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t-(v, k, X) design D = (V, B)
® V: set of v points

® 3. set of k-subsets (blocks) of V

e D= (V,B)is called a t-(v,k, \)
design on V' if

Combinatorial
designs

each t-subset of V is contained in
exactly A blocks.

Replication number

® Dis also s-(v, k, A\s) design for

° h:=#B=)X

® every point P € V appears in
r := A1 blocks: replication number

ASZA(”_S>/<k_S>,s=o,...
t—s t—s

Combinatorial designs

2-(6,3,2) design:

0,1,2
01,4
0,2,5
03,4
0,35
1,2,3
1,35
1,45
2,34
2,4,5

b #B=10,r=5



Subset lattice

vV ={0,1,2,3,4,5}

Combinatorial

designs o

2-(6,3,2) design:

0,1,2
01,4
0,2,5
03,4
0,3,5
1,23
1,35
1,45
2,34
2,4,5

OO0 0000000000000




Incidence matrix

Combinatorial
designs

The (v x b)-matrix N with

Ny = 1, ifie ?j
0, otherwise

is the point/block incidence matrix of the Design D.

1110101000
1101010100
1010010011
0101100011
0000111110
0011 0011°01




2-(v, k, \) design

Combinsiercl Bose (1949):

N-NT=(@r—=X\N-T+Xx-J

T, =]
(NNT)ij:{)H oy
NNT has Eigenvalues (r — \) + \v = rk and (r — \) 4 0 over Q
® = NN has rank v over Q
® = N has rank v

Theorem (Fisher's inequality (1930))

b>wv




Combinatorial
designs

p-rank of N

2-(v, k, A) design

Definition
The rank of N over I, is called p-rank of N (also p-rank of D)

Theorem (Hamada)

Let D be a 2-(v, k, \) design with replication number r and p prime.
* Ifp does not divide r(r — \), then rank, N = v.
® Ifp divides r but does not divide r — A, then rank, N > v — 1.
® Ifrank, N < v —1, then p divides r — .



Majority logic decoding and designs

Rudolph (1967), Ng (1970)

S ® Given: 2-(v,k, \) design D = (V, B) with incidence matrix N
e Take N as parity check matrix of a code

Combinatorial

® CUp < F): p-ary linear code of length v having parity-check
matrix Hp := NT

Example

01,2345
012 1,1,1,00,0
014 1,1,0,01,0
025 1,0,1,0,0,1
034 1,0,0,1,1,0
035 1,0,0,1,0,1
123 0,1,1,1,0,0
135 0,1,01,01
145 0,1,00 1,1
234 001,110
245 0,0,1,01,1




Majority logic decoding

® r equations for each coordinate

Combinatorial ® Each error spoils at most A of these equations

designs

® Decoding correct if

#errors - A < (r+\)/2

Linear code Cp:

® |ength: v

® Dimension: dim Cp = v — rank, N
T+)\ 1

® Majority logic decodes at least | “5y— | errors

® Complexity = #equations, i.e. T

Drawback:

For most designs, C'p will have dimension 0 or 1.

Challenge:

Search for designs with low p-rank!




Classical / geometric designs

Combinatorial

designs o 2Sk<'l},V:]FZ
Classical / geometric design, Bose (1939)

o=(i], [,

V] ,: set of all k-dimensional subspaces of V' (/i-subspaces)

Gaussian coefficient:

Vi _vy _ (@' — (g?~1 —1)--- (gv—m+1)
#[m] - [m]q - (qm _ 1)(!]""71 — 1)“.(q_ 1)

® G: combinatorial design with parameters

2—(mq7 m [Zizb

q




p-rank of classical designs

Combinatorial

designs Theorem (Hamada (1973))
® The p-rank of G is

SoSTS () ()

sf—13=0 =
® sy =50
® k<s;j<vand0<sjip—s; <v(p—1)
® L(sjt1,85) = L(sj+1p — s5)/p]

Hamada's conjecture (1973)

Among the designs with the same parameters as the classical designs,
the classical designs have minimal p-rank.




Codes from classical designs

Combinatorial
designs

projective case:

affine case:
® Projective Geometry ® Euclidean Geometry
codes
codes
® p = 2: subcodes of e p—2: Reed-Muller
punctured Reed-Muller
codes
codes

® Assmus, Key (1992): Designs and their codes

® Since Rudolph (1967), codes from incidence matrices of various
structures in finite geometry have been studied.




Subspace designs




Subspace designs

g-analogs of designs

A pair D = (V, B) is called t-(v, k, \)4 subspace design if
*V=F]
J []f]q: points, B C Bﬂq: blocks

each t-subspace of V is contained in exactly A blocks.

Subspace designs

° B= Dﬂq: complete design

1-(4,2,7)2 design 1-(4,2,




Subspace designs

History of subspace designs

Introduced by Ray-Chaudhuri, Cameron, Delsarte in the 1970s
Thomas (1987):
2-(v,3,7)2 for v > 7 and +1 = v (mod 6)
Suzuki (1989):
2-(v,3,¢> + g+ 1), forv>7and £1 = v (mod 6)
Nontrivial ¢g-Steiner systems (i.e. A = 1):
Braun, Etzion, Ostergard, Vardy, W. (2013)
Many sporadic examples found by computer, see
Greferath, Pavcevi¢, Silberstein, Vazquez-Castro:
Network Coding and Subspace Designs (2018)
Keevash et al (2023): ¢-Steiner systems asymptotically exist for
all ¢.



Designs: necessary conditions
t-(v, k, X)q design D for ¢ > 1

Subspace designs ® Dis also s-(v, k, \s)q design for
v—s k—s
I P L R
® Necessary conditions:

As €EZ for0 < s <t

® )\;: replication number
® )\g: number of blocks
® Bose's equation holds, too:

N-NT =@ —=XN-T4+X-J




Subspace designs — combinatorial designs

Complete design

Subspace designs

® Blocks are the set of all k-subspaces

N = [,

Combinatorial design parameters

® A 2-(v,k,\)g subspace design is a
v k
+([}] o] v
g 1

® The classical / geometric designs are a special case of subspace
designs: namely the complete subspace designs 2-(v, k, Amax)q

combinatorial design




Classical designs vs. subspace designs
part |

classical design G subspace design D
Subspace designs
® 2'(7)’ ka )\max)q ° 2-(’0, k, )\)q
® incidence matrix Hg ® incidence matrix Hp

Observation:
The rows of Hp are a subset of the rows of Hg

=

rank, D <rank,G and Cp > Cg

Conjecture:

Cp = Cg




Classical designs vs. subspace designs

part |I: majority logic decoding

® rp = )\[Li]" G = Amax [Li}q =[v2 [Ui]q

PEART, o= g = i, )
Dela Cruz, W. (2021):

® Length of Cp, Cg: mq

® Dimension: dim Cp > dim Cg

® Majority logic decoding is correct if (#err- A < (r+2)/2)

v—1
#errors < {[1—_]‘1J
2",

i.e. the number of correctable errors is independent from A.
® Hequations: rp+1<rg+1

® For v — oo, the Suzuki family 2-(v,3,¢* + ¢ + 1), gives an
exponential improvement in the # equations compared to the
geometric designs




LDPC codes

Gallager (1963)

® LDPC code: “sparse matrix of parity check equations”
Subspace designs ® Gallager's bit-flipping algorithm:
[...] the decoder computes all the parity-checks and then
changes any digit that is contained in more than some fixed
number of unsatisfied parity-check equations. Using these
new values, the parity checks are recomputed, and the pro-
cess is repeated until the parity-check equations are all sat-
isfied.
® Majority logic decoding — alternative view:
® For each coordinate, 0 < i < m, set a counting variable f; < 0.
® For each parity-check equation:
if equation h is unsatisfied:
fi + fi+ 1 for all ¢ in the supp(h)
® Flip entry if f; > (r+X)/2
® Majority logic decoding is a single step in the bit-flipping
algorithm with specific treshold.
® Soft-decision variants: Kolesnik (1971), Bossert et. al. (2009)




LDPC codes

From Kou, Lin, Fossorier (2001): Decoding codes from geometric

Subspace designs
0 T
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E/N, (08)
Fig.3.  Bit-and block-error probabilities of the type-12-D (1023, 751) EG-LDPC code and (1057, §13) PG-LDPC cade based on different decoding algorithms.

Performance of bit-flipping and sum-product algorithm on
parity-check matrices from subspace designs?




Finite classical polar spaces




Finite classical polar spaces

Geometries associated with the non-degenerate sesquilinear and
non-singular quadratic forms over a finite field.

Designs in polar
spaces

® PG(v—1,q): projective space of
® Polar space Q in PG(v — 1, ¢) consists of the

projective subspaces of PG(v — 1, ¢) that are

® totally isotropic with relation to a given non-degenerate
sesquilinear form or

® totally singular with relation to a given non-singular quadratic
form

Example
Hyperbolic quadric Q% (2r,q) € PG(2r — 1,q), r > 1:

ToTr + ...+ Xp_1Tor_1 =0







Q)" (4,2) embedded in PG(3,2) (F3)

O

0000000000000 0




Q)" (4,2) embedded in PG(3,2) (F3)

O

0000000000000 0




Finite classical polar spaces

generators

Designs in polar
spaces

® O polar space in PG(v — 1,¢), v minimal

® A subspace of maximum dimension r in a polar space Q:
generator

® r: rank of Q




Designs in polar
spaces

Finite classical polar spaces

name symbol Q type Q € alternative symbols
symplectic  Sp(2r, q) Sp 0 Cr War—1(q)
Hermitian  U(2r,q) U -1/2  2A49,-1  Har—1(q)
Hermitian  U(2r +1,q) U+ /2 2As, Ha,(q)
hyperbolic Q-+ (2r, q) o+t -1 Dy Q3. 1(2)
parabolic Q(2r +1,q) Q 0 B Q2r(q)
elliptic Q- (2r+2,q) Q° 1 2Dyy1 Qap41(a)



Counting

Lemma (Brouwer, Cohen, Neumaier, Distance regular
M o raphs)

spaces

® The number of k-dimensional subspaces of Q is equal to

(-, Lo

4 i=r—k+1
® The number of k-dimensional subspaces of Q containing a fixed
u-dimensional subspace is

T—Uu

[;:Z}Q:[Z:ﬂ - I @+,

9 i=r—k+1




Designs in finite classical polar spaces

Designs in polar
spaces

Definition
® finite polar space Q of rank r
e set of B of k-dimensional subspaces in Q (blocks)
® D= (Q,B) is called a t-(r, k, \)o-design if

each t-dimensional subspace of Q is contained in exactly \
blocks

(Here, dimensions are vector space dimensions)




Designs in polar spaces as combinatorial designs

Designs in polar
spaces

2-designs in polar spaces
® fail to be combinatorial designs (in general)

® are (combinatorial) 1-designs and 2-packings, i.e. possess a
replication number

® are candidates for codes with majority logic decoder




Connection to rank metric codes

Kerdock sets

Hyperbolic quadric €3.(¢) C F2"

Designs in polar 0 I
Fory, ToTr + .o+ Tp1T2p—1 =0 < x(I 0>$T:O

. . X7 ]F2T‘ .
Lift matrices F;*" 3 A (I | A) € 2 ]q.

o= 1)y o)-alaT
=(I]A4)-(AINT=AT+4
e AT=-A

Elements of Q1 correspond to (skew) symmetric matrices

... it follows:

Kerdock sets (of matrices) in coding theory are 1-(2r,7, 1)+
designs, i.e. spreads in QF




Steiner systems

of generators

Theorem (K.-U. Schmidt, Ch. WeiB (2022))

Suppose there exists a t-(r,r,1)¢q Steiner system with
t €{2,...,7 —1}. Then one of the following holds
e t=2and Q=U(q) or Q=Q(q) for odd r.
et=r—1land@Q=U(q) or Q =2 (q) forq+#2, or
Q=Q%(q).



Well known

Designs in polar
spaces

In QT (2r, q) there always exists the Latin-Greek halving, i.e. a

(r —1)-(r,7,1)q+ design




Necessary conditions

Designs in polar

spaces Lemma
Let D be a t-(r,k,\)q design.
Then for each s € {0,...,t}, D is an s-(r,k, \s)q design with

[i22] o] =
w=nEt =t I e,
t—slyq t—slq i=r—t+1

In particular, the number of blocks of D is given by Aoy and the
replication number by A;.




Incidence matrix
2-(7", k, )\)Q

Designs in polar
spaces

N: point / block incidence matrix

A, 1=17]
(NNT)ij =< A i#j, P, P collinear
0, i+#j, P, P; non-collinear




Collinearity graph

Lemma

‘_ Let A be the adjacency matrix of the collinearity graph (a strongly
e regular graph) of the polar space Q.
The eigenvalues of A are

r—1

00:(]‘ |: :| , 61 :qr—l_]_’ 92:_(qr+e—1_’_1),
1 Q
with multiplicities

mo =1,




Designs in polar
spaces

Bose's equation

for designs in polar spaces

Theorem
The eigenvalues p; of

NNT = NI+ )
are
i = A1+ A6;

with multiplicities m;, i = 0,1, 2.

® Since A\, \; > 0 also pg, 1 >0
® 1o =0iff t =2 and k = r, independent from A

If o = 0, the rank of the matrices NNT and N over Q is equal
tol+mq

In all other cases the matrix IV has full rank

Fisher's inequality is not true in all cases



Computer search




Previous results

Designs in polar

epaces ® First nontrivial 2-designs [De Bruyn, Vanhove (2012,
unpublished)]:
° O(7,3): 2-(3,3,2)0
* 07 (8,2): 2-(3,3,2)-
® Lansdown (2020):
° Q(7,5): 2-(3,3,3)0
°* O(7,7): 2-(3,3,4)0
° Q(7,11): 2-(3,3,6)q
® Found as m-ovoids in the dual polar space with m = A\jax/2
(hemisystems)




2—(7’, k, )\)Q—

q=2
Designs in polar
r ok Ay Amae BA 3N
3 3 1 5 1 2 (De Bruyn, Vanhove)
4 3 3 27 6,9, 12
4 4 1 45 1 9, 11, 12, 14, 15, 16, 18, 19, 21
5 5 1 765 1 240, 245, 275, 280, 315, 360

E Ay Amax A 3N
3 ?




2_(T9 k) )‘)Q

q=2
Designs in polar r k A,\ )\max 39)\ =D
spaces 3 3 1 3 1 -
4 3 1 15 6,7
4 4 1 15 1 56,7
5 5 1 135 1 21, 24,27, 29, 30, 32, 33, 35, 36, 39, 40,
42, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56,
57, 58, 60, 61, 62, 63, 64, 65, 66
q=3
Tk AN Amax BA I
3 3 1 4 1 2 (De Bruyn, Vanhove)
4 4 1 40 8, 20




2—(7“, k, )\)Q+

Latin-Greek halvings (i.e. A = Apax/2) are marked with *.
q=2

Designs in polar
spaces

rok Ay Amaxe PA 3N

3 3 1 2 BT

4 3 3 9 3

4 4 1 6 12 3

5 5 1 30 1 68, 10,12, 14, 15*

6 6 1 270 1 40,45, 48,50, 51, 53, 54, 56, 57, 58, 60,

62, 63, 64, 65, 66, 67, 69, 70, 72, 74, 75,
77,78, 79, 80, 81, 84, 85, 86, 87, 88, 90,
91, 93, 94, 95, 96, 98, 99, 100, 102, 103,
104, 105, 107, 108, 109, 110, 111, 112,
114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129,
130, 132, 133, 134, 135*




2—(7“, k‘, )\)Q+

Designs in polar
spaces

q=3

Pk Ay Amax DA 3N

3 3 1 2 - 1*

4 4 1 8 1 4*

5 5 1 80 8, 16, 32, 40*




2—(7‘, k, >\)Sp

Designs in polar

spaces For g =2: Q(2r+1,q) = Sp(2r,q)
q=3
ok Ay Amax AN 3N
3 3 1 4 1,2 - (2 by De Bruyn, Vanhove)
4 4 1 40 20
5 5 1 1120




Back to combinatorial designs




Higher incidence matrices

D: t-(v,k, \) design for t > 2

The number of blocks which contain a given i-set of points and
are disjoint to a given j-set of points is equal to

(’U —i—]
Tactical k—j
decompositions i = A ———

N )

N(©) is the incidence matrix between all e-subsets and design
blocks (e < t), i.e.

1, ECB
N(e) — ’
E.B {0, else

WY) is the incidence matrix between all z-subsets and all

y-subsets, i.e.
1, XCY
W(zy) — ’
XY 0, else




Wilson's theorem

Theorem (Wilson (1982))
Fore+ f <t:

. min{e, f}
N (NN Z Mot (WU T /)

Wwie) yie) — (k_?) NO  foro<i<e<k.

€ —1

Corollary
Let 2s <t andv>k-+s. Then

bz(g).




Tactical
decompositions

Tactical decomposition matrix

(V,B): 2-(v, k, \) design invariant under group G.
The action of G partitions

® V into orbits P1,...,Pm

® B into orbits Bi,...,B,.
Forie {1,...,m} and j € {1,...,n} let N, ; be the submatrix
of N whose

® rows are assigned to the elements P;

® whose columns to the elements of 5;.
N; ; has a constant number of ones in each row and a constant
number of ones in each column.

Such a decomposition of N into submatrices N; ; is called
tactical.

Replace for all ¢, j the submatrix IV; ; by the number of ones in
each row: (m X n)-matrix p

Replace the submatrix IV; ; by the number of ones in each
column: (m x n)-matrix k.

The matrices p and « are both called tactical decomposition
matrix.



Example

2-(6,3,2) design

((0,1)(2,4))

G

®
2
g
=

—
OO —H|O|H
O O|H — | |O
O —=H|1O O [
— OO0 O~ |
O —H [+ O |O
— OO |
O —=H|1O —H O |
— O OO |
— O (OO
— - OO (O

|

0
2
S

2
7
<}
o
S
5
I}

o

211100
1110 2 2
001110
01 0101

|

1110 0
1101 1
0022 10| 7
020201

2
1
p:




Dembowski (1958)

For p and k and P = diag(#P;) and B = diag(#;) holds:

P-p=k-B
Tactical p (17 )T ()\17 )T
decompositions (]_7 . ) K= (k, s )
K= (A— /\) I+X-P-J

For G = Id the last equation reduces to Bose's equation, i.e.
p=rk=N

Algorithmic use
Janko and Tran Van Trung (1985) and many follow-ups:
@ construct (all non-isomorphic) tactical decomposition matrices
of a design using these equations
® Extend the tactical decomposition matrices to incidence
matrices of designs




Combining Wilson and Dembowski?

Wilson, t > 2:
min{e, f}
actica NE (NEHYT = Aot i s (WENT PG
Iecomplositions ( ) ; +f—1, (W ) w

Dembowski, t = 2, group G:

p-rl =N =N -T+X-P-J

Bose: N Dembowski: p,

Wilson: N(¢) P, kD 7




Higher tactical decomposition matrices

Kiermaier, W.: Higher incidence matrices and tactical decomposition
matrices (2023)

Tactical

decompostions Let G be a group acting on V and D = (V, B) be a t-(v, k, A) design

o R@Y): Tactical decomposition of WY w.r.t. action of G, row
sums

o K@Y Tactical decomposition of WY w.r.t. action of G,
column sums

° p(e): Tactical decomposition of N w.rt. action of G, row
sums

e (e Tactical decomposition of N(© w.r.t. action of G, column
sums




Tactical
decompositions

Higher tactical decomposition matrices

Equations

Theorem (Kiermaier, W. (2023))

Let G be a group acting on' V and D = (V,B) be a t-(v, k, \) design.
Fore+ f <t:

min(e, f)
P (k)T = Z Aetfjj (KUNTRED
j=0

Let x,y be non-negative integers with x <y < k. Then

R ) — (’f - x) o and K@) g0) = (k - x) @)
y—a y—z



Tactical
decompositions

Higher tactical decomposition matrices

Fisher's equation, Block's theorem

Theorem (Kiermaier, W. (2023))
Let G be a group acting on V' and D = (V,B) be a t-(v,k, \) design.

G
#BC > 4 (Z)

for all s € {0,...,|t/2]}, ie.

Number of block orbits is at least as large as the overall number of
s-orbits

All theorems have a g-analog version for subspace designs



N

® Bose

Tactical

decompositions ® Fisher: b >wv

®q
N
® Wilson

b>(3)
® ¢: Suzuki, Cameron

® RayChaudhuri, Wilson:

Overview

Py K
® Dembowski
® Block: #B¢ > #V¢&
® ¢: Krcadinac et al

POREY
o v
o #89 > #(N)V
o gV



Open questions

Subspace designs, designs in polar spaces
e Op=0Cg?
Study codes from designs in polar spaces

Summary

Performance of soft-decision decoding algorithms?

Performance for LDCP decoding

® More constructions

Higher tactical decomposition matrices

® Algorithmic use

® Relation to the work of Kr¢adinac, Naki¢, Pavéevi¢ (2014):
(complicated) equations on N for t > 2




The end

Summary

Thank you for listening !
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