over Fq

P1, . . . ,Pn, n different Fq-rational points of X ,
D = P1 + · · ·+ Pn

G =
∑

niQi −
∑

n′jQ
′
j with suppG ∩ suppD = ∅

Riemann-Roch space associated to G

L(G ) =
{
f ∈ Fq(X )

∣∣∣has zeroes at least at the points Q ′j , of order ≥ n′j ,
has poles only at the points Qi , of order ≤ ni

}

There is a morphism (injective if degG ≤ degD)

α : L(G ) // Fn
q

f // (f (P1), . . . , f (Pn))

Definition

Imα is the Goppa code C(D,G ).
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Goppa codes
Parameters

length(C)=n, bounded by the number of rational points in X

dim C = dimL(G )
By Riemann-Roch Theorem,

dim C ≥ deg(G ) + 1− g ,

If deg(G ) > 2g − 2 ⇒ dim C = deg(G ) + 1− g .

According to the number of zeros in suppD of f ∈ L(G ),

d ≥ n − deg(G ) ⇒ d + k ≥ n + 1− g

By Singleton bound

n − k + 1− g ≤ d ≤ n − k + 1
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Dual Goppa codes

X , irreducible smooth projective curve of genus g over Fq

P1, . . . ,Pn n different Fq-rational points of X ,
D = P1 + · · ·+ Pn

G =
∑

niQi −
∑

n′jQ
′
j

Ω(G ) =

{
ω ∈ ΩX

∣∣∣∣has zeros at least at Qi , of order ≥ ni ,
has poles only at Q ′j , of order ≤ n′j

}

There is a morphism (injective if deg(G ) > 2g − 2)

β : Ω(G − D) // Fn
q

ω // (resP1(ω), . . . , resPn(ω))

Definition

Im β is the dual Goppa code C∗(D,G ).
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Dual Goppa codes
Properties

length(C∗)=n,

dim C∗ = dimΩ(G − D)
By Riemann-Roch Theorem,

dim C ≥ n − deg(G )− 1 + g ,

If deg(G ) < n ⇒ dim C = n − deg(G )− 1 + g .

By the number of poles of ω ∈ Ω(G − D), we have

d ≥ deg(G )− 2g + 2 ⇒ d + k ≥ n + 1− g

By the Residues Theorem C∗(D,G ) = C⊥(D,G ).

C∗(D,G ) = C(D,K + D − G ).
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Convolutional construction

Aim:
Develop an analogous construction for convolutional codes
Two possible (equivalent) settings

CC as submodules over Fq[z ]

CC as subspaces over Fq(z)

CC as a free submodule of Fq[z ]n

Block codes Convolutional codes
subspaces over Fq submodules over Fq[z ]
X a curve over Fq  X a family of curves parameterized by A1

n rational points  n sections of X → A1

a divisor G  an invertible sheaf L
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The evaluation map

Let us recall how the evaluation map is defined:
Let D be a divisor over X . We have an exact sequence

0 −→ OX (−D) −→ OX −→ OD −→ 0 ,

where OD ' Fn
q.

G a divisor with suppG ∩ suppD = ∅, OX (G ) invertible sheaf.
By tensoring by OX (G ) and taking global sections we have

0 −→ H0(X ,OX (G−D)) −→ H0(X ,OX (G )) ≡ L(G )
α−→ Fn

q −→ . . .



Convolutional Goppa Codes
Fq[z]-submodules

X
π−→ A1 a family of curves parameterized by A1.

pi := A1 → X , 1 ≤ i ≤ n, different sections of π,
D = p1(A1) ∪ . . . ∪ pn(A1), a Cartier divisor on X .

L an invertible sheaf over X .

We have

0 −→ L(−D) −→ L −→ OD ⊗ L ' OD −→ 0 ,

and by taking global sections

0 −→ H0(X ,L(−D)) −→ H0(X ,L)
α−→ H0(X ,OD) −→ . . . ,
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Convolutional Goppa Codes
Fq[z]-submodules

There are (non-canonical, in general) isomorphisms

φ : H0(X ,OD)
∼−→ Fq[z ]n

Definition

The convolutional Goppa code defined by L,D, φ is the submodule
C(L,D, φ) = Im φ ◦ α with

H0(X ,L)
α−→ H0(X ,OD)

φ−→ Fq[z ]n

Further, we may consider a subspace Γ ⊆ H0(X ,L).

Definition

The convolutional Goppa code defined by Γ,D, φ is the submodule
C(Γ,D, φ) = Im φ ◦ α|Γ.

The dual convolutional Goppa codes are obtained analogously.
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Convolutional Goppa Codes
Fq(z)-vector subspaces

Block codes Convolutional codes
Subspaces over Fq Fq(z)
A curve over Fq Fq(z)
n different points Fq-rational Fq(z)-rational

Simpler tools

The submodule approach yields this one by taking the fiber at
the generic point

Not every curve over Fq(z) extends to a family parameterized
by A1

The submodule approach allows characterization of basic
matrices



Convolutional Goppa codes
Fq(z)-vector subspaces

X , irreducible smooth projective curve of genus g over Fq(z)

P1, . . . ,Pn, n different Fq(z)-rational points of X ,
D the divisor D = P1 + · · ·+ Pn

G =
∑

niQi −
∑

n′jQ
′
j another divisor in X with

suppG ∩ suppD = ∅
L(G ) the Fq(z)-vector space of global sections of OX (G )

If degG ≤ degD, there exists an injective morphism

α : L(G ) // Fq(z)n

s � // (s(P1), . . . , s(Pn))

Definition

Imα ∩ Fq[z ]n is the convolutional Goppa code C(D,G ).

The dual construction is carried out in the same way.
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Convolutional Goppa codes
Properties

Riemann-Roch Theorem and Residues Theorem are of
application in this setting.

Parameters:

length(C)=length(C∗)=n
If 2g − 2 < deg(G ) < n

dim C = deg(G ) + 1− g

dim C∗ = n − deg(G )− 1 + g

The free distances are loosely bounded by the number of
zeros/poles.

C∗(D,G ) = C⊥(D,G )
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An example over an elliptic curve

X the curve y2 + zxy + y = x3 + x2 over F2(z)

D = P1 + P2 + P3 + P4 with

P1 = (1 + z , z) P2 = (1 + z , 1 + z2)

P3 = (1+z3

z2
, 1+z3+z4+z5

z3
) P4 = (1+z3

z2
, 1+z2+z4

z3
)

G = 3P∞ − P0

L(G ) = 〈x , y〉 =
〈

z2

1+z x , zy + 1+z+z2

1+z x
〉

.

C(D,G ) is generated by(
z2 z2 1 + z + z2 1 + z + z2

1 + z 1 + z2 + z3 1 + z + z3 0

)
C(D,G ) has parameters [n, k , δ,m, dfree ] = [4, 2, 5, 3, 8] reaching
the Griesmer bound.
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Convolutional vs Block

On the one (adverse) side

Convolutional construction is far more complex

Distance issues: free distance cannot be related to zeroes of
functions

Decoding via an evaluator polynomial cannot be
(straightforwardly) applied

On the other (favorable) one

many optimal constructions on curves with low genus

curves over Fq(z) → infinitely many rational points

also block codes can be constructed in this way



AG structure of any code

Block codes

R. Pellikaan et al. (”Which linear codes are algebraic
geometric?”)

Every code may be given a certain algebraic geometric structure
over a curve with sufficiently many points (high genus)

Convolutional codes

Every code may be given a certain algebraic geometric
structure over P1 (and any other curve)

Characterization of codes with complete Goppa structure over
P1, elliptic and hiperelliptic curves.

Explicit constructions

Characterization of MDS codes of rate 1/n.
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Conclusions

Much has been done

AG constructions work for CC

explicit examples of optimal codes can be easily obtained

characterizations over curves with low genus and codes of low
rates

and much remains to be done

characterization of the free distance

decoding algorithms

more general characterizations



!Thank you


