A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Recent results on incidence matrices of designs

Alfred Wassermann

Department of Mathematics, Universität Bayreuth, Germany

Workshop on convolutional codes Universität Zürich June 8, 2023

Combinatorial designs

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition:

Summary

$t ext{-}(v,k,\lambda)$ design $\mathcal{D}=(V,\mathcal{B})$	
• V : set of v points	
• \mathcal{B} : set of <i>k</i> -subsets (blocks) of <i>V</i>	
• $\mathcal{D} = (V, \mathcal{B})$ is called a t - (v, k, λ)	2-(6,3,2) design:
design on V if	0,1,2
each <i>t</i> -subset of <i>V</i> is contained in	0,1,4
$e_{xactlv} \lambda$ blocks.	0,2,5
	0,3,4
	0,3,5
Replication number	1,2,3
•	1,3,3
• ${\mathcal D}$ is also $s ext{-}(v,k,\lambda_s)$ design for	1,4,5
	2,3,4
$\lambda_s = \lambda \binom{v-s}{t-s} / \binom{k-s}{t-s}, s = 0, \dots, t$	$\#\mathcal{B} = 10, r = 5$
• $b := #\mathcal{B} = \lambda_0$	
• every point $P \in V$ appears in	

 $r:=\lambda_1$ blocks: replication number

A. Wassermann

Combinatorial designs

- Subspace designs
- Designs in pola spaces
- Tactical decomposition
- Summary

Subset lattice $V = \{0, 1, 2, 3, 4, 5\}$

- $\begin{array}{c} \text{2-}(6,3,2) \text{ design:} \\ 0,1,2 \\ 0,1,4 \\ 0,2,5 \\ 0,3,4 \end{array}$
 - 0,3,5 1,2,3 1,3,5
 - 1,4,5 2,3,4
 - 2,4,5

Incidence matrix

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

The $(v \times b)$ -matrix N with

$$N_{ij} = egin{cases} 1, & ext{if } i \in B_j \ 0, & ext{otherwise} \end{cases}$$

is the point/block incidence matrix of the Design $\mathcal{D}.$

1	1	1	0	1	0	1	0	0	$0\rangle$
1	1	0	1	0	1	0	1	0	0
1	0	1	0	0	1	0	0	1	1
0	1	0	1	1	0	0	0	1	1
0	0	0	0	1	1	1	1	1	0
$\left(0 \right)$	0	1	1	0	0	1	1	0	1/

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

$$N \cdot N^{\top} = (r - \lambda) \cdot I + \lambda \cdot J$$

2- (v, k, λ) design

•
$$(NN^{\top})_{ij} = \begin{cases} r, & i = j \\ \lambda, & i \neq j \end{cases}$$

• NN^{\top} has Eigenvalues $(r - \lambda) + \lambda v = rk$ and $(r - \lambda) + 0$ over \mathbb{Q}

- $\Rightarrow NN^{\top}$ has rank v over \mathbb{Q}
- $\Rightarrow N$ has rank v

Theorem (Fisher's inequality (1930))

$$b \ge v$$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

$\underset{2\text{-}(v,\,k,\,\lambda) \text{ design}}{p\text{-}\mathsf{rank of }N}$

Definition

The rank of N over \mathbb{F}_p is called *p*-rank of N (also *p*-rank of \mathcal{D})

Theorem (Hamada)

Let \mathcal{D} be a 2- (v, k, λ) design with replication number r and p prime.

- If p does not divide $r(r \lambda)$, then rank_p N = v.
- If p divides r but does not divide $r \lambda$, then rank_p $N \ge v 1$.
- If rank_p N < v 1, then p divides $r \lambda$.

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

Majority logic decoding and designs

Rudolph (1967), Ng (1970)

- Given: $2\text{-}(v,k,\lambda)$ design $\mathcal{D}=(V,\mathcal{B})$ with incidence matrix N
- Take N^{\top} as parity check matrix of a code
- $C_{\mathcal{D}} \leq \mathbb{F}_p^v$: *p*-ary linear code of length *v* having parity-check matrix $H_{\mathcal{D}} := N^{\top}$

Example

	0, 1, 2, 3, 4, 5
0,1,2	1, 1, 1, 0, 0, 0
0,1,4	1, 1, 0, 0, 1, 0
0,2,5	1, 0, 1, 0, 0, 1
0,3,4	1, 0, 0, 1, 1, 0
0,3,5	1, 0, 0, 1, 0, 1
1,2,3	0, 1, 1, 1, 0, 0
1,3,5	0, 1, 0, 1, 0, 1
1,4,5	0, 1, 0, 0, 1, 1
2,3,4	0, 0, 1, 1, 1, 0
2,4,5	0, 0, 1, 0, 1, 1

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition:

Summary

• r equations for each coordinate

- Each error spoils at most λ of these equations
- Decoding correct if

 $\# {\rm errors} \cdot \lambda < (r+\lambda)/2$

Linear code $C_{\mathcal{D}}$:

- Length: v
- Dimension: dim $C_{\mathcal{D}} = v \operatorname{rank}_p N$
- Majority logic decodes at least $\lfloor \frac{r+\lambda-1}{2\lambda} \rfloor$ errors
- Complexity $\approx \#$ equations, i.e. r

Drawback:

For most designs, $C_{\mathcal{D}}$ will have dimension 0 or 1.

Challenge:

Search for designs with low p-rank!

Majority logic decoding

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

${\sf Classical}\ /\ {\sf geometric}\ {\sf designs}$

•
$$2 \leq k < v$$
, $\mathcal{V} = \mathbb{F}_q^v$

• Classical / geometric design, Bose (1939)

$$\mathcal{G} = (\begin{bmatrix} \mathcal{V} \\ 1 \end{bmatrix}_q, \begin{bmatrix} \mathcal{V} \\ k \end{bmatrix}_q)$$

[^V_k]_q: set of all k-dimensional subspaces of V (k-subspaces)
 Gaussian coefficient:

$$\# { \binom{\mathcal{V}}{m}}_q = { \binom{v}{m}}_q = \frac{(q^v - 1)(q^{v-1} - 1)\cdots(q^{v-m+1})}{(q^m - 1)(q^{m-1} - 1)\cdots(q-1)}$$

• G: combinatorial design with parameters

$$2 - \left(\begin{bmatrix} v \\ 1 \end{bmatrix}_q, \begin{bmatrix} k \\ 1 \end{bmatrix}_q, \begin{bmatrix} v - 2 \\ k - 2 \end{bmatrix}_q \right)$$

p-rank of classical designs

Theorem (Hamada (1973))

• The p-rank of \mathcal{G} is

$$\sum_{s_0} \dots \sum_{s_{f-1}} \prod_{j=0}^{f-1} \sum_{i=0}^{L(s_{j+1},s_j)} (-1)^i \binom{v}{i} \binom{v-1+s_{j+1}p-s_j-ip}{v-1}$$

•
$$s_f = s_0$$

•
$$k \le s_j \le v$$
 and $0 \le s_{j+1}p - s_j \le v(p-1)$

•
$$L(s_{j+1}, s_j) = \lfloor (s_{j+1}p - s_j)/p \rfloor$$

Hamada's conjecture (1973)

Among the designs with the same parameters as the classical designs, the classical designs have minimal *p*-rank.

Recent results or incidence matrices of designs

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Codes from classical designs

projective case:

- Projective Geometry codes
- p = 2: subcodes of punctured Reed-Muller codes

affine case:

- Euclidean Geometry codes
- p = 2: Reed-Muller codes

- Assmus, Key (1992): Designs and their codes
- Since Rudolph (1967), codes from incidence matrices of various structures in finite geometry have been studied.

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decompositior

Summary

Subspace designs

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

$$\mathcal{V} = \mathbb{F}_q^v$$

• $\begin{bmatrix} \mathcal{V} \\ 1 \end{bmatrix}_q$: points, $\mathcal{B} \subseteq \begin{bmatrix} \mathcal{V} \\ k \end{bmatrix}_q$: blocks

each t-subspace of \mathcal{V} is contained in exactly λ blocks.

•
$$\mathcal{B} = \begin{bmatrix} \mathcal{V} \\ k \end{bmatrix}_q$$
: complete design

Subspace designs

q-analogs of designs

History of subspace designs

- Introduced by Ray-Chaudhuri, Cameron, Delsarte in the 1970s
- Thomas (1987): 2- $(v, 3, 7)_2$ for $v \ge 7$ and $\pm 1 \equiv v \pmod{6}$

Subspace designs

- Suzuki (1989): 2- $(v, 3, q^2 + q + 1)_q$ for $v \ge 7$ and $\pm 1 \equiv v \pmod{6}$
- Nontrivial q-Steiner systems (i.e. $\lambda = 1$): Braun, Etzion, Östergård, Vardy, W. (2013)
- Many sporadic examples found by computer, see Greferath, Pavčević, Silberstein, Vázquez-Castro: Network Coding and Subspace Designs (2018)
- Keevash et al (2023): *q*-Steiner systems asymptotically exist for all *t*.

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Designs: necessary conditions

 $t\text{-}(v,k,\lambda)_q$ design $\mathcal D$ for $q\geq 1$

• \mathcal{D} is also s- $(v, k, \lambda_s)_q$ design for

$$\lambda_s = \lambda \begin{bmatrix} v - s \\ t - s \end{bmatrix}_q / \begin{bmatrix} k - s \\ t - s \end{bmatrix}_q$$

Necessary conditions:

$$\lambda_s \in \mathbb{Z}$$
 for $0 \leq s \leq t$

- λ₁: replication number
- λ₀: number of blocks
- Bose's equation holds, too:

$$N \cdot N^{\top} = (r - \lambda) \cdot I + \lambda \cdot J$$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

Subspace designs \rightarrow combinatorial designs

Complete design

- Blocks are the set of all k-subspaces
- $\lambda_{\max} = \begin{bmatrix} v-t \\ k-t \end{bmatrix}_q$

Combinatorial design parameters

• A 2- $(v, k, \lambda)_q$ subspace design is a

$$2\text{-}(\begin{bmatrix} v \\ 1 \end{bmatrix}_q, \begin{bmatrix} k \\ 1 \end{bmatrix}_q, \lambda)$$

combinatorial design

 The classical / geometric designs are a special case of subspace designs: namely the complete subspace designs 2-(v, k, λ_{max})_q

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition:

Summary

Classical designs vs. subspace designs $_{part I}$

classical design \mathcal{G}

- $2 (v, k, \lambda_{\max})_q$
- incidence matrix $H_{\mathcal{G}}$

Observation:

subspace design ${\mathcal D}$

- 2- $(v, k, \lambda)_q$
- incidence matrix H_D

The rows of $H_{\mathcal{D}}$ are a subset of the rows of $H_{\mathcal{G}}$

 $\operatorname{rank}_p \mathcal{D} \leq \operatorname{rank}_p \mathcal{G}$ and $C_{\mathcal{D}} \geq C_{\mathcal{G}}$

Conjecture:

$$C_{\mathcal{D}} = C_{\mathcal{G}}$$

Subspace designs

Classical designs vs. subspace designs

part II: majority logic decoding

•
$$r_{\mathcal{D}} = \lambda \frac{{\binom{v-1}{1}}_{q}}{{\binom{k-1}{1}}_{q}}$$
 $r_{\mathcal{G}} = \lambda_{\max} \frac{{\binom{v-1}{1}}_{q}}{{\binom{k-1}{1}}_{q}} = {\binom{v-2}{k-2}}_{q} \frac{{\binom{v-1}{1}}_{q}}{{\binom{k-1}{1}}_{q}}$

Dela Cruz, W. (2021):

- Length of $C_{\mathcal{D}}$, $C_{\mathcal{G}}$: $\begin{bmatrix} v \\ 1 \end{bmatrix}_a$
- Dimension: $\dim C_{\mathcal{D}} > \dim C_{\mathcal{G}}$
- Majority logic decoding is correct if $(\#\operatorname{err} \cdot \lambda < (r+\lambda)/2)$

$$\# \mathsf{errors} \leq \left\lfloor \frac{{{{\begin{bmatrix} v-1 \\ 1 \end{bmatrix}}}_q}}{2{{\begin{bmatrix} k-1 \\ 1 \end{bmatrix}}_q}} \right\rfloor$$

i.e. the number of correctable errors is independent from λ .

- #equations: $r_{\mathcal{D}} + 1 \leq r_{\mathcal{G}} + 1$
- For $v \to \infty$, the Suzuki family $2 (v, 3, q^2 + q + 1)_q$ gives an exponential improvement in the # equations compared to the geometric designs

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

- LDPC code: "sparse matrix of parity check equations"
- Gallager's bit-flipping algorithm:

[...] the decoder computes all the parity-checks and then changes any digit that is contained in more than some fixed number of unsatisfied parity-check equations. Using these new values, the parity checks are recomputed, and the process is repeated until the parity-check equations are all satisfied.

LDPC codes Gallager (1963)

- Majority logic decoding alternative view:
 - For each coordinate, $0 \le i < n$, set a counting variable $f_i \leftarrow 0$.
 - For each parity-check equation:

if equation h is unsatisfied:

 $f_i \leftarrow f_i + 1$ for all *i* in the supp(*h*)

- Flip entry if $f_i > (r + \lambda)/2$
- Majority logic decoding is a single step in the bit-flipping algorithm with specific treshold.
- Soft-decision variants: Kolesnik (1971), Bossert et. al. (2009)

LDPC codes

incidence matrices of designs

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Open

Performance of bit-flipping and sum-product algorithm on parity-check matrices from subspace designs?

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Finite classical polar spaces

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition:

Summary

Finite classical polar spaces

Geometries associated with the non-degenerate sesquilinear and non-singular quadratic forms over a finite field.

- $\operatorname{PG}(v-1,q)$: projective space of \mathbb{F}_q^v
- Polar space \mathcal{Q} in $\operatorname{PG}(v-1,q)$ consists of the

projective subspaces of PG(v-1,q) that are

- totally isotropic with relation to a given non-degenerate sesquilinear form or
- totally singular with relation to a given non-singular quadratic form

Example

Hyperbolic quadric $\Omega^+(2r,q) \subset PG(2r-1,q)$, $r \geq 1$:

$$x_0 x_r + \ldots + x_{r-1} x_{2r-1} = 0$$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

$\Omega^+(4,2)$ embedded in PG(3,2) $\left(\mathbb{F}_2^4\right)$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

$\Omega^+(4,2)$ embedded in PG(3,2) $\left(\mathbb{F}_2^4\right)$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

$\Omega^+(4,2)$ embedded in PG(3,2) $\left(\mathbb{F}_2^4\right)$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decompositions

Summary

Finite classical polar spaces

generators

- Q polar space in PG(v-1,q), v minimal
- A subspace of maximum dimension *r* in a polar space *Q*: generator
- r: rank of Q

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

name	symbol ${\cal Q}$	type Q	ϵ	alternative	symbols
symplectic	Sp(2r,q)	Sp	0	C_r	$W_{2r-1}(q)$
Hermitian	U(2r,q)	U	-1/2	${}^{2}A_{2r-1}$	$H_{2r-1}(q)$
Hermitian	U(2r+1,q)	U^+	1/2	${}^{2}A_{2r}$	$H_{2r}(q)$
hyperbolic	$\Omega^+(2r,q)$	Ω^+	-1	D_r	$Q_{2r-1}^{+}(q)$
parabolic	$\Omega(2r+1,q)$	Ω	0	B_r	$Q_{2r}(q)$
elliptic	$\Omega^-(2r+2,q)$	Ω^{-}	1	${}^{2}D_{r+1}$	$Q_{2r+1}^{-}(q)$

Finite classical polar spaces

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Lemma (Brouwer, Cohen, Neumaier, Distance regular graphs)

• The number of k-dimensional subspaces of Q is equal to

$$\begin{bmatrix} r \\ k \end{bmatrix}_Q = \begin{bmatrix} r \\ k \end{bmatrix}_q \cdot \prod_{i=r-k+1}^r (q^{i+\epsilon}+1).$$

• The number of k-dimensional subspaces of Q containing a fixed u-dimensional subspace is

$$\begin{bmatrix} r-u\\ k-u \end{bmatrix}_Q = \begin{bmatrix} r-u\\ k-u \end{bmatrix}_q \cdot \prod_{i=r-k+1}^{r-u} (q^{i+\epsilon}+1).$$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition:

Summary

Designs in finite classical polar spaces

Definition

- finite polar space $\mathcal Q$ of rank r
- set of B of k-dimensional subspaces in Q (blocks)
- D = (Q, B) is called a t-(r, k, λ)_Q-design if each t-dimensional subspace of Q is contained in exactly λ blocks

(Here, dimensions are vector space dimensions)

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Designs in polar spaces as combinatorial designs

2-designs in polar spaces

- fail to be combinatorial designs (in general)
- are (combinatorial) 1-designs and 2-packings, i.e. possess a replication number
- are candidates for codes with majority logic decoder

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Connection to rank metric codes

Kerdock sets

• Hyperbolic quadric
$$\Omega^+_{2r}(q) \subset \mathbb{F}_q^{2r}$$

$$x_0x_r + \ldots + x_{r-1}x_{2r-1} = 0 \iff x \cdot \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \cdot x^\top = 0$$

• Lift matrices
$$\mathbb{F}_q^{r \times r} \ni A \mapsto (I \mid A) \in {\mathbb{F}_q^{2r} \brack r}_q^2$$
:

$$0 = (I \mid A) \cdot \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \cdot (I \mid A)^{\top}$$
$$= (I \mid A) \cdot (A \mid I)^{\top} = A^{\top} + A$$
$$\Leftrightarrow A^{\top} = -A$$

- Elements of Ω^+ correspond to (skew) symmetric matrices
- ... it follows:

Kerdock sets (of matrices) in coding theory are $1\text{-}(2r,r,1)_{\Omega^+}$ designs, i.e. spreads in Ω^+

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Theorem (K.-U. Schmidt, Ch. Weiß (2022))

Suppose there exists a t- $(r, r, 1)_Q$ Steiner system with $t \in \{2, \ldots, r-1\}$. Then one of the following holds

•
$$t = 2$$
 and $Q = U(q)$ or $Q = \Omega^{-}(q)$ for odd r .

•
$$t = r - 1$$
 and $Q = U^-(q)$ or $Q = \Omega^-(q)$ for $q \neq 2$, or $Q = \Omega^+(q)$.

Steiner systems

of generators

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

In $\Omega^+(2r,q)$ there always exists the Latin-Greek halving, i.e. a

(r-1)- $(r,r,1)_{\Omega^+}$ design

Well known

Necessary conditions

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Lemma

Let \mathcal{D} be a t- $(r, k, \lambda)_Q$ design. Then for each $s \in \{0, \ldots, t\}$, \mathcal{D} is an s- $(r, k, \lambda_s)_Q$ design with

$$\lambda_s = \lambda \cdot \frac{{\binom{r-s}{t-s}}_Q}{{\binom{k-s}{t-s}}_q} = \lambda \cdot \frac{{\binom{r-s}{t-s}}_q}{{\binom{k-s}{t-s}}_q} \cdot \prod_{i=r-t+1}^{r-s} (q^{i+\epsilon}+1).$$

In particular, the number of blocks of \mathcal{D} is given by λ_0 and the replication number by λ_1 .

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

N: point / block incidence matrix

$$(NN^{\top})_{ij} = \begin{cases} \lambda_1, & i = j \\ \lambda, & i \neq j, P_i, P_j \text{ collinear} \\ 0, & i \neq j, P_i, P_j \text{ non-collinear} \end{cases}$$

Incidence matrix $2-(r,k,\lambda)_Q$

Collinearity graph

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Lemma

Let A be the adjacency matrix of the collinearity graph (a strongly regular graph) of the polar space Q. The eigenvalues of A are

$$\theta_0 = q \cdot \begin{bmatrix} r-1 \\ 1 \end{bmatrix}_{\mathcal{Q}}, \quad \theta_1 = q^{r-1} - 1, \quad \theta_2 = -(q^{r+\epsilon-1} + 1),$$

with multiplicities

$$\begin{split} m_0 &= 1, \\ m_1 &= q^{\epsilon+1} \cdot \frac{q^{r+\epsilon-1}+1}{q^{\epsilon}+1} \cdot {r \brack 1}_q \quad \text{and} \\ m_2 &= q \cdot \frac{q^{r+\epsilon}+1}{q^{\epsilon}+1} \cdot {r-1 \brack 1}_q. \end{split}$$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

Summary

Theorem The eigenvalues μ_i of

$$NN^{\top} = \lambda_1 I + \lambda A$$

are

$$\mu_i = \lambda_1 + \lambda \theta_i$$

with multiplicities m_i , i = 0, 1, 2.

- Since $\lambda, \lambda_1 > 0$ also $\mu_0, \mu_1 > 0$
- $\mu_2 = 0$ iff t = 2 and k = r, independent from λ
- If $\mu_2 = 0$, the rank of the matrices NN^{\top} and N over \mathbb{Q} is equal to $1 + m_1$
- In all other cases the matrix N has full rank
- Fisher's inequality is not true in all cases

Bose's equation

for designs in polar spaces

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Computer search

Previous results

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decompositions

- First nontrivial 2-designs [De Bruyn, Vanhove (2012, unpublished)]:
 - $\Omega(7,3)$: 2-(3,3,2) $_{\Omega}$
 - $\Omega^{-}(8,2)$: 2-(3,3,2) $_{\Omega^{-}}$
- Lansdown (2020):
 - $\Omega(7,5)$: 2-(3,3,3) $_{\Omega}$
 - $\Omega(7,7)$: 2-(3,3,4) $_{\Omega}$
 - $\Omega(7,11)$: 2-(3,3,6) $_{\Omega}$
- Found as m-ovoids in the dual polar space with $m=\lambda_{\max}/2$ (hemisystems)

 $2-(r,k,\lambda)_{\Omega^-}$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decompositio

		0
q	=	\mathbf{Z}
1		

r	k	Δ_{λ}	$\lambda_{ m max}$	$ i \lambda$	$\exists \lambda$	
3	3	1	5	1	2 (De Bruyn, Vanhove)	
4	3	3	27		6, 9, 12	
4	4	1	45	1	9, 11, 12, 14, 15, 16, 18, 19, 21	
5	5	1	765	1	240, 245, 275, 280, 315, 360	
q = 3						
	h	Δ	1	± \		
T	к	$\Delta \lambda$	Λ_{\max}	$\exists \lambda$	$\exists \Lambda$	
3	3	1	10	?	2, 5	

A. Wassermann

q = 2

r	k	Δ_{λ}	$\lambda_{ m max}$	$ i \lambda$	$\exists \lambda$
3	3	1	3	1	-
4	3	1	15		6, 7
4	4	1	15	1	5, 6, 7
5	5	1	135	1	21, 24, 27, 29, 30, 32, 33, 35, 36, 39, 40, 42, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66
/ =	3				

 $2 - (r, k, \lambda)_{\Omega}$

$$q = 3$$

r	k	Δ_{λ}	$\lambda_{ m max}$	$\nexists\lambda$	$\exists \lambda$
3	3	1	4	1	2 (De Bruyn, Vanhove)
4	4	1	40		8, 20

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decompositior

Latin-Greek halvings (i.e.
$$\lambda=\lambda_{
m max}/2)$$
 are marked with *.

$$q = 2$$

r	k	Δ_{λ}	$\lambda_{ m max}$	$ i \lambda$	$\exists \lambda$
3	3	1	2	-	1*
4	3	3	9		3
4	4	1	6	1,2	3*
5	5	1	30	1	6, 8, 10, 12, 14, 15*
6	6	1	270	1	40, 45, 48, 50, 51, 53, 54, 56, 57, 58, 60,
					62, 63, 64, 65, 66, 67, 69, 70, 72, 74, 75,
					77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90,
					91, 93, 94, 95, 96, 98, 99, 100, 102, 103,
					104, 105, 107, 108, 109, 110, 111, 112,
					114, 115, 116, 117, 118, 119, 120, 121,
					122, 123, 124, 125, 126, 127, 128, 129,
					130, 132, 133, 134, 135*

$$2 - (r, k, \lambda)_{\Omega^+}$$

 $2 - (r, k, \lambda)_{\Omega^+}$

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decomposition

q	=	3
-		

r	k	Δ_{λ}	$\lambda_{ m max}$	$ i \lambda$	$\exists \lambda$
3	3	1	2	-	1*
4	4	1	8	1	4^*
5	5	1	80		8, 16, 32, 40*

$2 - (r, k, \lambda)_{Sp}$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decomposition

For
$$q = 2$$
: $\Omega(2r + 1, q) = Sp(2r, q)$
 $q = 3$

r	k	Δ_{λ}	$\lambda_{ m max}$	$ i \lambda$	$\exists \lambda$
3	3	1	4	1, 2	- (2 by De Bruyn, Vanhove)
4	4	1	40		20
5	5	1	1120		

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

Back to combinatorial designs

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

Higher incidence matrices

- \mathcal{D} : t- (v, k, λ) design for $t \geq 2$
- The number of blocks which contain a given *i*-set of points and are disjoint to a given *j*-set of points is equal to

$$\lambda_{i,j} = \lambda \, \frac{\binom{v-i-j}{k-j}}{\binom{v-t}{k-t}}$$

• $N^{(e)}$ is the incidence matrix between all e-subsets and design blocks ($e \le t$), i.e.

$$N_{E,B}^{(e)} = \begin{cases} 1, & E \subset B \\ 0, & \text{else} \end{cases}$$

• $W^{(xy)}$ is the incidence matrix between all x-subsets and all y-subsets, i.e.

$$W_{X,Y}^{(xy)} = \begin{cases} 1, & X \subset Y \\ 0, & \text{else} \end{cases}$$

Wilson's theorem

Theorem (Wilson (1982)) For $e + f \le t$:

 $N^{(e)} (N^{(f)})^{\top} = \sum_{i=0}^{\min\{e,f\}} \lambda_{e+f-i,i} (W^{(ie)})^{\top} W^{(if)}$

$$W^{(ie)} N^{(e)} = \binom{k-i}{e-i} N^{(i)} \quad \text{for } 0 \le i \le e \le k \,.$$

Corollary

Let $2s \leq t$ and $v \geq k+s$. Then

$$b \ge \begin{pmatrix} v \\ s \end{pmatrix}$$
.

Recent results or incidence matrices of designs

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decompositions

A. Wassermann

Combinatoria designs

Subspace designs

Designs in polar spaces

Tactical decompositions

Summary

Tactical decomposition matrix

- (V, \mathcal{B}) : 2- (v, k, λ) design invariant under group G.
- The action of G partitions
 - V into orbits $\mathcal{P}_1, \ldots, \mathcal{P}_m$
 - \mathcal{B} into orbits $\mathcal{B}_1, \ldots, \mathcal{B}_n$.
- For $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$ let $N_{i,j}$ be the submatrix of N whose
 - rows are assigned to the elements \mathcal{P}_i
 - whose columns to the elements of \mathcal{B}_j .

 $N_{i,j} \ \mathrm{has}$ a constant number of ones in each row and a constant number of ones in each column.

- Such a decomposition of N into submatrices $N_{i,j}$ is called tactical.
- Replace for all i,j the submatrix $N_{i,j}$ by the number of ones in each row: $(m\times n)\text{-matrix }\rho$
- Replace the submatrix $N_{i,j}$ by the number of ones in each column: $(m \times n)$ -matrix κ .
- The matrices ρ and κ are both called tactical decomposition matrix.

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

$$N = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ \hline 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$
$$\rho = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 2 & 2 & 1 & 0 \\ 0 & 2 & 0 & 2 & 0 & 1 \end{pmatrix} \quad \kappa = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

 $G = \langle (0,1)(2,4) \rangle$

 $\underset{2-(6,\,3,\,2)}{\mathsf{Example}}$

Dembowski (1958)

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition:

Summary

For
$$\rho$$
 and κ and $P = \operatorname{diag}(\#\mathcal{P}_i)$ and $B = \operatorname{diag}(\#\mathcal{B}_i)$ holds:

$$P \cdot \rho = \kappa \cdot B$$

$$\rho \cdot (1, \dots, 1)^{\top} = (\lambda_1, \dots, \lambda_1)^{\top}$$

$$(1, \dots, 1) \cdot \kappa = (k, \dots, k)$$

$$\rho \cdot \kappa^{\top} = (\lambda_1 - \lambda) \cdot I + \lambda \cdot P \cdot J$$

For $G=\operatorname{Id}$ the last equation reduces to Bose's equation, i.e. $\rho=\kappa=N$

Algorithmic use

Janko and Tran Van Trung (1985) and many follow-ups:

- construct (all non-isomorphic) tactical decomposition matrices of a design using these equations
- Extend the tactical decomposition matrices to incidence matrices of designs

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decompositions

Summary

Combining Wilson and Dembowski?

Wilson, $t \geq 2$:

$$N^{(e)} (N^{(f)})^{\top} = \sum_{i=0}^{\min\{e,f\}} \lambda_{e+f-i,i} (W^{(ie)})^{\top} W^{(if)}$$

Dembowski, t = 2, group G:

$$\rho \cdot \kappa^{\top} = (\lambda_1 - \lambda) \cdot I + \lambda \cdot P \cdot J$$

Bose: N Dembowski: ρ, κ

Wilson: $N^{(e)}$ $\rho^{(e)}, \kappa^{(f)}$?

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Kiermaier, W.: Higher incidence matrices and tactical decomposition matrices (2023)

Let G be a group acting on V and $\mathcal{D}=(V,\mathcal{B})$ be a $t\text{-}(v,k,\lambda)$ design

- $R^{(x,y)}\colon$ Tactical decomposition of $W^{(xy)}$ w.r.t. action of G, row sums
- $K^{(x,y)}$: Tactical decomposition of $W^{(xy)}$ w.r.t. action of G, column sums
- $\rho^{(e)}\colon$ Tactical decomposition of $N^{(e)}$ w.r.t. action of G, row sums
- $\kappa^{(e)}\colon$ Tactical decomposition of $N^{(e)}$ w.r.t. action of G, column sums

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Higher tactical decomposition matrices

Theorem (Kiermaier, W. (2023))

Let G be a group acting on V and $\mathcal{D} = (V, \mathcal{B})$ be a t- (v, k, λ) design. For $e + f \leq t$:

$$\rho^{(e)} (\kappa^{(f)})^{\top} = \sum_{j=0}^{\min(e,f)} \lambda_{e+f-j,j} (K^{(je)})^{\top} R^{(jf)}$$

Let x, y be non-negative integers with $x \leq y \leq k$. Then

$$R^{(xy)} \rho^{(y)} = \binom{k-x}{y-x} \rho^{(x)} \quad \text{and} \quad K^{(xy)} \kappa^{(y)} = \binom{k-x}{y-x} \kappa^{(x)}$$

A. Wassermann

Combinatorial designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Higher tactical decomposition matrices

Fisher's equation, Block's theorem

Theorem (Kiermaier, W. (2023)) Let C be a group acting on V and \mathcal{D} (V \mathcal{P}) be a

Let G be a group acting on V and $\mathcal{D} = (V, \mathcal{B})$ be a t- (v, k, λ) design.

$$\#\mathcal{B}^G \ge \#\binom{V}{s}^G$$

for all $s \in \{0, \ldots, \lfloor t/2 \rfloor\}$, i.e.

Number of block orbits is at least as large as the overall number of s-orbits

All theorems have a q-analog version for subspace designs

Overview

A. Wassermann

Combinatorial designs

Subspace designs

Designs in polar spaces

Tactical decompositio

Summary

N• Bose • Fisher: $b \ge v$

• q

$N^{(e)}$

- Wilson
- RayChaudhuri, Wilson: $b \ge {v \choose s}$
- q: Suzuki, Cameron

ρ,κ

- Dembowski
- Block: $\#\mathcal{B}^G \ge \#V^G$
- q: Krčadinac et al

$$\rho^{(e)}, \kappa^{(f)}$$
• \checkmark
• #B^G ≥ #(^V_s)^G ✓
• q ✓

Open questions

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition:

Summary

Subspace designs, designs in polar spaces

- $C_{\mathcal{D}} = C_{\mathcal{G}}$?
- Study codes from designs in polar spaces
- Performance of soft-decision decoding algorithms?
- Performance for LDCP decoding
- More constructions

Higher tactical decomposition matrices

- Algorithmic use
- Relation to the work of Krčadinac, Nakić, Pavčević (2014): (complicated) equations on N for $t \ge 2$

The end

A. Wassermann

Combinatoria designs

Subspace designs

Designs in pola spaces

Tactical decomposition

Summary

Thank you for listening !