
Criteria for the construction of MDS convolutional

codes with good column distances

Julia Lieb

Institute of Mathematics
University of Zurich

Joint work with Zita Abreu, Raquel Pinto, Joachim Rosenthal



Convolutional Codes

Definition
A convolutional code C of rate k/n is a free F[z]-submodule
of F[z]n of rank k .
There exists G(z) ∈ F[z]k×n of full row rank such that

C = {v ∈ F[z]n | v(z) = u(z)G(z) for some u ∈ F[z]k}.

G(z) is called generator matrix of the code and is unique up to
left multiplication with a unimodular matrix U(z) ∈ Glk (F[z]).
The degree δ of C is defined as the maximal degree of the
k × k -minors of G(z). One calls C an (n, k , δ) convolutional
code.
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Distances of Convolutional Codes
Definition
The free distance of a convolutional code C is defined as

dfree(C) := min{wt(v(z)) | v ∈ C and v ̸≡ 0}.

For j ∈ N0, the j-th column distance of C is defined as

dc
j (C) := min


j∑

t=0

wt(vt) | v(z) ∈ C and v0 ̸= 0

 .

Theorem (RS 1999, GRS 2006)

(i) dfree(C) ≤ (n − k)
(⌊

δ
k

⌋
+ 1

)
+ δ + 1

(ii) dc
j (C) ≤ (n − k)(j + 1) + 1

RS 1999: J. Rosenthal and R. Smarandache. Maximum distance separable
convolutional codes. Appl. Algebra Engrg. Comm. Comput., 10(1):15-32, 1999.
GRS 2006: H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. Strongly MDS
convolutional codes. IEEE Trans. Inform. Theory, 52(2):584–598, 2006.
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MDS and MDP Convolutional Codes

Definition
A convolutional code C of rate k/n and degree δ is called
(i) maximum distance separable (MDS) if

dfree(C) = (n − k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1,

(ii) of maximum distance profile (MDP) if

dc
j (C) = (n − k)(j + 1) + 1 for j = 0, . . . ,L :=

⌊
δ

k

⌋
+

⌊
δ

n − k

⌋

Lemma (GRS 2006)
Let C be an (n, k , δ) convolutional code with generator matrix
G(z) and G0 full rank. If dc

j (C) = (n − k)(j + 1) + 1 for some
j ∈ {1, . . . ,L}, then dc

i (C) = (n − k)(i + 1) + 1 for all i ≤ j .
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Criteria for MDS convolutional codes - Preliminaries

Theorem (GRS 2006)

For an (n, k , δ) convolutional code C with G(z) =
∑µ

i=0 Giz i the
following statements are equivalent:
(i) dc

j (C) = (n − k)(j + 1) + 1

(ii) All fullsize minors of Gc
j :=

 G0 . . . Gj
. . .

...
0 G0

 ∈ Fk(j+1)×n(j+1)

that are non trivially zero is nonzero.

Lemma
Let A ∈ Fr×s

q with r ≤ s be such that all its fullsize minors are
nonzero. Then, each vector which is a linear combination of the
r rows of A has at least s − r + 1 nonzero entries.
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Criteria for MDS convolutional codes - Idea

Let u(z) ∈ Fk
q[z] with deg(u) = ℓ and v(z) = u(z)G(z). Then,

(v0 v1 · · · vµ+ℓ) = (u0 u1 · · · uℓ)G, where

G =


G0 · · · Gµ 0 · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 G0 · · · Gµ

 for ℓ > µ

G =

G0 · · · Gℓ · · · Gµ 0
. . .

...
...

. . .
0 G0 · · · Gµ−ℓ · · · Gµ

 for ℓ ≤ µ

We use that if G = [G1 · · · Gm], then

wt(v(z)) =
m∑

i=1

wt((u0 u1 · · · uℓ)Gi).
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Reverse Code

Definition
Let C be an (n, k , δ) convolutional code with generator matrix
G(z), which has entries gij(z). Set g ij(z) := zνi gij(z−1) where νi

is the i-th row degree of G(z). Then, the code C with generator
matrix G(z), which has g ij(z) as entries, is called the reverse
code to C. We call the j-th column distance of C the j-th
reverse column distance of C.

Remark
Let G(z) =

∑µ
i=0 Giz i and G(z) =

∑µ
i=0 Giz i . If k | δ, one has

that Gi = Gµ−i for i = 0, . . . , µ.
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Criteria for MDS convolutional codes with k | δ - Idea

G =


G0 · · · Gµ−1 ∗ 0 · · · 0

0
. . .

... ∗ Gµ
. . .

...
...

. . . G0 ∗
...

. . . 0
0 · · · 0 ∗ G1 · · · Gµ

 for ℓ ≥ µ− 1

G =


G0 · · · Gℓ−1 Gℓ · · · Gµ 0

. . .
...

...
... Gµ

G0
...

...
...

. . .
0 G0 · · · Gµ−ℓ Gµ−ℓ+1 · · · Gµ


for ℓ < µ− 1.

ALPR 2023: Z. Abreu, J. Lieb, R. Pinto, J. Rosenthal. Criteria for the construction of
MDS convolutional codes with good column distances, arXiv:2305.04647.
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Criteria for MDS codes with k | δ - Results
Theorem (ALPR 2023)

Let k | δ and G(z) =
∑µ

i=0 Giz i with µ = δ
k . If µ ≥ 3, let

n ≥ 3k − 2k
δ−2k , except for k = 2, δ = 6 where we assume n ≥ 5

and let all non trivially zero full-size minors of the following
matrices be nonzero, where 0 ≤ ℓ < min

(
µ− 1, n(µ+1)−k+1

n+k

)
:G0 · · · Gµ−1

. . .
...

0 G0

 ,

Gµ · · · G1
. . .

...
0 Gµ

 and

Gℓ · · · Gµ
...

...
G0 · · · Gµ−ℓ

 .

If µ ≤ 2, let additionally all non trivially zero full-size minors ofG0 · · · Gµ

. . .
...

0 G0

 be nonzero and assume for µ = 1 that

n ≥ 2k − 1 and for µ = 2 that n ≥ 3k − 2.
Then, C is an MDS convolutional code.
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Criteria for MDS convolutional codes with k ∤ δ - Idea

G =


G0 · · · Gµ−1 ∗ 0 · · · 0

0
. . .

... ∗ G̃µ
. . .

...
...

. . . G0 ∗
...

. . . 0
0 · · · 0 ∗ G1 · · · G̃µ

 for ℓ ≥ µ− 1

G =


G0 · · · Gℓ−1 Gℓ · · · Gµ−1 G̃µ 0

. . .
...

...
...

... G̃µ

G0
...

...
...

...
. . .

0 G0 · · · Gµ−ℓ−1 Gµ−ℓ Gµ−ℓ+1 · · · G̃µ


for ℓ < µ− 1.

10 / 23



Criteria for MDS codes with k ∤ δ - Results

Theorem (ALPR 2023)
Let k ∤ δ and let C be an (n, k , δ) convolutional code with
minimal generator matrix G(z) of degree µ = ⌈ δ

k ⌉ and with
generic row degrees. Denote by G̃µ the matrix consisting of the
(first) t = δ + k − kµ nonzero rows of Gµ. If all not trivially zero
full-size minors of the matricesG0 · · · Gµ−1

. . .
...

0 G0

 and

Gℓ · · · Gµ−1
...

...
G0 · · · Gµ−1−ℓ

 for 0 ≤ ℓ < µ− 1

and


G̃µ

Gµ−1
...

Gi

 for 0 < i ≤ µ− 1 s.t. n ≥ k(µ− i + 1) and G̃µ

are nonzero and n ≥ B, then C is MDS.
11 / 23



Good column distances

Remark
If k | δ, codes fulfilling our conditions are not only MDS but also
reach the upper bound for the j-th column distance and the j-th
reverse column distance until j = µ− 1.

Remark
If k ∤ δ, codes fulfilling our conditions reach the upper bound for
the j-th column distance until j = µ− 1. Moreover, L = µ− 1 if
and only if n > δ + k = kµ+ t . In this case, C is also MDP.
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Optimizing conditions for given n, k , δ (for k | δ)
Let S be the value of the generalized Singleton bound and set

W :=

⌈
S − 2
n − k

⌉
=

δ

k
+1+

⌈
δ − 1
n − k

⌉
, E :=

⌈
W
2

⌉
−1, F :=

⌊
W
2

⌋
−1.

If non-trivially zero full-size minors of Gc
E and Ḡc

F are nonzero,
then wt(u(z)G(z)) ≥ S +R for all u(z) ∈ F[z]k with deg(u) ≥ E .

If R ≥ F · k − 1, we consider


Gµ · · · Gµ−F+1 Gµ−F

. . .
...

...
Gµ Gµ−1

Gµ



and if R − F · k + 1 ≥ E · k − 1,


G0 · · · GE−1 GE

. . .
...

...
G0 G1

G0
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Optimizing conditions for given n, k , δ (for k | δ)
If ℓ = deg(u) < F ≤ µ− 1, we write wt(v(z)) = S + A.
If A ≥ k , we consider

G0 · · · Gℓ−1 | Gℓ Gℓ+1 · · · Gµ

. . .
... |

...
...

... Gµ

G0 |
...

...
...

...
. . .

| G0 G1 · · · Gµ−ℓ Gµ−ℓ+1 · · · Gµ



If even A ≥ 2k , we can consider the splitting G0 · · · Gℓ Gℓ+1 · · · Gµ−1 Gµ

. . .
...

...
...

...
. . .

G0 G1 · · · Gµ−ℓ−1 Gµ−ℓ · · · Gµ


We can split the middle matrix x = min

(
µ− ℓ− 2,

⌊
A−2k

(ℓ+1)k−1

⌋)
times.

If x = µ− ℓ− 2, delete y = min
(
µ− ℓ− 1,

⌊
A−2k−(µ−ℓ−2)((ℓ+1)k−1)

n−(ℓ+1)k+1

⌋)
matrices.
The case ℓ = F = E − 1 has to be considered separately.
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Example
Let k = 2, n = 11, δ = 6, i.e. µ = 3, S = 43 and E = 2, F = 1.
Then, R = 4 ≥ Fk − 1 + Ek − 1, i.e. from ℓ ≥ E we obtain(

G0 G1
0 G0

)
,

G2
G1
G0

 ,

(
G2
G3

)
, G3.

For ℓ = 1 = F = E − 1, we start with G0,
(

G1 G2 G3
G0 G1 G2

)
, G3. As

A = 7 ≥ 2k , we change to
(

G0 G1
0 G0

)
,

(
G2
G1

)
,

(
G3 0
G2 G3

)
and

since A − 2k = 4 ≥ Fk − 1, we can obtain the splitting(
G0 G1
0 G0

)
,

(
G2
G1

)
,

(
G2
G3

)
, G3.

Clearly, x = 0 and as also y = 0 in sum the non trivially zero
full-size minors of the following matrices have to be nonzero:(

G0 G1
0 G0

)
,

G2
G1
G0

 ,

(
G2
G3

)
,

(
G2
G1

)
, [G0 G1 G2 G3].

Note that we can omit G3 as its full-size minors are part of the
full-size minors of [G0 G1 G2 G3].
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Construction of MDS convolutional codes
Definition
Let r ,n,m ∈ N and consider a Toeplitz matrix

A ∈ F(r+1)n×(r+1)m
q of the form A =

A0 · · · Ar
. . .

...
0 A0

 with

Ai ∈ Fn×m
q for i ∈ {0, . . . , r}. A is called reverse superregular

Toeplitz matrix if all non trivially zero minors (of any size) of

the matices A and Arev =

Ar · · · A0
. . .

...
0 Ar

 are nonzero.

Remark
Our conditions for k | δ are fulfilled if Gc

µ is a reverse
superregular Toeplitz matrix and with slight adaption this can be
also used for the case that k ∤ δ. However, using this for the
construction of MDS codes leads to very large field sizes.
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Construction of MDS convolutional codes

Theorem (ALPR 2023)
Let n, k , δ ∈ N such that they fulfill our conditions and let α be a
primitive element of a finite field F = FpN with
N > µ · 2(µ+1)n+t−1. Then G(z) =

∑µ
i=0 Giz i with

Gi =

 α2in
. . . α2(i+1)n−1

...
...

α2in+k−1
. . . α2(i+1)n+k−2

 for i = 0, . . . , µ− 1 and

G̃µ =

 α2µn
. . . α2(µ+1)n−1

...
...

α2µn+t−1
. . . α2(µ+1)n+t−2

 is the generator matrix of an

MDS convolutional code.
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Construction Examples

Example
If k = δ = 1, i.e. µ = 1 and n arbitrary, one obtains E = F = 0.
Hence, it is enough if all full-size minors, i.e. all entries, of G0
and G1 are nonzero. This means G0 = G1 = (1 · · · 1) defines
an MDS convolutional code over any field.

Example
If k = 1, δ = 2 and n arbitrary, E = F = 1, i.e. all non trivially

zero full-size minors of (G0 G1 G2),
(

G0 G1
0 G0

)
and

(
G2 G1
0 G2

)
have to be nonzero. Hence, an (n,1,2) MDS convolutional
code exists for q ≥ n + 1, e.g. G0 = G2 = (1 · · · 1) and
G1 = (1 α · · ·αn−1) where α is a primitive element of Fq. For
n = 2 this field size is smaller than in previous constructions, for
n ≥ 3 it is equal to the best previous construction.
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Construction Examples

Example
For k = 1, n = δ = 3, i.e. µ = 3 and S = 12, the best existing
constructions require q ≥ 10. Our criterion requires that the
non trivially zero full-size minors of the following matrices are
nonzero:

Gc
2, G

c
1,

(
G2
G1

)
, [G0 G1 G2 G3].

Using this, we found an (3,1,3) MDS convolutional code over
F7 defined by the generator matrix G(z) =

∑3
i=0 Giz i , with

G0 = (4 4 2), G1 = (1 4 3), G2 = (4 6 2) and G3 = (1 2 1),
which additionally has optimal j-th column distance for j ≤ 2
and optimal reverse column distance for j ≤ 1.
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Construction Examples

Example
For k = 2, δ = 4, n = 5, i.e. µ = 2 and S = 14, we get the
conditions that all non trivially zero full-size minors of the
matrices

(
G0 G1 G2

)
, Gc

1 and G
c
1 have to be nonzero. We found

the following solution over F31:

G0 =

(
5 30 14 11 1
3 23 21 12 5

)
, G1 =

(
17 4 24 14 7

7 24 12 20 22

)
and G2 =

(
14 0 12 19 1
23 1 21 1 22

)
.

In previous constructions smallest possible field size is 31 as
well. However, our code has the additional advantage that for
j ∈ {0,1}, the j-th column distance and the j-th reverse column
distance are optimal.
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Example
Let k = 2, n = 3 and δ = 3, i.e. µ = 2 and t = 1. We get the
conditions that all non trivially zero full-size minors of Gc

1, G1

and G̃2 have to be nonzero. The following example over F3
fulfills these conditions:

G0 =

(
1 0 2
2 1 2

)
, G1 =

(
1 1 1
1 0 2

)
, G2 =

(
1 1 1
0 0 0

)
.

The smallest possible field in previous constructions with these
parameters is F16. This means we manage to improve the field
size a lot and additionally, our code has optimal j-th column
distance for j ∈ {0,1}.
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Example
Let k = 2, n = 6 and δ = 3, i.e. µ = 2 and t = 1. We need that

all full-size minors of G0,
(

G1
G0

)
, G1 and G̃2 are nonzero. An

example fulfilling these conditions over F7 is

G0 =

(
2 5 6 2 2 0
6 5 5 0 3 4

)
,G1 =

(
4 6 4 4 5 5
1 4 0 2 5 2

)
,

G2 =

(
1 1 1 1 1 1
0 0 0 0 0 0

)
.

The smallest possible field in previous constructions with these
parameters is F16.
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Conclusion

• We presented new (sufficient) criteria for the construction
of MDS convolutional codes, considering certain minors of
the sliding generator matrix of the code

• We presented a general construction for MDS
convolutional codes with good column distances (over
large finite fields)

• We presented some construction examples for MDS
convolutional codes over fields of smaller size than in
previous constructions with the same code parameters
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