Recent results on incidence matrices of designs

Alfred Wassermann
Department of Mathematics, Universität Bayreuth, Germany

Workshop on convolutional codes
Universität Zürich June 8, 2023

Combinatorial designs

$t-(v, k, \lambda)$ design $\mathcal{D}=(V, \mathcal{B})$

- V : set of v points
- \mathcal{B} : set of k-subsets (blocks) of V
- $\mathcal{D}=(V, \mathcal{B})$ is called a $t-(v, k, \lambda)$ design on V if
each t-subset of V is contained in exactly λ blocks.

2-($6,3,2$) design:
0,1,2
0,1,4
0,2,5
0,3,4
0,3,5
Replication number

$$
1,2,3
$$

$$
1,3,5
$$

- \mathcal{D} is also $s-\left(v, k, \lambda_{s}\right)$ design for

$$
1,4,5
$$

$$
2,3,4
$$

$$
\lambda_{s}=\lambda\binom{v-s}{t-s} /\binom{k-s}{t-s}, s=0, \ldots, t \quad \quad \# \mathcal{B}=10, r=5
$$

- $b:=\# \mathcal{B}=\lambda_{0}$
- every point $P \in V$ appears in $r:=\lambda_{1}$ blocks: replication number

Subset lattice

$V=\{0,1,2,3,4,5\}$
$2-(6,3,2)$ design:

$$
0,1,2
$$

0,1,4
0,2,5
0,3,4
0,3,5
1,2,3
1,3,5
1,4,5
2,3,4
2,4,5

Incidence matrix

The $(v \times b)$-matrix N with

$$
N_{i j}= \begin{cases}1, & \text { if } i \in B_{j} \\ 0, & \text { otherwise }\end{cases}
$$

is the point/block incidence matrix of the Design \mathcal{D}.

$$
\left(\begin{array}{llllllllll}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

$2-(v, k, \lambda)$ design

- $\left(N N^{\top}\right)_{i j}= \begin{cases}r, & i=j \\ \lambda, & i \neq j\end{cases}$
- $N N^{\top}$ has Eigenvalues $(r-\lambda)+\lambda v=r k$ and $(r-\lambda)+0$ over \mathbb{Q}
- $\Rightarrow N N^{\top}$ has rank v over \mathbb{Q}
- $\Rightarrow N$ has rank v

Theorem (Fisher's inequality (1930))

$$
b \geq v
$$

Definition

The rank of N over \mathbb{F}_{p} is called p-rank of N (also p-rank of \mathcal{D})
Theorem (Hamada)
Let \mathcal{D} be a $2-(v, k, \lambda)$ design with replication number r and p prime.

- If p does not divide $r(r-\lambda)$, then rank $_{p} N=v$.
- If p divides r but does not divide $r-\lambda$, then $\operatorname{rank}_{p} N \geq v-1$.
- If rank $_{p} N<v-1$, then p divides $r-\lambda$.

Majority logic decoding and designs

Example

$$
\begin{array}{ll}
& 0,1,2,3,4,5 \\
\hline 0,1,2 & 1,1,1,0,0,0 \\
0,1,4 & 1,1,0,0,1,0 \\
0,2,5 & 1,0,1,0,0,1 \\
0,3,4 & 1,0,0,1,1,0 \\
0,3,5 & 1,0,0,1,0,1 \\
1,2,3 & 0,1,1,1,0,0 \\
1,3,5 & 0,1,0,1,0,1 \\
1,4,5 & 0,1,0,0,1,1 \\
2,3,4 & 0,0,1,1,1,0 \\
2,4,5 & 0,0,1,0,1,1
\end{array}
$$

Majority logic decoding

Linear code $C_{\mathcal{D}}$:

- Length: v
- Dimension: $\operatorname{dim} C_{\mathcal{D}}=v-\operatorname{rank}_{p} N$
- Majority logic decodes at least $\left\lfloor\frac{r+\lambda-1}{2 \lambda}\right\rfloor$ errors
- Complexity $\approx \#$ equations, i.e. r

Drawback:
For most designs, $C_{\mathcal{D}}$ will have dimension 0 or 1 .

Challenge:

Search for designs with low p-rank!

Classical / geometric designs

- $2 \leq k<v, \mathcal{V}=\mathbb{F}_{q}^{v}$
- Classical / geometric design, Bose (1939)

$$
\mathcal{G}=\left(\left[\begin{array}{l}
\mathcal{V} \\
1
\end{array}\right]_{q},\left[\begin{array}{l}
\mathcal{V} \\
k
\end{array}\right]_{q}\right)
$$

- $\left[\begin{array}{l}\mathcal{V} \\ k\end{array}\right]_{q}$: set of all k-dimensional subspaces of \mathcal{V} (k-subspaces)
- Gaussian coefficient:

$$
\#\left[\begin{array}{l}
\mathcal{V} \\
m
\end{array}\right]_{q}=\left[\begin{array}{c}
v \\
m
\end{array}\right]_{q}=\frac{\left(q^{v}-1\right)\left(q^{v-1}-1\right) \cdots\left(q^{v-m+1}\right)}{\left(q^{m}-1\right)\left(q^{m-1}-1\right) \cdots(q-1)}
$$

- \mathcal{G} : combinatorial design with parameters

$$
2-\left(\left[\begin{array}{l}
v \\
1
\end{array}\right]_{q},\left[\begin{array}{l}
k \\
1
\end{array}\right]_{q},\left[\begin{array}{l}
v-2 \\
k-2
\end{array}\right]_{q}\right)
$$

p-rank of classical designs

- $s_{f}=s_{0}$
- $k \leq s_{j} \leq v$ and $0 \leq s_{j+1} p-s_{j} \leq v(p-1)$
- $L\left(s_{j+1}, s_{j}\right)=\left\lfloor\left(s_{j+1} p-s_{j}\right) / p\right\rfloor$

Hamada's conjecture (1973)

Among the designs with the same parameters as the classical designs, the classical designs have minimal p-rank.

Codes from classical designs

projective case:

- Projective Geometry codes
- $p=2$: subcodes of punctured Reed-Muller codes
affine case:
- Euclidean Geometry codes
- $p=2$: Reed-Muller codes
- Assmus, Key (1992): Designs and their codes
- Since Rudolph (1967), codes from incidence matrices of various structures in finite geometry have been studied.

Subspace designs

Subspace designs

q-analogs of designs

A pair $\mathcal{D}=(\mathcal{V}, \mathcal{B})$ is called $t-(v, k, \lambda)_{q}$ subspace design if

- $\mathcal{V}=\mathbb{F}_{q}^{v}$
- $\left[\begin{array}{l}\mathcal{V} \\ 1\end{array}\right]_{q}$: points, $\quad \mathcal{B} \subseteq\left[\begin{array}{l}\mathcal{V} \\ k\end{array}\right]_{q}$: blocks
each t-subspace of \mathcal{V} is contained in exactly λ blocks.
- $\mathcal{B}=\left[\begin{array}{l}\mathcal{V} \\ k\end{array}\right]_{q}$: complete design

1- $(4,2,7)_{2}$ design

1- $(4,2,1)_{2}$ design

History of subspace designs

- Introduced by Ray-Chaudhuri, Cameron, Delsarte in the 1970s
- Thomas (1987): 2 - $(v, 3,7)_{2}$ for $v \geq 7$ and $\pm 1 \equiv v(\bmod 6)$
- Suzuki (1989):

$$
2-\left(v, 3, q^{2}+q+1\right)_{q} \text { for } v \geq 7 \text { and } \pm 1 \equiv v(\bmod 6)
$$

- Nontrivial q-Steiner systems (i.e. $\lambda=1$): Braun, Etzion, Östergård, Vardy, W. (2013)
- Many sporadic examples found by computer, see Greferath, Pavčević, Silberstein, Vázquez-Castro: Network Coding and Subspace Designs (2018)
- Keevash et al (2023): q-Steiner systems asymptotically exist for all t.

Designs: necessary conditions

$t-(v, k, \lambda)_{q}$ design \mathcal{D} for $q \geq 1$

- \mathcal{D} is also $s-\left(v, k, \lambda_{s}\right)_{q}$ design for

$$
\lambda_{s}=\lambda\left[\begin{array}{l}
v-s \\
t-s
\end{array}\right]_{q} /\left[\begin{array}{l}
k-s \\
t-s
\end{array}\right]_{q}
$$

- Necessary conditions:

$$
\lambda_{s} \in \mathbb{Z} \text { for } 0 \leq s \leq t
$$

- λ_{1} : replication number
- λ_{0} : number of blocks
- Bose's equation holds, too:

$$
N \cdot N^{\top}=(r-\lambda) \cdot I+\lambda \cdot J
$$

Subspace designs \rightarrow combinatorial designs

Complete design

- Blocks are the set of all k-subspaces
- $\lambda_{\text {max }}=\left[\begin{array}{c}v-t \\ k-t\end{array}\right]_{q}$

Combinatorial design parameters

- A 2- $(v, k, \lambda)_{q}$ subspace design is a

$$
2-\left(\left[\begin{array}{l}
v \\
1
\end{array}\right]_{q},\left[\begin{array}{l}
k \\
1
\end{array}\right]_{q}, \lambda\right)
$$

combinatorial design

- The classical / geometric designs are a special case of subspace designs: namely the complete subspace designs $2-\left(v, k, \lambda_{\max }\right)_{q}$

Classical designs vs. subspace designs

classical design \mathcal{G}

- 2-($\left.v, k, \lambda_{\max }\right)_{q}$
- incidence matrix $H_{\mathcal{G}}$
subspace design \mathcal{D}
- 2- $(v, k, \lambda)_{q}$
- incidence matrix H_{D}

Observation:
The rows of $H_{\mathcal{D}}$ are a subset of the rows of $H_{\mathcal{G}}$

$$
\operatorname{rank}_{p} \mathcal{D} \leq \operatorname{rank}_{p} \mathcal{G} \quad \text { and } \quad C_{\mathcal{D}} \geq C_{\mathcal{G}}
$$

Conjecture:

$$
C_{\mathcal{D}}=C_{\mathcal{G}}
$$

Classical designs vs. subspace designs

part II: majority logic decoding

- $r_{\mathcal{D}}=\lambda \frac{\left[\begin{array}{c}v-1 \\ 1\end{array}\right]_{q}}{\left[\begin{array}{c}k-1 \\ 1\end{array}\right]_{q}}$

$$
r_{\mathcal{G}}=\lambda_{\max } \frac{\left[\begin{array}{c}
v-1 \\
1
\end{array}\right]_{q}}{\left[\begin{array}{c}
k-1 \\
1
\end{array}\right]_{q}}=\left[\begin{array}{c}
v-2 \\
k-2
\end{array}\right]_{q} \frac{\left[\begin{array}{c}
v-1 \\
1
\end{array}\right]_{q}}{\left[\begin{array}{c}
k-1 \\
1
\end{array}\right]_{q}}
$$

Dela Cruz, W. (2021):

- Length of $C_{\mathcal{D}}, C_{\mathcal{G}}:\left[\begin{array}{l}v \\ 1\end{array}\right]_{q}$
- Dimension: $\operatorname{dim} C_{\mathcal{D}} \geq \operatorname{dim} C_{\mathcal{G}}$
- Majority logic decoding is correct if (\#err $\cdot \lambda<(r+\lambda) / 2)$

$$
\text { \#errors } \leq\left\lfloor\frac{\left[\begin{array}{c}
v-1 \\
1
\end{array}\right]_{q}}{2\left[\begin{array}{c}
k-1 \\
1
\end{array}\right]_{q}}\right\rfloor
$$

i.e. the number of correctable errors is independent from λ.

- \#equations: $r_{\mathcal{D}}+1 \leq r_{\mathcal{G}}+1$
- For $v \rightarrow \infty$, the Suzuki family $2-\left(v, 3, q^{2}+q+1\right)_{q}$ gives an exponential improvement in the \# equations compared to the geometric designs
- LDPC code: "sparse matrix of parity check equations"
- Gallager's bit-flipping algorithm:
[...] the decoder computes all the parity-checks and then changes any digit that is contained in more than some fixed number of unsatisfied parity-check equations. Using these new values, the parity checks are recomputed, and the process is repeated until the parity-check equations are all satisfied.
- Majority logic decoding - alternative view:
- For each coordinate, $0 \leq i<n$, set a counting variable $f_{i} \leftarrow 0$.
- For each parity-check equation:
if equation h is unsatisfied:
$f_{i} \leftarrow f_{i}+1$ for all i in the $\operatorname{supp}(h)$
- Flip entry if $f_{i}>(r+\lambda) / 2$
- Majority logic decoding is a single step in the bit-flipping algorithm with specific treshold.
- Soft-decision variants: Kolesnik (1971), Bossert et. al. (2009)

LDPC codes

From Kou, Lin, Fossorier (2001): Decoding codes from geometric designs

ig. 3. Bit- and block-error probabilities of the type-12-D (1023. 781) EG-LDPC code and (1057, 813) PG-LDPC code based on different decoding algorithms.

Open

Performance of bit-flipping and sum-product algorithm on parity-check matrices from subspace designs?

Finite classical polar spaces

Finite classical polar spaces

Geometries associated with the non-degenerate sesquilinear and non-singular quadratic forms over a finite field.

- $\operatorname{PG}(v-1, q)$: projective space of \mathbb{F}_{q}^{v}
- Polar space \mathcal{Q} in $\mathrm{PG}(v-1, q)$ consists of the projective subspaces of $\operatorname{PG}(v-1, q)$ that are
- totally isotropic with relation to a given non-degenerate sesquilinear form or
- totally singular with relation to a given non-singular quadratic form

Example
Hyperbolic quadric $\Omega^{+}(2 r, q) \subset \operatorname{PG}(2 r-1, q), r \geq 1$:

$$
x_{0} x_{r}+\ldots+x_{r-1} x_{2 r-1}=0
$$

Recent results on
incidence
matrices of designs Combinatoria designs
Subspace designs
$\Omega^{+}(4,2)$ embedded in $P G(3,2)\left(\mathbb{F}_{2}^{4}\right)$

$\Omega^{+}(4,2)$ embedded in $P G(3,2)\left(\mathbb{F}_{2}^{4}\right)$

$\Omega^{+}(4,2)$ embedded in $P G(3,2)\left(\mathbb{F}_{2}^{4}\right)$

Finite classical polar spaces

- \mathcal{Q} polar space in $\operatorname{PG}(v-1, q), v$ minimal
- A subspace of maximum dimension r in a polar space \mathcal{Q} : generator
- r : rank of \mathcal{Q}

Finite classical polar spaces

name	symbol \mathcal{Q}	type Q	ϵ	alternative symbols	
symplectic	$S p(2 r, q)$	$S p$	0	C_{r}	$W_{2 r-1}(q)$
Hermitian	$U(2 r, q)$	U	$-1 / 2$	${ }^{2} A_{2 r-1}$	$H_{2 r-1}(q)$
Hermitian	$U(2 r+1, q)$	U^{+}	$1 / 2$	${ }^{2} A_{2 r}$	$H_{2 r}(q)$
hyperbolic	$\Omega^{+}(2 r, q)$	Ω^{+}	-1	D_{r}	$Q_{2 r-1}^{+}(q)$
parabolic	$\Omega(2 r+1, q)$	Ω	0	B_{r}	$Q_{2 r}(q)$
elliptic	$\Omega^{-}(2 r+2, q)$	Ω^{-}	1	${ }^{2} D_{r+1}$	$Q_{2 r+1}^{-}(q)$

Counting

Lemma (Brouwer, Cohen, Neumaier, Distance regular graphs)

- The number of k-dimensional subspaces of \mathcal{Q} is equal to

$$
\left[\begin{array}{l}
r \\
k
\end{array}\right]_{Q}=\left[\begin{array}{l}
r \\
k
\end{array}\right]_{q} \cdot \prod_{i=r-k+1}^{r}\left(q^{i+\epsilon}+1\right)
$$

- The number of k-dimensional subspaces of \mathcal{Q} containing a fixed u-dimensional subspace is

$$
\left[\begin{array}{l}
r-u \\
k-u
\end{array}\right]_{Q}=\left[\begin{array}{l}
r-u \\
k-u
\end{array}\right]_{q} \cdot \prod_{i=r-k+1}^{r-u}\left(q^{i+\epsilon}+1\right) .
$$

Designs in finite classical polar spaces

Definition

- finite polar space \mathcal{Q} of rank r
- set of \mathcal{B} of k-dimensional subspaces in \mathcal{Q} (blocks)
- $\mathcal{D}=(\mathcal{Q}, \mathcal{B})$ is called a $t-(r, k, \lambda)_{Q^{-}}$-design if each t-dimensional subspace of \mathcal{Q} is contained in exactly λ blocks
(Here, dimensions are vector space dimensions)

Designs in polar spaces as combinatorial designs

2-designs in polar spaces

- fail to be combinatorial designs (in general)
- are (combinatorial) 1-designs and 2-packings, i.e. possess a replication number
- are candidates for codes with majority logic decoder

Connection to rank metric codes

Kerdock sets

- Hyperbolic quadric $\Omega_{2 r}^{+}(q) \subset \mathbb{F}_{q}^{2 r}$

$$
x_{0} x_{r}+\ldots+x_{r-1} x_{2 r-1}=0 \Longleftrightarrow x \cdot\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) \cdot x^{\top}=0
$$

- Lift matrices $\mathbb{F}_{q}^{r \times r} \ni A \mapsto(I \mid A) \in\left[\begin{array}{c}\mathbb{F}_{q}^{2 r} \\ r\end{array}\right]_{q}$:

$$
\begin{aligned}
0 & =(I \mid A) \cdot\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) \cdot(I \mid A)^{\top} \\
& =(I \mid A) \cdot(A \mid I)^{\top}=A^{\top}+A \\
& \Leftrightarrow A^{\top}=-A
\end{aligned}
$$

- Elements of Ω^{+}correspond to (skew) symmetric matrices
- ... it follows:

Kerdock sets (of matrices) in coding theory are 1-($2 r, r, 1)_{\Omega^{+}}$ designs, i.e. spreads in Ω^{+}

Steiner systems

Theorem (K.-U. Schmidt, Ch. Weiß (2022))
Suppose there exists a $t-(r, r, 1)_{Q}$ Steiner system with $t \in\{2, \ldots, r-1\}$. Then one of the following holds

- $t=2$ and $Q=U(q)$ or $Q=\Omega^{-}(q)$ for odd r.
- $t=r-1$ and $Q=U^{-}(q)$ or $Q=\Omega^{-}(q)$ for $q \neq 2$, or $Q=\Omega^{+}(q)$.

Well known

In $\Omega^{+}(2 r, q)$ there always exists the Latin-Greek halving, i.e. a

$$
(r-1)-(r, r, 1)_{\Omega^{+}} \text {design }
$$

Necessary conditions

Lemma

Let \mathcal{D} be a $t-(r, k, \lambda)_{Q}$ design.
Then for each $s \in\{0, \ldots, t\}, \mathcal{D}$ is an $s-\left(r, k, \lambda_{s}\right)_{Q}$ design with

$$
\lambda_{s}=\lambda \cdot \frac{\left[\begin{array}{c}
r-s \\
t-s
\end{array}\right]_{Q}}{\left[\begin{array}{l}
k-s \\
t-s
\end{array}\right]_{q}}=\lambda \cdot \frac{\left[\begin{array}{c}
r-s \\
t-s
\end{array}\right]_{q}}{\left[\begin{array}{l}
k-s \\
t-s
\end{array}\right]_{q}} \cdot \prod_{i=r-t+1}^{r-s}\left(q^{i+\epsilon}+1\right) .
$$

In particular, the number of blocks of \mathcal{D} is given by λ_{0} and the replication number by λ_{1}.

Incidence matrix

N : point / block incidence matrix

$$
\left(N N^{\top}\right)_{i j}= \begin{cases}\lambda_{1}, & i=j \\ \lambda, & i \neq j, P_{i}, P_{j} \text { collinear } \\ 0, & i \neq j, P_{i}, P_{j} \text { non-collinear }\end{cases}
$$

Collinearity graph

Lemma

Let A be the adjacency matrix of the collinearity graph (a strongly regular graph) of the polar space \mathcal{Q}.
The eigenvalues of A are

$$
\theta_{0}=q \cdot\left[\begin{array}{c}
r-1 \\
1
\end{array}\right]_{\mathcal{Q}}, \quad \theta_{1}=q^{r-1}-1, \quad \theta_{2}=-\left(q^{r+\epsilon-1}+1\right)
$$

with multiplicities

$$
\begin{aligned}
& m_{0}=1 \\
& m_{1}=q^{\epsilon+1} \cdot \frac{q^{r+\epsilon-1}+1}{q^{\epsilon}+1} \cdot\left[\begin{array}{l}
r \\
1
\end{array}\right]_{q} \quad \text { and } \\
& m_{2}=q \cdot \frac{q^{r+\epsilon}+1}{q^{\epsilon}+1} \cdot\left[\begin{array}{c}
r-1 \\
1
\end{array}\right]_{q}
\end{aligned}
$$

Bose's equation

Theorem
The eigenvalues μ_{i} of

$$
N N^{\top}=\lambda_{1} I+\lambda A
$$

are

$$
\mu_{i}=\lambda_{1}+\lambda \theta_{i}
$$

with multiplicities $m_{i}, i=0,1,2$.

- Since $\lambda, \lambda_{1}>0$ also $\mu_{0}, \mu_{1}>0$
- $\mu_{2}=0$ iff $t=2$ and $k=r$, independent from λ
- If $\mu_{2}=0$, the rank of the matrices $N N^{\top}$ and N over \mathbb{Q} is equal to $1+m_{1}$
- In all other cases the matrix N has full rank
- Fisher's inequality is not true in all cases

Computer search

Previous results

- First nontrivial 2-designs [De Bruyn, Vanhove (2012, unpublished)]:
- $\Omega(7,3): 2-(3,3,2)_{\Omega}$
- $\Omega^{-}(8,2): 2-(3,3,2)_{\Omega^{-}}$
- Lansdown (2020):
- $\Omega(7,5): 2-(3,3,3)_{\Omega}$
- $\Omega(7,7): 2-(3,3,4)_{\Omega}$
- $\Omega(7,11): 2-(3,3,6)_{\Omega}$
- Found as m-ovoids in the dual polar space with $m=\lambda_{\max } / 2$ (hemisystems)

$2-(r, k, \lambda)_{\Omega^{-}}$

A. Wassermann

Combinatorial designs

Subspace designs
Designs in polar spaces

$$
q=2
$$

r	k	Δ_{λ}	$\lambda_{\max }$	$\nexists \lambda$	$\exists \lambda$
3	3	1	5	1	2 (De Bruyn, Vanhove)
4	$\mathbf{3}$	3	27		$6,9,12$
4	4	1	45	1	$9,11,12,14,15,16,18,19,21$
5	5	1	765	1	$240,245,275,280,315,360$

$$
q=3
$$

$$
\begin{array}{llllll}
r & k & \Delta_{\lambda} & \lambda_{\max } & \nexists \lambda & \exists \lambda \\
\hline 3 & 3 & 1 & 10 & ? & 2,5
\end{array}
$$

$$
q=2
$$

r	k	Δ_{λ}	$\lambda_{\max }$	$\nexists \lambda$	$\exists \lambda$
3	3	1	3	1	-
4	$\mathbf{3}$	1	15		6,7
4	4	1	15	1	$5,6,7$
5	5	1	135	1	$21,24,27,29,30,32,33,35,36,39,40$,
					$42,45,47,48,50,51,52,53,54,55,56$,
					$57,58,60,61,62,63,64,65,66$

$$
q=3
$$

r	k	Δ_{λ}	$\lambda_{\max }$	$\nexists \lambda$	$\exists \lambda$
3	3	1	4	1	2 (De Bruyn, Vanhove)
4	4	1	40		8,20

$2-(r, k, \lambda)_{\Omega^{+}}$

Latin-Greek halvings (i.e. $\lambda=\lambda_{\max } / 2$) are marked with *.

$$
q=2
$$

r	k	Δ_{λ}	$\lambda_{\max }$	$\nexists \lambda$	$\exists \lambda$
3	3	1	2	-	1^{*}
4	$\mathbf{3}$	3	9		3
4	4	1	6	1,2	3^{*}
5	5	1	30	1	$6,8,10,12,14,15^{*}$
6	6	1	270	1	$40,45,48,50,51,53,54,56,57,58,60$,

$$
62,63,64,65,66,67,69,70,72,74,75,
$$

$$
77,78,79,80,81,84,85,86,87,88,90
$$

$$
91,93,94,95,96,98,99,100,102,103,
$$

$$
104,105,107,108,109,110,111,112
$$

$$
114,115,116,117,118,119,120,121
$$

$$
122,123,124,125,126,127,128,129 \text {, }
$$

$$
130,132,133,134,135^{*}
$$

$2-(r, k, \lambda)_{\Omega^{+}}$

$$
q=3
$$

r	k	Δ_{λ}	$\lambda_{\max }$	$\nexists \lambda$	$\exists \lambda$
3	3	1	2	-	1^{*}
4	4	1	8	1	4^{*}
5	5	1	80		$8,16,32,40^{*}$

A. Wassermann

Back to combinatorial designs

Higher incidence matrices

- $\mathcal{D}: t-(v, k, \lambda)$ design for $t \geq 2$
- The number of blocks which contain a given i-set of points and are disjoint to a given j-set of points is equal to

$$
\lambda_{i, j}=\lambda \frac{\binom{v-i-j}{k-j}}{\binom{v-t}{k-t}}
$$

- $N^{(e)}$ is the incidence matrix between all e-subsets and design blocks $(e \leq t)$, i.e.

$$
N_{E, B}^{(e)}= \begin{cases}1, & E \subset B \\ 0, & \text { else }\end{cases}
$$

- $W^{(x y)}$ is the incidence matrix between all x-subsets and all y-subsets, i.e.

$$
W_{X, Y}^{(x y)}= \begin{cases}1, & X \subset Y \\ 0, & \text { else }\end{cases}
$$

Wilson's theorem

Theorem (Wilson (1982))
For $e+f \leq t$:

$$
\begin{gathered}
N^{(e)}\left(N^{(f)}\right)^{\top}=\sum_{i=0}^{\min \{e, f\}} \lambda_{e+f-i, i}\left(W^{(i e)}\right)^{\top} W^{(i f)} \\
W^{(i e)} N^{(e)}=\binom{k-i}{e-i} N^{(i)} \quad \text { for } 0 \leq i \leq e \leq k .
\end{gathered}
$$

Corollary
Let $2 s \leq t$ and $v \geq k+s$. Then

$$
b \geq\binom{ v}{s} .
$$

Tactical decomposition matrix

- $(V, \mathcal{B}): 2-(v, k, \lambda)$ design invariant under group G.
- The action of G partitions
- V into orbits $\mathcal{P}_{1}, \ldots, \mathcal{P}_{m}$
- \mathcal{B} into orbits $\mathcal{B}_{1}, \ldots, \mathcal{B}_{n}$.
- For $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n\}$ let $N_{i, j}$ be the submatrix of N whose
- rows are assigned to the elements \mathcal{P}_{i}
- whose columns to the elements of \mathcal{B}_{j}.
$N_{i, j}$ has a constant number of ones in each row and a constant number of ones in each column.
- Such a decomposition of N into submatrices $N_{i, j}$ is called tactical.
- Replace for all i, j the submatrix $N_{i, j}$ by the number of ones in each row: $(m \times n)$-matrix ρ
- Replace the submatrix $N_{i, j}$ by the number of ones in each column: $(m \times n)$-matrix κ.
- The matrices ρ and κ are both called tactical decomposition matrix.

Example

$$
G=\langle(0,1)(2,4)\rangle
$$

$$
N=\left(\begin{array}{ll|ll|ll|ll|l|l}
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

$$
\rho=\left(\begin{array}{llllll}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 2 & 2 & 1 & 0 \\
0 & 2 & 0 & 2 & 0 & 1
\end{array}\right) \quad \kappa=\left(\begin{array}{llllll}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 2 & 2 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Dembowski (1958)

For ρ and κ and $P=\operatorname{diag}\left(\# \mathcal{P}_{i}\right)$ and $B=\operatorname{diag}\left(\# \mathcal{B}_{i}\right)$ holds:

$$
\begin{aligned}
P \cdot \rho & =\kappa \cdot B \\
\rho \cdot(1, \ldots, 1)^{\top} & =\left(\lambda_{1}, \ldots, \lambda_{1}\right)^{\top} \\
(1, \ldots, 1) \cdot \kappa & =(k, \ldots, k) \\
\rho \cdot \kappa^{\top} & =\left(\lambda_{1}-\lambda\right) \cdot I+\lambda \cdot P \cdot J
\end{aligned}
$$

For $G=$ Id the last equation reduces to Bose's equation, i.e. $\rho=\kappa=N$

Algorithmic use

Janko and Tran Van Trung (1985) and many follow-ups:
(1) construct (all non-isomorphic) tactical decomposition matrices of a design using these equations
(2) Extend the tactical decomposition matrices to incidence matrices of designs

Combining Wilson and Dembowski?

Wilson, $t \geq 2$:

$$
N^{(e)}\left(N^{(f)}\right)^{\top}=\sum_{i=0}^{\min \{e, f\}} \lambda_{e+f-i, i}\left(W^{(i e)}\right)^{\top} W^{(i f)}
$$

Dembowski, $t=2$, group G :

$$
\rho \cdot \kappa^{\top}=\left(\lambda_{1}-\lambda\right) \cdot I+\lambda \cdot P \cdot J
$$

Bose: N
Dembowski: ρ, κ
Wilson: $N^{(e)}$

$$
\rho^{(e)}, \kappa^{(f)} ?
$$

Higher tactical decomposition matrices

Kiermaier, W.: Higher incidence matrices and tactical decomposition matrices (2023)

Let G be a group acting on V and $\mathcal{D}=(V, \mathcal{B})$ be a $t-(v, k, \lambda)$ design

- $R^{(x, y)}$: Tactical decomposition of $W^{(x y)}$ w.r.t. action of G, row sums
- $K^{(x, y)}$: Tactical decomposition of $W^{(x y)}$ w.r.t. action of G, column sums
- $\rho^{(e)}$: Tactical decomposition of $N^{(e)}$ w.r.t. action of G, row sums
- $\kappa^{(e)}$: Tactical decomposition of $N^{(e)}$ w.r.t. action of G, column sums

Higher tactical decomposition matrices

Theorem (Kiermaier, W. (2023))
Let G be a group acting on V and $\mathcal{D}=(V, \mathcal{B})$ be a $t-(v, k, \lambda)$ design. For $e+f \leq t$:

$$
\rho^{(e)}\left(\kappa^{(f)}\right)^{\top}=\sum_{j=0}^{\min (e, f)} \lambda_{e+f-j, j}\left(K^{(j e)}\right)^{\top} R^{(j f)}
$$

Let x, y be non-negative integers with $x \leq y \leq k$. Then

$$
R^{(x y)} \rho^{(y)}=\binom{k-x}{y-x} \rho^{(x)} \quad \text { and } \quad K^{(x y)} \kappa^{(y)}=\binom{k-x}{y-x} \kappa^{(x)}
$$

Higher tactical decomposition matrices

Fisher's equation, Block's theorem

Theorem (Kiermaier, W. (2023))
Let G be a group acting on V and $\mathcal{D}=(V, \mathcal{B})$ be a $t-(v, k, \lambda)$ design.

$$
\# \mathcal{B}^{G} \geq \#\binom{V}{s}^{G}
$$

for all $s \in\{0, \ldots,\lfloor t / 2\rfloor\}$, i.e.
Number of block orbits is at least as large as the overall number of s-orbits

All theorems have a q-analog version for subspace designs

Overview

- Bose
- Fisher: $b \geq v$
- q

$$
\rho, \kappa
$$

- Dembowski
- Block: $\# \mathcal{B}^{G} \geq \# V^{G}$
- q : Krčadinac et al
$N^{(e)}$
- Wilson
- RayChaudhuri, Wilson:
$b \geq\binom{ v}{s}$
- q : Suzuki, Cameron
$\rho^{(e)}, \kappa^{(f)}$
- $\# \mathcal{B}^{G} \geq \#\binom{V}{s}^{G} \boldsymbol{\imath}$
- $q \boldsymbol{V}$

Open questions

Subspace designs, designs in polar spaces

- $C_{\mathcal{D}}=C_{\mathcal{G}}$?
- Study codes from designs in polar spaces
- Performance of soft-decision decoding algorithms?
- Performance for LDCP decoding
- More constructions

Higher tactical decomposition matrices

- Algorithmic use
- Relation to the work of Krčadinac, Nakić, Pavčević (2014): (complicated) equations on N for $t \geq 2$

Recent results on
incidence
matrices of
designs
A. Wassermann

Combinatorial
designs
Subspace designs
Designs in polar
spaces
Tactical
decompositions
Summary

The end

Thank you for listening !

