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@ Notation



Ingredients

o IF, finite field of g elements, g prime power
@ n, k positive integers

o F4[z] polynomial ring over F,

Definition

An (n, k) convolutional code is a rank k Fg[z]-submodule C C F[z]".




Ingredients

o IF, finite field of g elements, g prime power
@ n, k positive integers

o F4[z] polynomial ring over F,

Definition

An (n, k) convolutional code is a rank k Fg[z]-submodule C C F[z]".

e C possesses a generator matrix G(z) € Fy[z]**", such that
C:={u(2)G(2) | u(z) € Fqlz]*} C Fyl2]"-

@ the ith row degree ¢; is the largest degree among the entries in the ith row
of G(z).
o the degree ¢ is the highest degree of the k x k minors of G(z).
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o I, finite field of q elements, g prime power
@ n, k positive integers

e F,[z] polynomial ring over F,

Definition
An (n, k,0)q convolutional code is a rank k Fy[z]-submodule C C F,[z]".

o C possesses a generator matrix G(z) € F,[z]**", such that
C:={u(2)G(2) | u(z) € Fql2]“} C Fol2]".

o the ith row degree §; is the largest degree among the entries in the ith row
of G(2).
o the degree 0 is the highest degree of the k x k minors of G(z).



Ingredients

o I, finite field of q elements, g prime power
@ n, k positive integers

e F,[z] polynomial ring over F,

Definition

An (n, k,0)q convolutional code is a rank k Fy[z]-submodule C C F,[z]".

o C possesses a generator matrix G(z) € F,[z]**", such that
C:={u(2)G(2) | u(z) € Fq[2]*} C Fylz]"-
o the ith row degree §; is the largest degree among the entries in the ith row
of G(2).
o the degree 0 is the highest degree of the k x k minors of G(z).

@ G(z) is reduced if the sum of its row degrees attains the minimum possible
value among the generator matrices (§ is equal to sum of row degrees).

e G(z) is basic if its Smith-form is given by (/c 0).
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© MDP Convolutional Codes



Jjth Column Distances

Definition

de(C) = min{wt(v[od-](z)) = wt(v +viz+ -+ viz) | v(z) €C, v # 0}

Definition
Let .
G(z) = Z Giz'.
i=0
For every j € Ny we define the j-th truncated sliding generator
G G - G

G—| ® O

Go




MDP Convolutional Codes

djc < dfree for all j € Ny

o df <df<dS<...

For every j € No , we have df < (n—k)(j+1)+1.

If”djc = (n—k)(j+ 1) + 1 for some j € Ny, then df = (n— k)(i + 1)+ 1 for
all i <.

Definition

Let L:= L%J + Lnka. An (n, k,0)q convolutional code with column distances

df,j € No is said to have maximum distance profile (MDP) if

djcz(n—k)(j+1)+1, forj=1,...,L




Characterization of MDP Convolutional Codes

Theorem (Gluesing-Luerssen, Rosenthal, Smarandache, '06)

Let G(z) =Y., Giz' be a basic generator matrix of an (n, k,§) convolutional
code C. The following statements are equivalent:
Q@ df(C)=(n—k)(L+1)+1.
@ every (L+ 1)k x (L+ 1)k full-size minor of Gf formed by columns with
indices 1 < t; < -+ < t( 1)k, where tg1 > sn fors=1,...,L, is nonzero .

D H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. “Strongly MDS convolutional codes.”, IEEE Transactions on Information Theory, 2006.

G(z) has the MDP property if (2) holds.

v



Characterization of MDP Convolutional Codes

Theorem (Gluesing-Luerssen, Rosenthal, Smarandache, '06)

Let G(z) =Y., Giz' be a basic generator matrix of an (n, k,§) convolutional
code C. The following statements are equivalent:
Q@ df(C)=(n—k)(L+1)+1.
@ every (L+ 1)k x (L+ 1)k full-size minor of Gf formed by columns with
indices 1 < t; < -+ < t( 1)k, where tg1 > sn fors=1,...,L, is nonzero .

D H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache. “ ", IEEE Transactions on Information Theory, 2006.

G(z) has the MDP property if (2) holds.

Remark

@ It is not necessary to have G(z) basic in order to show that the code
generated by G(z) is MDP.

@ If § = km and G(z) has the MDP property, then the convolutional code
generated by G(z) is noncatastrophic and the code is MDP.

@ G.N. Alfarano and J. Lieb *
its Applications, 2020

", Journal of Algebra and



Contents

© Weighted Reed-Solomon Convolutional Codes



Generalized Reed-Solomon Codes

Definition

Let n < g and a,...,a, € Fq pairwise distinct elements, by, ..., b, € Fy. The
code

C:={(bif(a1),...,baf(cn)) | f € Fg[x]<k}

is called Generalized Reed-Solomon (GRS) code and it is denoted by GRSk («, b),
where a := (aq,...,a,) and b= (by,..., by).

bl b2 e bn
blal b20[2 tee b,,Oén
G.= | b b o o | = Vi (a)diag(b)

k—1 k—1 k—1
b1 o boouy <o bpay




Weighted Reed-Solomon Convolutional Codes

o Let a:=(ag,...,a,) € (Fy)", a;'s pairwise distinct

@ Let 7y be root of an irreducible polynomial of degree s in Fg[z]



Weighted Reed-Solomon Convolutional Codes

o Let a:=(ag,...,a,) € (Fy)", a;'s pairwise distinct
@ Let 7y be root of an irreducible polynomial of degree s in Fg[z]

@ Forany 0 < r < m, let G, be the following matrix

r(r+1) +1)k—1 r(r+1) +1)k—1 r(r+1) +1)k—1
5k ragr ) vz k ragr ) ey k rOlS,r )
) 1) (r=1) (r=1)
y e alkt Tkl T kg ket
M (r=1 r(r—1)
N2 kaik N2 kozgk s vz Kok



Weighted Reed-Solomon Convolutional Codes
Remark

© Fq(7) =Fq




Weighted Reed-Solomon Convolutional Codes
Remark

o Fy(v) =T,

o Gy € FSX"




Weighted Reed-Solomon Convolutional Codes

Remark
° Fy(y) = Fe

o Gy € ngn

° G;E]F’;sxnforeveryizl,...,m




Weighted Reed-Solomon Convolutional Codes

Remark
° Fy(y) = Fe

) GQGFI‘;X"
° G;G]F’;sxnforeveryizl,...,m

@ G;'s are all generator matrices of a GRS code




Weighted Reed-Solomon Convolutional Codes

Remark
° Fy(y) = Fe

o G()EFI‘;X"
° G;G]F’;sx”foreveryizl,...,m

@ G;'s are all generator matrices of a GRS code

Definition

A weighted RS convolutional code C,’:Zn('y, «) is the code whose generator
matrix is G(z) = >~ , G,z".

@ G.N. Alfarano, D. Napp, V. Requena and A. Neri “Weighted Reed-Solomon Convolutional Codes.", Linear and Multilinear Algebra, 2022.



Example: C35

k=3, m=26=6,L=5.
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Example: C35

k=3, m=26=6,L=5.
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Parameters of CJ" (v, @)

Proposition

The code C}, (v, ) is a (n, k, km)gs convolutional code.

@ Gy = My full rank hence k is the dimension of the code.
@ The degree § is equal to the sum of the row-degrees km.

Corollary

The generator matrix of C7 (v, &) is reduced.




Parameters of CJ" (v, @)

Proposition

The code C}, (v, ) is a (n, k, km)gs convolutional code.

@ Gy = My full rank hence k is the dimension of the code.

@ The degree 6 is equal to the sum of the row-degrees km.

Corollary

The generator matrix of C7 (v, &) is reduced.

Theorem

CP (7, @) is an MDP convolutional code in Fq:[z]".




Parameters of CJ" (v, @)

Proposition

The code C}, (v, ) is a (n, k, km)gs convolutional code.

@ Gy = My full rank hence k is the dimension of the code.

@ The degree 6 is equal to the sum of the row-degrees km.

Corollary

The generator matrix of C7 (v, &) is reduced.

Theorem

CP (7, @) is an MDP convolutional code in Fq:[z]".

Proof.
Difficult!




Sketch of the Proof

o Let Y = (y;); be a vector of algebraically independent variables

e Let G(x,Y,B,A) be an upper triangular block matrix : every block is a
generalized Vandermonde matrix V/(A, Y), where each row is multiplied by a
suitable power of an another algebraically independent variable x

@ B is a vector whose components are the involved powers of x

@ A is the vector of the exponents involved in the generalized Vandermonde

matrices.
Avo Ao1 - Aom
Aii o Aim
G(x,Y,B,A) = ] ,

Am,m



Sketch of the Proof

o Let Y = (y;); be a vector of algebraically independent variables

e Let G(x,Y,B,A) be an upper triangular block matrix : every block is a
generalized Vandermonde matrix V/(A, Y), where each row is multiplied by a
suitable power of an another algebraically independent variable x

@ B is a vector whose components are the involved powers of x

@ A is the vector of the exponents involved in the generalized Vandermonde

matrices.
Avo Ao1 - Aom
Aii o Aim
G(x,Y,B,A) = ] ,
Am,m

IJ

A= ALFIND) e (xﬁ("”) V (AGDy0)) € Flx, Y]5*4, where

Xﬁ(lf‘j) 0 . 0

diag (Xﬁ(i,j)> | o x%7 0



Sketch of the Proof

o Observe that the determinant of the matrix G(x, Y, B, A) is a polynomial
p(x,Y).

@ We show that the monomial of minimal degree in x of p is a polynomial in Y
non identically zero.

e det G(x, Y,B,A) = p(x,Y) = po(Y)xt + pr(x, Y)xt*1.



Sketch of the Proof

o Observe that the determinant of the matrix G(x, Y, B, A) is a polynomial
p(x,Y).

@ We show that the monomial of minimal degree in x of p is a polynomial in Y
non identically zero.

e det G(x, Y,B,A) = p(x,Y) = po(Y)xt + pr(x, Y)xt*1.

In our construction:

@ All the minors we have to check have the shape of G(v,a,B,A)
o det G(v,a,B,A) = p(y, @) = po(a)y" + p1(7, a)y"*:
@ po(a) is given by the product of some determinants of Vandermonde matrices

@ + is such that it is not a zero of det G(v, o, B, A)
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Example
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Example
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Field Size Consideration
Let G:=)."", Gz" , where G, is

f(ril), 1)k—1 r(r41) ) 1)k—1 ) g k-1
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Field Size Consideration
Let G:=)."", Gz" , where G, is

r(r+1) _ r(r+1) _ (r+1) _
/YTk,,agr-s—l)k 1 "}/Tkiragr-ﬂ)k 1 T;(,,Ol$1r+1)k 1

Y
VL;I) k+ra{k+1 77’0;“ k+ra£k+1 o 77’(';‘) ketr k41
n
Dy rk Wy rk Wy rk
7T g 77T “aj 77 fay

Replace v with an indeterminate x and consider Gf(x)
P(k,n,m, ) :={q(x) € Fq[x] | q(x) is a full size minor of G/

formed as stated (2) }.

Remark
Then C7. (v, «) is MDP if and only if g(v) # 0 for every q(x) € P(k, n, m, ).




Field Size Consideration
Let G:=>"", G,z" , where G, is

r(r+1) _ r(r+1) _ (r+1) _
/YTk,,agr-s—l)k 1 ")/Tkir()égr-i_l)k 1 T;(,,Ol$1r+1)k 1

v
VL;I) ebr et 77’0;“ kebr ket ey o) Kb g rk+1
=1y =1y e =D g e
A% vty Y7 oy

Replace v with an indeterminate x and consider Gf(x)

P(k,n,m, ) :={q(x) € Fq[x] | q(x) is a full size minor of G/
formed as stated (2) }.

Remark

Then C7. (v, «) is MDP if and only if g(v) # 0 for every q(x) € P(k, n, m, ).
o Let v(q(x)) := max{¢ € N | x* divides q(x)}
e D(k,n, m,a) := max{deg q(x) — v(q(x)) | 0 # q(x) € P(k,n, m,a)}.




Field Size Consideration

Theorem

For any integer s > D(k,n, m, ), C{" (v, ) is an MDP convolutional code in
Fqs [Z]n.

Remark

We need to estimate D to determine the field size of our code.

Theorem
For every k,n, m integers with 0 < k < n, there exists an (n, k, km)qs MDP

m)3
convolutional code where q° = O(n%), and t = min{k,n — k}.




Comparison with Known Constructions

‘ L[’”'m"‘*‘j]r ‘ ANP ‘ GRS ‘ MAK* | AN* ‘ HsTT ‘ Lt ey, ‘ GRst ‘
2[,2’1’1’1’1]3 28 a3 25 3 3 55 3 -
4[22122]5 232 434692 o7 7 11 1261 27 23
3[?3?’2?13 2512 | 5878512 4 g o1l 31 233 1981 256 26
3[?’2}1?]23 2512 5878212 | 1 211 31 233 3961 16 26
ff’lﬂ 232 2434 41 - 5 5 3 4 22
2[?71,2‘1,2]7 2128 ~ 1012 - 17 77 5545 125 25
4!43’.11’_315 27 ~ 71061 - - 1338036 | 232561 3125 213
fffL Pry ~ 1012 - 17 77 35 49 32
1[,65,21,2]91 21 ~ 71020 - 59 751 71 49 128
1[?5?1?]&) 21 ~ 71020 - 59 751 71 49 128
1!71’.21’_211 27 ~ 1032 - - 8525 126 64 512
1!71",3113}0 2" ~ 1026 - 127 2495 532 512 256

f: not constructive

! based on a conjecture

— : there are no constructions for such parameters

result found by computer search



Contents

© Conclusion



Summarizing

@ We defined a new family of convolutional codes
@ We showed that they are MDP exploiting a more general point of view

@ We compare the obtained field size with the existing constructions



Remarks and Future Research

@ Recently, for memory 1 combining Vandermonde and Moore matrices a
construction of MDP convolutional codes has been obtained.

@ G. Luo, X. Cao; M.F. Ezerman, S. Ling "
IEEE Transactions on Information Theory, 2023.

@ Recently it has been shown that in order to construct an MDP convolutional
code we need a field size

g>Qu(n").

@ Z. Chen "

preprint, 2023,



Remarks and Future Research

Recently, for memory 1 combining Vandermonde and Moore matrices a
construction of MDP convolutional codes has been obtained.

@ G. Luo, X. Cao; M.F. Ezerman, S. Ling "
IEEE Transactions on Information Theory, 2023.

Recently it has been shown that in order to construct an MDP convolutional
code we need a field size

g >Q(n").

@ Z. Chen "

preprint, 2023,

Check if this family of codes is closed under duality

Use the algebraic structure to develop a decoding algorithm



Thank Youl



	Notation
	MDP Convolutional Codes
	Weighted Reed-Solomon Convolutional Codes
	Field Size Consideration
	Conclusion

