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Combinatorial designs

t-(v, k, λ) design D = (V, B)
• V : set of v points
• B: set of k-subsets (blocks) of V

• D = (V, B) is called a t-(v, k, λ)
design on V if

each t-subset of V is contained in
exactly λ blocks.

Replication number
• D is also s-(v, k, λs) design for

λs = λ

(
v − s

t − s

)
/

(
k − s

t − s

)
, s = 0, . . . , t

• b := #B = λ0

• every point P ∈ V appears in
r := λ1 blocks: replication number

2-(6, 3, 2) design:

0,1,2
0,1,4
0,2,5
0,3,4
0,3,5
1,2,3
1,3,5
1,4,5
2,3,4
2,4,5

#B = 10, r = 5
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Subset lattice
V = {0, 1, 2, 3, 4, 5}

2-(6, 3, 2) design:

0,1,2
0,1,4
0,2,5
0,3,4
0,3,5
1,2,3
1,3,5
1,4,5
2,3,4
2,4,5
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Incidence matrix

The (v × b)-matrix N with

Nij =
{

1, if i ∈ Bj

0, otherwise

is the point/block incidence matrix of the Design D.
1 1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 1 0 0
1 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 1 1 0
0 0 1 1 0 0 1 1 0 1
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2-(v, k, λ) design

Bose (1949):

N · N⊤ = (r − λ) · I + λ · J

• (NN⊤)ij =
{

r, i = j

λ, i ̸= j

• NN⊤ has Eigenvalues (r − λ) + λv = rk and (r − λ) + 0 over Q
• ⇒ NN⊤ has rank v over Q
• ⇒ N has rank v

Theorem (Fisher’s inequality (1930))

b ≥ v
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p-rank of N
2-(v, k, λ) design

Definition
The rank of N over Fp is called p-rank of N (also p-rank of D)

Theorem (Hamada)
Let D be a 2-(v, k, λ) design with replication number r and p prime.

• If p does not divide r(r − λ), then rankp N = v.
• If p divides r but does not divide r − λ, then rankp N ≥ v − 1.
• If rankp N < v − 1, then p divides r − λ.
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Majority logic decoding and designs

Rudolph (1967), Ng (1970)
• Given: 2-(v, k, λ) design D = (V, B) with incidence matrix N

• Take N⊤ as parity check matrix of a code
• CD ≤ Fv

p: p-ary linear code of length v having parity-check
matrix HD := N⊤

Example
0, 1, 2, 3, 4, 5

0,1,2 1, 1, 1, 0, 0, 0
0,1,4 1, 1, 0, 0, 1, 0
0,2,5 1, 0, 1, 0, 0, 1
0,3,4 1, 0, 0, 1, 1, 0
0,3,5 1, 0, 0, 1, 0, 1
1,2,3 0, 1, 1, 1, 0, 0
1,3,5 0, 1, 0, 1, 0, 1
1,4,5 0, 1, 0, 0, 1, 1
2,3,4 0, 0, 1, 1, 1, 0
2,4,5 0, 0, 1, 0, 1, 1
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Majority logic decoding
• r equations for each coordinate
• Each error spoils at most λ of these equations
• Decoding correct if

#errors · λ < (r + λ)/2

Linear code CD:
• Length: v

• Dimension: dim CD = v − rankp N

• Majority logic decodes at least ⌊ r+λ−1
2λ ⌋ errors

• Complexity ≈ #equations, i.e. r

Drawback:
For most designs, CD will have dimension 0 or 1.

Challenge:
Search for designs with low p-rank!
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Classical / geometric designs

• 2 ≤ k < v, V = Fv
q

• Classical / geometric design, Bose (1939)

G = (
[
V
1

]
q

,

[
V
k

]
q

)

•
[V

k

]
q
: set of all k-dimensional subspaces of V (k-subspaces)

• Gaussian coefficient:

#
[V
m

]
q

=
[ v

m

]
q

=
(qv − 1)(qv−1 − 1) · · · (qv−m+1)
(qm − 1)(qm−1 − 1) · · · (q − 1)

• G: combinatorial design with parameters

2-(
[
v

1

]
q

,

[
k

1

]
q

,

[
v − 2
k − 2

]
q

)
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p-rank of classical designs

Theorem (Hamada (1973))
• The p-rank of G is

∑
s0

. . .
∑
sf−1

f−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i

(
v

i

)(
v − 1 + sj+1p − sj − ip

v − 1

)
• sf = s0

• k ≤ sj ≤ v and 0 ≤ sj+1p − sj ≤ v(p − 1)
• L(sj+1, sj) = ⌊(sj+1p − sj)/p⌋

Hamada’s conjecture (1973)
Among the designs with the same parameters as the classical designs,
the classical designs have minimal p-rank.
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Codes from classical designs

projective case:
• Projective Geometry

codes
• p = 2: subcodes of

punctured Reed-Muller
codes

affine case:
• Euclidean Geometry

codes
• p = 2: Reed-Muller

codes

• Assmus, Key (1992): Designs and their codes
• Since Rudolph (1967), codes from incidence matrices of various

structures in finite geometry have been studied.
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Subspace designs
q-analogs of designs

A pair D = (V, B) is called t-(v, k, λ)q subspace design if
• V = Fv

q

•
[V

1
]

q
: points, B ⊆

[V
k

]
q
: blocks

each t-subspace of V is contained in exactly λ blocks.
• B =

[V
k

]
q
: complete design

1-(4, 2, 7)2 design 1-(4, 2, 1)2 design
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History of subspace designs

• Introduced by Ray-Chaudhuri, Cameron, Delsarte in the 1970s
• Thomas (1987):

2-(v, 3, 7)2 for v ≥ 7 and ±1 ≡ v (mod 6)
• Suzuki (1989):

2-(v, 3, q2 + q + 1)q for v ≥ 7 and ±1 ≡ v (mod 6)
• Nontrivial q-Steiner systems (i.e. λ = 1):

Braun, Etzion, Östergård, Vardy, W. (2013)
• Many sporadic examples found by computer, see

Greferath, Pavčević, Silberstein, Vázquez-Castro:
Network Coding and Subspace Designs (2018)

• Keevash et al (2023): q-Steiner systems asymptotically exist for
all t.
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Designs: necessary conditions
t-(v, k, λ)q design D for q ≥ 1

• D is also s-(v, k, λs)q design for

λs = λ

[
v − s

t − s

]
q

/

[
k − s

t − s

]
q

• Necessary conditions:

λs ∈ Z for 0 ≤ s ≤ t

• λ1: replication number
• λ0: number of blocks
• Bose’s equation holds, too:

N · N⊤ = (r − λ) · I + λ · J
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Subspace designs → combinatorial designs

Complete design
• Blocks are the set of all k-subspaces
• λmax =

[
v−t
k−t

]
q

Combinatorial design parameters
• A 2-(v, k, λ)q subspace design is a

2-(
[
v

1

]
q

,

[
k

1

]
q

, λ)

combinatorial design
• The classical / geometric designs are a special case of subspace

designs: namely the complete subspace designs 2-(v, k, λmax)q
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Classical designs vs. subspace designs
part I

classical design G
• 2-(v, k, λmax)q

• incidence matrix HG

subspace design D
• 2-(v, k, λ)q

• incidence matrix HD

Observation:

The rows of HD are a subset of the rows of HG

=⇒

rankp D ≤ rankp G and CD ≥ CG

Conjecture:

CD = CG
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Classical designs vs. subspace designs
part II: majority logic decoding

• rD = λ
[v−1

1 ]
q

[k−1
1 ]

q

rG = λmax
[v−1

1 ]
q

[k−1
1 ]

q

=
[

v−2
k−2

]
q

[v−1
1 ]

q

[k−1
1 ]

q

Dela Cruz, W. (2021):
• Length of CD, CG :

[
v
1
]

q

• Dimension: dim CD ≥ dim CG

• Majority logic decoding is correct if (#err · λ < (r + λ)/2)

#errors ≤

⌊ [
v−1

1
]

q

2
[

k−1
1

]
q

⌋

i.e. the number of correctable errors is independent from λ.
• #equations: rD + 1 ≤ rG + 1
• For v → ∞, the Suzuki family 2-(v, 3, q2 + q + 1)q gives an

exponential improvement in the # equations compared to the
geometric designs
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LDPC codes
Gallager (1963)

• LDPC code: “sparse matrix of parity check equations”
• Gallager’s bit-flipping algorithm:

[. . . ] the decoder computes all the parity-checks and then
changes any digit that is contained in more than some fixed
number of unsatisfied parity-check equations. Using these
new values, the parity checks are recomputed, and the pro-
cess is repeated until the parity-check equations are all sat-
isfied.

• Majority logic decoding – alternative view:
• For each coordinate, 0 ≤ i < n, set a counting variable fi ← 0.
• For each parity-check equation:

if equation h is unsatisfied:
fi ← fi + 1 for all i in the supp(h)

• Flip entry if fi > (r + λ)/2
• Majority logic decoding is a single step in the bit-flipping

algorithm with specific treshold.
• Soft-decision variants: Kolesnik (1971), Bossert et. al. (2009)
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LDPC codes

From Kou, Lin, Fossorier (2001): Decoding codes from geometric
designs

Open
Performance of bit-flipping and sum-product algorithm on
parity-check matrices from subspace designs?
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Finite classical polar spaces

Geometries associated with the non-degenerate sesquilinear and
non-singular quadratic forms over a finite field.

• PG(v − 1, q): projective space of Fv
q

• Polar space Q in PG(v − 1, q) consists of the
projective subspaces of PG(v − 1, q) that are
• totally isotropic with relation to a given non-degenerate

sesquilinear form or
• totally singular with relation to a given non-singular quadratic

form

Example
Hyperbolic quadric Ω+(2r, q) ⊂ PG(2r − 1, q), r ≥ 1:

x0xr + . . . + xr−1x2r−1 = 0
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Ω+(4, 2) embedded in PG(3, 2) (F4
2)
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Ω+(4, 2) embedded in PG(3, 2) (F4
2)
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Ω+(4, 2) embedded in PG(3, 2) (F4
2)
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Finite classical polar spaces
generators

• Q polar space in PG(v − 1, q), v minimal
• A subspace of maximum dimension r in a polar space Q:

generator
• r: rank of Q
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Finite classical polar spaces

name symbol Q type Q ϵ alternative symbols
symplectic Sp(2r, q) Sp 0 Cr W2r−1(q)
Hermitian U(2r, q) U −1/2 2A2r−1 H2r−1(q)
Hermitian U(2r + 1, q) U+ 1/2 2A2r H2r(q)
hyperbolic Ω+(2r, q) Ω+ −1 Dr Q+

2r−1(q)
parabolic Ω(2r + 1, q) Ω 0 Br Q2r(q)
elliptic Ω−(2r + 2, q) Ω− 1 2Dr+1 Q−

2r+1(q)
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Counting

Lemma (Brouwer, Cohen, Neumaier, Distance regular
graphs)

• The number of k-dimensional subspaces of Q is equal to[
r

k

]
Q

=
[

r

k

]
q

·
r∏

i=r−k+1
(qi+ϵ + 1).

• The number of k-dimensional subspaces of Q containing a fixed
u-dimensional subspace is[

r − u

k − u

]
Q

=
[

r − u

k − u

]
q

·
r−u∏

i=r−k+1
(qi+ϵ + 1).
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Designs in finite classical polar spaces

Definition
• finite polar space Q of rank r

• set of B of k-dimensional subspaces in Q (blocks)
• D = (Q, B) is called a t-(r, k, λ)Q-design if

each t-dimensional subspace of Q is contained in exactly λ
blocks

(Here, dimensions are vector space dimensions)
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Designs in polar spaces as combinatorial designs

2-designs in polar spaces
• fail to be combinatorial designs (in general)
• are (combinatorial) 1-designs and 2-packings, i.e. possess a

replication number
• are candidates for codes with majority logic decoder
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Connection to rank metric codes
Kerdock sets

• Hyperbolic quadric Ω+
2r(q) ⊂ F2r

q

x0xr + . . . + xr−1x2r−1 = 0 ⇐⇒ x ·
(

0 I
I 0

)
· x⊤ = 0

• Lift matrices Fr×r
q ∋ A 7→ (I | A) ∈

[F2r
q
r

]
q
:

0 = (I | A) ·
(

0 I
I 0

)
· (I | A)⊤

= (I | A) · (A | I)⊤ = A⊤ + A

⇔ A⊤ = −A

• Elements of Ω+ correspond to (skew) symmetric matrices
• . . . it follows:

Kerdock sets (of matrices) in coding theory are 1-(2r, r, 1)Ω+

designs, i.e. spreads in Ω+
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Steiner systems
of generators

Theorem (K.-U. Schmidt, Ch. Weiß (2022))
Suppose there exists a t-(r, r, 1)Q Steiner system with
t ∈ {2, . . . , r − 1}. Then one of the following holds

• t = 2 and Q = U(q) or Q = Ω−(q) for odd r.
• t = r − 1 and Q = U−(q) or Q = Ω−(q) for q ̸= 2, or

Q = Ω+(q).
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Well known

In Ω+(2r, q) there always exists the Latin-Greek halving, i.e. a

(r − 1)-(r, r, 1)Ω+ design
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Necessary conditions

Lemma
Let D be a t-(r, k, λ)Q design.
Then for each s ∈ {0, . . . , t}, D is an s-(r, k, λs)Q design with

λs = λ ·

[
r−s
t−s

]
Q[

k−s
t−s

]
q

= λ ·

[
r−s
t−s

]
q[

k−s
t−s

]
q

·
r−s∏

i=r−t+1
(qi+ϵ + 1).

In particular, the number of blocks of D is given by λ0 and the
replication number by λ1.
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Incidence matrix
2-(r, k, λ)Q

N : point / block incidence matrix

(NN⊤)ij =


λ1, i = j

λ, i ̸= j, Pi, Pj collinear
0, i ̸= j, Pi, Pj non-collinear
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Collinearity graph

Lemma
Let A be the adjacency matrix of the collinearity graph (a strongly
regular graph) of the polar space Q.
The eigenvalues of A are

θ0 = q ·
[
r − 1

1

]
Q

, θ1 = qr−1 − 1, θ2 = −(qr+ϵ−1 + 1),

with multiplicities

m0 = 1,

m1 = qϵ+1 ·
qr+ϵ−1 + 1

qϵ + 1
·
[r

1
]

q
and

m2 = q ·
qr+ϵ + 1

qϵ + 1
·
[r − 1

1
]

q
.
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Bose’s equation
for designs in polar spaces

Theorem
The eigenvalues µi of

NN⊤ = λ1I + λA

are
µi = λ1 + λθi

with multiplicities mi, i = 0, 1, 2.

• Since λ, λ1 > 0 also µ0, µ1 > 0
• µ2 = 0 iff t = 2 and k = r, independent from λ

• If µ2 = 0, the rank of the matrices NN⊤ and N over Q is equal
to 1 + m1

• In all other cases the matrix N has full rank
• Fisher’s inequality is not true in all cases
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Previous results

• First nontrivial 2-designs [De Bruyn, Vanhove (2012,
unpublished)]:
• Ω(7, 3): 2-(3, 3, 2)Ω
• Ω−(8, 2): 2-(3, 3, 2)Ω−

• Lansdown (2020):
• Ω(7, 5): 2-(3, 3, 3)Ω
• Ω(7, 7): 2-(3, 3, 4)Ω
• Ω(7, 11): 2-(3, 3, 6)Ω

• Found as m-ovoids in the dual polar space with m = λmax/2
(hemisystems)
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2-(r, k, λ)Ω−

q = 2

r k ∆λ λmax ∄λ ∃λ
3 3 1 5 1 2 (De Bruyn, Vanhove)
4 3 3 27 6, 9, 12
4 4 1 45 1 9, 11, 12, 14, 15, 16, 18, 19, 21
5 5 1 765 1 240, 245, 275, 280, 315, 360

q = 3

r k ∆λ λmax ∄λ ∃λ
3 3 1 10 ? 2, 5
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2-(r, k, λ)Ω

q = 2

r k ∆λ λmax ∄λ ∃λ
3 3 1 3 1 -
4 3 1 15 6, 7
4 4 1 15 1 5, 6, 7
5 5 1 135 1 21, 24, 27, 29, 30, 32, 33, 35, 36, 39, 40,

42, 45, 47, 48, 50, 51, 52, 53, 54, 55, 56,
57, 58, 60, 61, 62, 63, 64, 65, 66

q = 3

r k ∆λ λmax ∄λ ∃λ
3 3 1 4 1 2 (De Bruyn, Vanhove)
4 4 1 40 8, 20
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2-(r, k, λ)Ω+

Latin-Greek halvings (i.e. λ = λmax/2) are marked with ∗.

q = 2

r k ∆λ λmax ∄λ ∃λ
3 3 1 2 - 1∗

4 3 3 9 3
4 4 1 6 1,2 3∗

5 5 1 30 1 6, 8, 10, 12, 14, 15∗

6 6 1 270 1 40, 45, 48, 50, 51, 53, 54, 56, 57, 58, 60,
62, 63, 64, 65, 66, 67, 69, 70, 72, 74, 75,
77, 78, 79, 80, 81, 84, 85, 86, 87, 88, 90,
91, 93, 94, 95, 96, 98, 99, 100, 102, 103,
104, 105, 107, 108, 109, 110, 111, 112,
114, 115, 116, 117, 118, 119, 120, 121,
122, 123, 124, 125, 126, 127, 128, 129,
130, 132, 133, 134, 135∗
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2-(r, k, λ)Ω+

q = 3

r k ∆λ λmax ∄λ ∃λ
3 3 1 2 - 1∗

4 4 1 8 1 4∗

5 5 1 80 8, 16, 32, 40∗
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2-(r, k, λ)Sp

For q = 2: Ω(2r + 1, q) = Sp(2r, q)

q = 3

r k ∆λ λmax ∄λ ∃λ
3 3 1 4 1, 2 - (2 by De Bruyn, Vanhove)
4 4 1 40 20
5 5 1 1120
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Higher incidence matrices

• D: t-(v, k, λ) design for t ≥ 2
• The number of blocks which contain a given i-set of points and

are disjoint to a given j-set of points is equal to

λi,j = λ

(
v−i−j

k−j

)(
v−t
k−t

)
• N (e) is the incidence matrix between all e-subsets and design

blocks (e ≤ t), i.e.

N
(e)
E,B =

{
1, E ⊂ B

0, else

• W (xy) is the incidence matrix between all x-subsets and all
y-subsets, i.e.

W
(xy)
X,Y =

{
1, X ⊂ Y

0, else
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Wilson’s theorem

Theorem (Wilson (1982))
For e + f ≤ t:

N (e) (N (f))⊤ =
min{e,f}∑

i=0
λe+f−i, i(W (ie))⊤ W (if)

W (ie) N (e) =
(

k − i

e − i

)
N (i) for 0 ≤ i ≤ e ≤ k .

Corollary
Let 2s ≤ t and v ≥ k + s. Then

b ≥
(

v

s

)
.
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Tactical decomposition matrix
• (V, B): 2-(v, k, λ) design invariant under group G.
• The action of G partitions

• V into orbits P1, . . . ,Pm

• B into orbits B1, . . . ,Bn.
• For i ∈ {1, . . . , m} and j ∈ {1, . . . , n} let Ni,j be the submatrix

of N whose
• rows are assigned to the elements Pi

• whose columns to the elements of Bj .
Ni,j has a constant number of ones in each row and a constant
number of ones in each column.

• Such a decomposition of N into submatrices Ni,j is called
tactical.

• Replace for all i, j the submatrix Ni,j by the number of ones in
each row: (m × n)-matrix ρ

• Replace the submatrix Ni,j by the number of ones in each
column: (m × n)-matrix κ.

• The matrices ρ and κ are both called tactical decomposition
matrix.



Recent results on
incidence

matrices of
designs

A. Wassermann

Combinatorial
designs

Subspace designs

Designs in polar
spaces

Tactical
decompositions

Summary

Example
2-(6, 3, 2) design

G = ⟨(0, 1)(2, 4)⟩

N =


1 1 1 0 1 0 1 0 0 0
1 1 0 1 0 1 0 1 0 0
1 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 1 1 0
0 0 1 1 0 0 1 1 0 1



ρ =


2 1 1 1 0 0
1 1 1 0 1 1
0 0 2 2 1 0
0 2 0 2 0 1

 κ =


2 1 1 1 0 0
1 1 1 0 2 2
0 0 1 1 1 0
0 1 0 1 0 1





Recent results on
incidence

matrices of
designs

A. Wassermann

Combinatorial
designs

Subspace designs

Designs in polar
spaces

Tactical
decompositions

Summary

Dembowski (1958)
For ρ and κ and P = diag(#Pi) and B = diag(#Bi) holds:

P · ρ = κ · B

ρ · (1, . . . , 1)⊤ = (λ1, . . . , λ1)⊤

(1, . . . , 1) · κ = (k, . . . , k)
ρ · κ⊤ = (λ1 − λ) · I + λ · P · J

For G = Id the last equation reduces to Bose’s equation, i.e.
ρ = κ = N

Algorithmic use
Janko and Tran Van Trung (1985) and many follow-ups:

1 construct (all non-isomorphic) tactical decomposition matrices
of a design using these equations

2 Extend the tactical decomposition matrices to incidence
matrices of designs
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Combining Wilson and Dembowski?

Wilson, t ≥ 2:

N (e) (N (f))⊤ =
min{e,f}∑

i=0
λe+f−i, i(W (ie))⊤ W (if)

Dembowski, t = 2, group G:

ρ · κ⊤ = (λ1 − λ) · I + λ · P · J

Bose: N Dembowski: ρ, κ

Wilson: N (e) ρ(e), κ(f) ?
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Higher tactical decomposition matrices

Kiermaier, W.: Higher incidence matrices and tactical decomposition
matrices (2023)

Let G be a group acting on V and D = (V, B) be a t-(v, k, λ) design

• R(x,y): Tactical decomposition of W (xy) w.r.t. action of G, row
sums

• K(x,y): Tactical decomposition of W (xy) w.r.t. action of G,
column sums

• ρ(e): Tactical decomposition of N (e) w.r.t. action of G, row
sums

• κ(e): Tactical decomposition of N (e) w.r.t. action of G, column
sums
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Higher tactical decomposition matrices
Equations

Theorem (Kiermaier, W. (2023))
Let G be a group acting on V and D = (V, B) be a t-(v, k, λ) design.
For e + f ≤ t:

ρ(e) (κ(f))⊤ =
min(e,f)∑

j=0
λe+f−j, j (K(je))⊤R(jf)

Let x, y be non-negative integers with x ≤ y ≤ k. Then

R(xy) ρ(y) =
(

k − x

y − x

)
ρ(x) and K(xy) κ(y) =

(
k − x

y − x

)
κ(x)
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Higher tactical decomposition matrices
Fisher’s equation, Block’s theorem

Theorem (Kiermaier, W. (2023))
Let G be a group acting on V and D = (V, B) be a t-(v, k, λ) design.

#BG ≥ #
(

V

s

)G

for all s ∈ {0, . . . , ⌊t/2⌋}, i.e.

Number of block orbits is at least as large as the overall number of
s-orbits

All theorems have a q-analog version for subspace designs
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Overview

N
• Bose
• Fisher: b ≥ v

• q

N (e)

• Wilson
• RayChaudhuri, Wilson:

b ≥
(

v
s

)
• q: Suzuki, Cameron

ρ, κ

• Dembowski
• Block: #BG ≥ #V G

• q: Krčadinac et al

ρ(e), κ(f)

• "
• #BG ≥ #

(
V
s

)G
"

• q "
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Open questions

Subspace designs, designs in polar spaces
• CD = CG?
• Study codes from designs in polar spaces
• Performance of soft-decision decoding algorithms?
• Performance for LDCP decoding
• More constructions

Higher tactical decomposition matrices
• Algorithmic use
• Relation to the work of Krčadinac, Nakić, Pavčević (2014):

(complicated) equations on N for t ≥ 2
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The end

Thank you for listening !


	Combinatorial designs
	Subspace designs
	Designs in polar spaces
	Tactical decompositions
	Summary

