Convolutional Codes From an Algebraic Geometric perspective

José Ignacio Iglesias Curto

joint works with
J. M. Muñoz Porras, J. Á. Domínguez Pérez, G. Serrano Sotelo,
F. J. Plaza Martín, Á. Muñoz Castañeda
Universidad de Salamanca

Zurich - June 7, 2023

Reed-Solomon are AG codes

Let $\mathbb{F}_{q}=\left\{0, \alpha_{1}, \ldots, \alpha_{q-1}\right\}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{q-1}\right) \in \mathbb{F}_{q}^{q-1}$ and the evaluation map

$$
\begin{aligned}
& e v_{\alpha}: \mathbb{F}_{q}[x]_{<k} \longrightarrow \mathbb{F}_{q}^{q-1} \\
& \quad p(x) \longrightarrow\left(p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{q-1}\right)\right)
\end{aligned}
$$

$$
R S_{q}(n=q-1, k)=\operatorname{Im} \alpha
$$

Reed-Solomon are AG codes

Let $\mathbb{F}_{q}=\left\{0, \alpha_{1}, \ldots, \alpha_{q-1}\right\}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{q-1}\right) \in \mathbb{F}_{q}^{q-1}$ and the evaluation map

$$
\begin{aligned}
e v_{\alpha} & : \mathbb{F}_{q}[x]_{<k} \longrightarrow \mathbb{F}_{q}^{q-1} \\
& p(x) \longrightarrow\left(p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{q-1}\right)\right)
\end{aligned}
$$

$R S_{q}(n=q-1, k)=\operatorname{Im} \alpha$.
$\alpha_{1}, \ldots, \alpha_{q-1}$ are the affine coordinates of the points in $\mathbb{A}^{1}-P_{0}$ $\mathbb{F}_{q}[x]_{<k}$ are the rational functions over \mathbb{P}^{1} with at most $k-1$ poles at P_{∞} (and nowhere else)

Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- P_{1}, \ldots, P_{n}, n different \mathbb{F}_{q}-rational points of X, $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ with supp $G \cap \operatorname{supp} D=\emptyset$
- Riemann-Roch space associated to G
$L(G)=\left\{f \in \mathbb{F}_{q}(X) \left\lvert\, \begin{array}{l}\text { has zeroes at least at the points } Q_{j}^{\prime} \text {, of order } \geq n_{j}^{\prime}, \\ \text { has poles only at the points } Q_{i}, \text { of order } \leq n_{i}\end{array}\right.\right\}$

Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- P_{1}, \ldots, P_{n}, n different \mathbb{F}_{q}-rational points of X, $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ with supp $G \cap \operatorname{supp} D=\emptyset$
- Riemann-Roch space associated to G

$$
L(G)=\left\{f \in \mathbb{F}_{q}(X) \left\lvert\, \begin{array}{l}
\text { has zeroes at least at the points } Q_{j}^{\prime}, \text { of order } \geq n_{j}^{\prime}, \\
\text { has poles only at the points } Q_{i}, \text { of order } \leq n_{i}
\end{array}\right.\right\}
$$

There is a morphism (injective if $\operatorname{deg} G \leq \operatorname{deg} D$)

$$
\begin{aligned}
\alpha: L(G) & \longrightarrow \mathbb{F}_{q}^{n} \\
& f \longrightarrow\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- P_{1}, \ldots, P_{n}, n different \mathbb{F}_{q}-rational points of X, $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ with supp $G \cap \operatorname{supp} D=\emptyset$
- Riemann-Roch space associated to G

$$
L(G)=\left\{f \in \mathbb{F}_{q}(X) \left\lvert\, \begin{array}{l}
\text { has zeroes at least at the points } Q_{j}^{\prime}, \text { of order } \geq n_{j}^{\prime}, \\
\text { has poles only at the points } Q_{i}, \text { of order } \leq n_{i}
\end{array}\right.\right\}
$$

There is a morphism (injective if $\operatorname{deg} G \leq \operatorname{deg} D$)

$$
\begin{aligned}
\alpha: L(G) & \longrightarrow \mathbb{F}_{q}^{n} \\
& f \longrightarrow\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{aligned}
$$

Definition

$\operatorname{Im} \alpha$ is the Goppa code $\mathcal{C}(D, G)$.

Goppa codes

Parameters

- length $(\mathcal{C})=n$, bounded by the number of rational points in X
- $\operatorname{dim\mathcal {C}}=\operatorname{dimL}(G)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq \operatorname{deg}(G)+1-g,
$$

Goppa codes

Parameters

- length $(\mathcal{C})=n$, bounded by the number of rational points in X
- $\operatorname{dim} \mathcal{C}=\operatorname{dimL}(G)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq \operatorname{deg}(G)+1-g,
$$

If $\operatorname{deg}(G)>2 g-2 \Rightarrow \operatorname{dim} \mathcal{C}=\operatorname{deg}(G)+1-g$.

Goppa codes

Parameters

- length $(\mathcal{C})=n$, bounded by the number of rational points in X
- $\operatorname{dim} \mathcal{C}=\operatorname{dimL}(G)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq \operatorname{deg}(G)+1-g,
$$

If $\operatorname{deg}(G)>2 g-2 \Rightarrow \operatorname{dim} \mathcal{C}=\operatorname{deg}(G)+1-g$.

- According to the number of zeros in suppD of $f \in L(G)$,

$$
d \geq n-\operatorname{deg}(G) \Rightarrow d+k \geq n+1-g
$$

- By Singleton bound

$$
n-k+1-g \leq d \leq n-k+1
$$

Dual Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- $P_{1}, \ldots, P_{n} n$ different $\mathbb{F}_{q^{-}}$rational points of X, $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$
- $\Omega(G)=\left\{\omega \in \Omega_{X} \left\lvert\, \begin{array}{l}\text { has zeros at least at } Q_{i}, \text { of order } \geq n_{i}, \\ \text { has poles only at } Q_{j}^{\prime}, \text { of order } \leq n_{j}^{\prime}\end{array}\right.\right\}$

Dual Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- $P_{1}, \ldots, P_{n} n$ different $\mathbb{F}_{q^{-}}$rational points of X, $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$
- $\Omega(G)=\left\{\omega \in \Omega_{X} \left\lvert\, \begin{array}{l}\text { has zeros at least at } Q_{i}, \text { of order } \geq n_{i}, \\ \text { has poles only at } Q_{j}^{\prime}, \text { of order } \leq n_{j}^{\prime}\end{array}\right.\right\}$

There is a morphism (injective if $\operatorname{deg}(G)>2 g-2$)

$$
\begin{aligned}
\beta: \Omega(G-D) & \longrightarrow \mathbb{F}_{q}^{n} \\
& \omega \longrightarrow\left(\operatorname{res}_{P_{1}}(\omega), \ldots, \operatorname{res}_{P_{n}}(\omega)\right)
\end{aligned}
$$

Dual Goppa codes

- X, irreducible smooth projective curve of genus g over \mathbb{F}_{q}
- $P_{1}, \ldots, P_{n} n$ different $\mathbb{F}_{q^{-}}$rational points of X,
$D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$
- $\Omega(G)=\left\{\omega \in \Omega_{X} \left\lvert\, \begin{array}{l}\text { has zeros at least at } Q_{i}, \text { of order } \geq n_{i}, \\ \text { has poles only at } Q_{j}^{\prime} \text {, of order } \leq n_{j}^{\prime}\end{array}\right.\right\}$

There is a morphism (injective if $\operatorname{deg}(G)>2 g-2$)

$$
\begin{aligned}
\beta: \Omega(G-D) & \longrightarrow \mathbb{F}_{q}^{n} \\
& \longrightarrow\left(\operatorname{res}_{P_{1}}(\omega), \ldots, \operatorname{res}_{P_{n}}(\omega)\right)
\end{aligned}
$$

Definition

$\operatorname{Im} \beta$ is the dual Goppa $\operatorname{code} \mathcal{C}^{*}(D, G)$.

Dual Goppa codes

Properties

- length $\left(\mathcal{C}^{*}\right)=n$,
- $\operatorname{dim} \mathcal{C}^{*}=\operatorname{dim} \Omega(G-D)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq n-\operatorname{deg}(G)-1+g
$$

Dual Goppa codes

Properties

- length $\left(\mathcal{C}^{*}\right)=n$,
- $\operatorname{dim} \mathcal{C}^{*}=\operatorname{dim} \Omega(G-D)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq n-\operatorname{deg}(G)-1+g
$$

If $\operatorname{deg}(G)<n \Rightarrow \operatorname{dim} \mathcal{C}=n-\operatorname{deg}(G)-1+g$.

Dual Goppa codes

Properties

- length $\left(\mathcal{C}^{*}\right)=n$,
- $\operatorname{dim} \mathcal{C}^{*}=\operatorname{dim} \Omega(G-D)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq n-\operatorname{deg}(G)-1+g
$$

If $\operatorname{deg}(G)<n \Rightarrow \operatorname{dim} \mathcal{C}=n-\operatorname{deg}(G)-1+g$.

- By the number of poles of $\omega \in \Omega(G-D)$, we have

$$
d \geq \operatorname{deg}(G)-2 g+2 \Rightarrow d+k \geq n+1-g
$$

Dual Goppa codes

Properties

- length $\left(\mathcal{C}^{*}\right)=n$,
- $\operatorname{dim} \mathcal{C}^{*}=\operatorname{dim} \Omega(G-D)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq n-\operatorname{deg}(G)-1+g
$$

If $\operatorname{deg}(G)<n \Rightarrow \operatorname{dim} \mathcal{C}=n-\operatorname{deg}(G)-1+g$.

- By the number of poles of $\omega \in \Omega(G-D)$, we have

$$
d \geq \operatorname{deg}(G)-2 g+2 \Rightarrow d+k \geq n+1-g
$$

- By the Residues Theorem $\mathcal{C}^{*}(D, G)=\mathcal{C}^{\perp}(D, G)$.

Dual Goppa codes

Properties

- length $\left(\mathcal{C}^{*}\right)=n$,
- $\operatorname{dim} \mathcal{C}^{*}=\operatorname{dim} \Omega(G-D)$

By Riemann-Roch Theorem,

$$
\operatorname{dim} \mathcal{C} \geq n-\operatorname{deg}(G)-1+g
$$

If $\operatorname{deg}(G)<n \Rightarrow \operatorname{dim} \mathcal{C}=n-\operatorname{deg}(G)-1+g$.

- By the number of poles of $\omega \in \Omega(G-D)$, we have

$$
d \geq \operatorname{deg}(G)-2 g+2 \Rightarrow d+k \geq n+1-g
$$

- By the Residues Theorem $\mathcal{C}^{*}(D, G)=\mathcal{C}^{\perp}(D, G)$.
- $\mathcal{C}^{*}(D, G)=\mathcal{C}(D, K+D-G)$.

Convolutional construction

Aim:
Develop an analogous construction for convolutional codes Two possible (equivalent) settings

- CC as submodules over $\mathbb{F}_{q}[z]$
- $C C$ as subspaces over $\mathbb{F}_{q}(z)$

Convolutional construction

Aim:
Develop an analogous construction for convolutional codes
Two possible (equivalent) settings

- CC as submodules over $\mathbb{F}_{q}[z]$
- CC as subspaces over $\mathbb{F}_{q}(z)$

CC as a free submodule of $\mathbb{F}_{q}[z]^{n}$

Block codes subspaces over \mathbb{F}_{q} X a curve over \mathbb{F}_{q} n rational points
a divisor G

Convolutional codes submodules over $\mathbb{F}_{q}[z]$
$\rightsquigarrow \quad X$ a family of curves parameterized by \mathbb{A}^{1}
$\rightsquigarrow \quad n$ sections of $X \rightarrow \mathbb{A}^{1}$
$\rightsquigarrow \quad$ an invertible sheaf \mathcal{L}

The evaluation map

Let us recall how the evaluation map is defined:
Let D be a divisor over X. We have an exact sequence

$$
0 \longrightarrow \mathcal{O}_{X}(-D) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{D} \longrightarrow 0
$$

where $\mathcal{O}_{D} \simeq \mathbb{F}_{q}^{n}$.
G a divisor with $\operatorname{supp} G \cap \operatorname{supp} D=\emptyset, \mathcal{O}_{X}(G)$ invertible sheaf.
By tensoring by $\mathcal{O}_{X}(G)$ and taking global sections we have
$0 \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(G-D)\right) \longrightarrow H^{0}\left(X, \mathcal{O}_{X}(G)\right) \equiv L(G) \xrightarrow{\alpha} \mathbb{F}_{q}^{n} \longrightarrow \ldots$

Convolutional Goppa Codes

$\mathbb{F}_{q}[z]$-submodules

- $X \xrightarrow{\pi} \mathbb{A}^{1}$ a family of curves parameterized by \mathbb{A}^{1}.
- $p_{i}:=\mathbb{A}^{1} \rightarrow X, 1 \leq i \leq n$, different sections of π, $D=p_{1}\left(\mathbb{A}^{1}\right) \cup \ldots \cup p_{n}\left(\mathbb{A}^{1}\right)$, a Cartier divisor on X.
- \mathcal{L} an invertible sheaf over X.

Convolutional Goppa Codes

$\mathbb{F}_{q}[z]$-submodules

- $X \xrightarrow{\pi} \mathbb{A}^{1}$ a family of curves parameterized by \mathbb{A}^{1}.
- $p_{i}:=\mathbb{A}^{1} \rightarrow X, 1 \leq i \leq n$, different sections of π, $D=p_{1}\left(\mathbb{A}^{1}\right) \cup \ldots \cup p_{n}\left(\mathbb{A}^{1}\right)$, a Cartier divisor on X.
- \mathcal{L} an invertible sheaf over X.

We have

$$
0 \longrightarrow \mathcal{L}(-D) \longrightarrow \mathcal{L} \longrightarrow \mathcal{O}_{D} \otimes \mathcal{L} \simeq \mathcal{O}_{D} \longrightarrow 0
$$

and by taking global sections

$$
0 \longrightarrow H^{0}(X, \mathcal{L}(-D)) \longrightarrow H^{0}(X, \mathcal{L}) \xrightarrow{\alpha} H^{0}\left(X, \mathcal{O}_{D}\right) \longrightarrow \ldots,
$$

Convolutional Goppa Codes

$\mathbb{F}_{q}[z]$-submodules
There are (non-canonical, in general) isomorphisms

$$
\phi: H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\sim} \mathbb{F}_{q}[z]^{n}
$$

Definition

The convolutional Goppa code defined by \mathcal{L}, D, ϕ is the submodule $\mathcal{C}(\mathcal{L}, D, \phi)=\operatorname{Im} \phi \circ \alpha$ with

$$
H^{0}(X, \mathcal{L}) \xrightarrow{\alpha} H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\phi} \mathbb{F}_{q}[z]^{n}
$$

Convolutional Goppa Codes

$\mathbb{F}_{q}[z]$-submodules
There are (non-canonical, in general) isomorphisms

$$
\phi: H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\sim} \mathbb{F}_{q}[z]^{n}
$$

Definition

The convolutional Goppa code defined by \mathcal{L}, D, ϕ is the submodule $\mathcal{C}(\mathcal{L}, D, \phi)=\operatorname{Im} \phi \circ \alpha$ with

$$
H^{0}(X, \mathcal{L}) \xrightarrow{\alpha} H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\phi} \mathbb{F}_{q}[z]^{n}
$$

Further, we may consider a subspace $\Gamma \subseteq H^{0}(X, \mathcal{L})$.

Definition

The convolutional Goppa code defined by Γ, D, ϕ is the submodule $\mathcal{C}(\Gamma, D, \phi)=\operatorname{Im} \phi \circ \alpha \mid \Gamma$.

Convolutional Goppa Codes

$\mathbb{F}_{q}[z]$-submodules
There are (non-canonical, in general) isomorphisms

$$
\phi: H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\sim} \mathbb{F}_{q}[z]^{n}
$$

Definition

The convolutional Goppa code defined by \mathcal{L}, D, ϕ is the submodule $\mathcal{C}(\mathcal{L}, D, \phi)=\operatorname{Im} \phi \circ \alpha$ with

$$
H^{0}(X, \mathcal{L}) \xrightarrow{\alpha} H^{0}\left(X, \mathcal{O}_{D}\right) \xrightarrow{\phi} \mathbb{F}_{q}[z]^{n}
$$

Further, we may consider a subspace $\Gamma \subseteq H^{0}(X, \mathcal{L})$.

Definition

The convolutional Goppa code defined by Γ, D, ϕ is the submodule $\mathcal{C}(\Gamma, D, \phi)=\operatorname{Im} \phi \circ \alpha \mid \Gamma$.

The dual convolutional Goppa codes are obtained analogously.

Convolutional Goppa Codes

Block codes Convolutional codes

$\mathbb{F}_{q}(z)$
$\mathbb{F}_{q}(z)$
\mathbb{F}_{q}-rational $\quad \mathbb{F}_{q}(z)$-rational

- Simpler tools
- The submodule approach yields this one by taking the fiber at the generic point
- Not every curve over $\mathbb{F}_{q}(z)$ extends to a family parameterized by \mathbb{A}^{1}
- The submodule approach allows characterization of basic matrices

Convolutional Goppa codes

$\mathbb{F}_{q}(z)$-vector subspaces

- X, irreducible smooth projective curve of genus g over $\mathbb{F}_{q}(z)$
- P_{1}, \ldots, P_{n}, n different $\mathbb{F}_{q}(z)$-rational points of X,
D the divisor $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ another divisor in X with $\operatorname{supp} G \cap \operatorname{supp} D=\emptyset$
$L(G)$ the $\mathbb{F}_{q}(z)$-vector space of global sections of $\mathcal{O}_{X}(G)$

Convolutional Goppa codes

$\mathbb{F}_{q}(z)$-vector subspaces

- X, irreducible smooth projective curve of genus g over $\mathbb{F}_{q}(z)$
- P_{1}, \ldots, P_{n}, n different $\mathbb{F}_{q}(z)$-rational points of X,
D the divisor $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ another divisor in X with $\operatorname{supp} G \cap \operatorname{supp} D=\emptyset$
$L(G)$ the $\mathbb{F}_{q}(z)$-vector space of global sections of $\mathcal{O}_{X}(G)$
If $\operatorname{deg} G \leq \operatorname{deg} D$, there exists an injective morphism

$$
\begin{aligned}
\alpha: L(G) & \longrightarrow \mathbb{F}_{q}(z)^{n} \\
& s \longmapsto\left(s\left(P_{1}\right), \ldots, s\left(P_{n}\right)\right)
\end{aligned}
$$

Definition

$\operatorname{Im} \alpha \cap \mathbb{F}_{q}[z]^{n}$ is the convolutional Goppa code $\mathcal{C}(D, G)$.

Convolutional Goppa codes

$\mathbb{F}_{q}(z)$-vector subspaces

- X, irreducible smooth projective curve of genus g over $\mathbb{F}_{q}(z)$
- P_{1}, \ldots, P_{n}, n different $\mathbb{F}_{q}(z)$-rational points of X,
D the divisor $D=P_{1}+\cdots+P_{n}$
- $G=\sum n_{i} Q_{i}-\sum n_{j}^{\prime} Q_{j}^{\prime}$ another divisor in X with $\operatorname{supp} G \cap \operatorname{supp} D=\emptyset$
$L(G)$ the $\mathbb{F}_{q}(z)$-vector space of global sections of $\mathcal{O}_{X}(G)$
If $\operatorname{deg} G \leq \operatorname{deg} D$, there exists an injective morphism

$$
\begin{aligned}
\alpha: L(G) & \longrightarrow \mathbb{F}_{q}(z)^{n} \\
& s \longmapsto\left(s\left(P_{1}\right), \ldots, s\left(P_{n}\right)\right)
\end{aligned}
$$

Definition

$\operatorname{Im} \alpha \cap \mathbb{F}_{q}[z]^{n}$ is the convolutional Goppa code $\mathcal{C}(D, G)$.
The dual construction is carried out in the same way.

Convolutional Goppa codes

Properties

- Riemann-Roch Theorem and Residues Theorem are of application in this setting.
- Parameters:
- length $(\mathcal{C})=$ length $\left(\mathcal{C}^{*}\right)=n$
- If $2 g-2<\operatorname{deg}(G)<n$

$$
\begin{aligned}
& \operatorname{dim} \mathcal{C}=\operatorname{deg}(G)+1-g \\
& \operatorname{dim} \mathcal{C}^{*}=n-\operatorname{deg}(G)-1+g
\end{aligned}
$$

- The free distances are loosely bounded by the number of zeros/poles.

Convolutional Goppa codes

Properties

- Riemann-Roch Theorem and Residues Theorem are of application in this setting.
- Parameters:
- length $(\mathcal{C})=$ length $\left(\mathcal{C}^{*}\right)=n$
- If $2 g-2<\operatorname{deg}(G)<n$

$$
\begin{aligned}
& \operatorname{dim} \mathcal{C}=\operatorname{deg}(G)+1-g \\
& \operatorname{dim} \mathcal{C}^{*}=n-\operatorname{deg}(G)-1+g
\end{aligned}
$$

- The free distances are loosely bounded by the number of zeros/poles.
- $\mathcal{C}^{*}(D, G)=\mathcal{C}^{\perp}(D, G)$

An example over an elliptic curve

- X the curve $y^{2}+z x y+y=x^{3}+x^{2}$ over $\mathbb{F}_{2}(z)$
- $D=P_{1}+P_{2}+P_{3}+P_{4}$ with

$$
\begin{array}{cc}
P_{1}=(1+z, z) & P_{2}=\left(1+z, 1+z^{2}\right) \\
P_{3}=\left(\frac{1+z^{3}}{z^{2}}, \frac{1+z^{3}+z^{4}+z^{5}}{z^{3}}\right) & P_{4}=\left(\frac{1+z^{3}}{z^{2}}, \frac{1+z^{2}+z^{4}}{z^{3}}\right)
\end{array}
$$

- $G=3 P_{\infty}-P_{0}$

$$
L(G)=\langle x, y\rangle=\left\langle\frac{z^{2}}{1+z} x, z y+\frac{1+z+z^{2}}{1+z} x\right\rangle .
$$

An example over an elliptic curve

- X the curve $y^{2}+z x y+y=x^{3}+x^{2}$ over $\mathbb{F}_{2}(z)$
- $D=P_{1}+P_{2}+P_{3}+P_{4}$ with

$$
\begin{array}{cc}
P_{1}=(1+z, z) & P_{2}=\left(1+z, 1+z^{2}\right) \\
P_{3}=\left(\frac{1+z^{3}}{z^{2}}, \frac{1+z^{3}+z^{4}+z^{5}}{z^{3}}\right) & P_{4}=\left(\frac{1+z^{3}}{z^{2}}, \frac{1+z^{2}+z^{4}}{z^{3}}\right)
\end{array}
$$

- $G=3 P_{\infty}-P_{0}$

$$
L(G)=\langle x, y\rangle=\left\langle\frac{z^{2}}{1+z} x, z y+\frac{1+z+z^{2}}{1+z} x\right\rangle .
$$

$\mathcal{C}(D, G)$ is generated by

$$
\left(\begin{array}{cccc}
z^{2} & z^{2} & 1+z+z^{2} & 1+z+z^{2} \\
1+z & 1+z^{2}+z^{3} & 1+z+z^{3} & 0
\end{array}\right)
$$

$\mathcal{C}(D, G)$ has parameters $\left[n, k, \delta, m, d_{\text {free }}\right]=[4,2,5,3,8]$ reaching the Griesmer bound.

Convolutional vs Block

On the one (adverse) side

- Convolutional construction is far more complex
- Distance issues: free distance cannot be related to zeroes of functions
- Decoding via an evaluator polynomial cannot be (straightforwardly) applied
On the other (favorable) one
- many optimal constructions on curves with low genus
- curves over $\mathbb{F}_{q}(z) \rightarrow$ infinitely many rational points
- also block codes can be constructed in this way

AG structure of any code

Block codes

- R. Pellikaan et al. ("Which linear codes are algebraic geometric?")
Every code may be given a certain algebraic geometric structure over a curve with sufficiently many points (high genus)

AG structure of any code

Block codes

- R. Pellikaan et al. ("Which linear codes are algebraic geometric?")
Every code may be given a certain algebraic geometric structure over a curve with sufficiently many points (high genus)

Convolutional codes

- Every code may be given a certain algebraic geometric structure over \mathbb{P}^{1} (and any other curve)
- Characterization of codes with complete Goppa structure over \mathbb{P}^{1}, elliptic and hiperelliptic curves.
- Explicit constructions
- Characterization of MDS codes of rate $1 / n$.

Conclusions

Much has been done

- AG constructions work for CC
- explicit examples of optimal codes can be easily obtained
- characterizations over curves with low genus and codes of low rates
and much remains to be done
- characterization of the free distance
- decoding algorithms
- more general characterizations

Thank you

