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Why? Binary convolutional codes

So far optimal binary convolutional codes have only been presented for some
special values of the code rate.

There are two tabulations of binary convolutional codes with maximal free
distance for rates 1/2, 1/3, 1/4, 2/3 and 3/4; 1 2

Tables of binary convolutional codes of rates 1/2 and 2/3 with optimal column
distances were presented. 3

A new construction of binary convolutional codes with optimal column distances for
more general code rates will be presented and for that we focus on maximizing
especially the small column distances that are most important for low delay
decoding.

1K. Larsen, Short convolutional codes with maximal free distance for rates 1/2, 1/3, and 1/4, IEEE Transactions
on Information Theory, vol. 19, no. 3, pp. 371-372, May 1973.

2E. Paaske, Short binary convolutional codes with maximal free distance for rates 2/3 and 3/4, IEEE Transactions
on Information Theory, vol. 20, no. 5, pp. 683-689, September 1974.

3R. Johannesson, E. Paaske, Further Results on Binary Convolutional Codes with an Optimum Distance Profile,
IEEE Trans. Inform, Theory 24(2), pp. 264–268, 1978.
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Preliminaries

Definition
A simplex code S(k) of dimension k is a block code C = {u ⋅ S(k),u ∈ Fk

2} whose

generator matrix S(k) ∈ Fk×(2k
−1)

2 has all nonzero vectors in Fk
2 as columns.

Note that S(k) is only unique up to column permutations inside the generator matrix
leading to an equivalent code.

Preposition

All nonzero codewords of a k-dimensional simplex code of length n = 2k − 1 have
weight 2k−1 = n+1

2 .

Example

The generator matrix of the simplex [7,3,4] -code is thus:

S(3) =
⎛
⎜
⎝

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎞
⎟
⎠
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Definition
A convolutional code C of rate k/n is a Fq[z]-submodule of Fq[z]n of rank k , where
Fq[z] is the ring of polynomials with coefficients in the field Fq . A matrix
G(z) ∈ Fq[z]k×n whose rows constitute a basis of C is called a generator matrix for C,
i.e.:

C = {v(z) ∈ Fq[z]n ∶ v(z) = u(z)G(z) with u(z) ∈ Fq[z]k}.

Definition
Let

G(z) =
µ

∑
i=0

Gi z
i ∈ Fq[z]k×n

with Gµ ≠ 0 and k ≤ n.

For each i , 1 ≤ i ≤ k , the i-th row degree νi of G(z) is defined as the largest degree of
any entry in row i of G(z), in particular µ = maxi=1,⋯,k νi .

The external degree of G(z) is the sum of the row degrees of G(z). The internal
degree of G(z) is the maximal degree of the k × k minors of G(z).
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Definition
A matrix G(z) ∈ Fq[z]k×n is said to be row reduced if its internal and external degrees
are equal. In this case, G(z) is called a minimal generator matrix of the convolutional
code.
The degree δ of a code C is the external degree of a minimal generator matrix of C.
A convolutional code with rate k/n and degree δ is called an (n, k , δ) convolutional
code.

Definition
G(z) ∈ Fq[z]k×n is said to have generic row degrees if

ν1 = ⋯ = νt = ⌈
δ
k ⌉ and

νt = ⋯ = νk = ⌊
δ
k ⌋

for t = δ + k − k⌈ δk ⌉.

Definition
A generator matrix G(z) ∈ Fq[z]k×n with G0 = G(0) full (row) rank is called delay-free.
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Definition
The (Hamming) weight of a polynomial vector

v(z) =
deg(v(z))

∑
t=0

vt z t ∈ Fq[z]n

is defined as

wt(v(z)) =
deg(v(z))

∑
t=0

wt(vt),

where wt(vt) is the weight of vt ∈ Fn
q .

Definition
The free distance of a convolutional code C is given by

dfree(C) ∶= min
v(z)∈C

{wt(v(z)) ∣ v(z) ≠ 0} .
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Definition
For j ∈ N0, the j-th column distance of a convolutional code C is defined as

dc
j (C) ∶= min{wt(v0,⋯, vj) ∣ v(z) ∈ C and v0 ≠ 0} .

Definition
Let G(z) = ∑µ

i=0 Gi z i ∈ Fq[z]k×n be a generator matrix of a convolutional code C. For
j ∈ N0, define the truncated sliding generator matrices as

Gc
j ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

G0 ⋯ Gj
⋱ ⋮

G0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ F(j+1)k×(j+1)n
q

where we set Gi = 0 for i > µ.

Since the convolutional codes which we will construct will all be delay-free, we can use
that in this case

dc
j (C) = min{wt(u0,⋯,uj)G

c
j ∣ u(z)G(z) ∈ C and u0 ≠ 0}
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Definition
A full row rank matrix H(z) ∈ Fq[z](n−k)×n satisfying

C = kerH(z) = {v(z) ∈ Fq[z]n ∶ H(z)v(z)⊺ = 0}

is called a parity-check matrix of C. If such a matrix exists, C is called
non-catastrophic, otherwise it is called catastrophic.

A code is non-catastrophic if and only if G(z) is left prime which is equivalent to G(z)
having full row rank for all elements from the closure z ∈ Fq .

Each non-catastrophic convolutional code is delay-free. Moreover, if C is
non-catastrophic, dfree(C) = limj→∞ dc

j (C).
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Theorem ([1],[8])
Let C be an (n, k , δ) convolutional code. Then,

(i) dfree(C) ≤ (n − k) (⌊ δk ⌋ + 1) + δ + 1

(ii) dc
j (C) ≤ (n − k)(j + 1) + 1 for all j ∈ N0

The bound in (i) is called generalized Singleton bound.

The fact that dc
j (C) ≤ dfree(C) for all j ∈ N0 implies

dc
j (C) ≤ (n − k) (⌊

δ

k
⌋ + 1) + δ + 1

for all j ∈ N0. Hence j = L ∶= ⌊ δk ⌋ + ⌊
δ

n−k ⌋ is the largest possible value of j for which
dc

j (C) can attain the upper bound in (ii).

Lemma ([1])
Let C be an (n, k , δ) convolutional code. If dc

j (C) = (n − k)(j + 1) + 1 for some
j ∈ {1,⋯,L}, then dc

i (C) = (n − k)(i + 1) + 1 for all i ≤ j .
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Definition ([1])
An (n, k , δ) convolutional code C is said to be maximum distance profile (MDP) if

dc
j (C) = (n − k)(j + 1) + 1 for j = L = ⌊

δ

k
⌋ + ⌊

δ

n − k
⌋ .

It is known that for the existence of MDP codes the size of the underlying finite field has
to be sufficiently large (see e.g. [2, 5]), i.e. we cannot construct MDP codes over the
binary field.
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Upper and lower bounds for column distances

Lemma
Let C be an (n, k , δ) convolutional code with generator matrix
G(z) = ∑µ

i=0 Gi z i ∈ Fq[z]k×n with Gµ ≠ 0. Denote by wtr (Gi) the weight of row r of Gi .
Then,

j

∑
i=0

min
u0≠0

wt
⎛
⎜
⎝
(u0 ⋯ ui)

⎛
⎜
⎝

Gi
⋮

G0

⎞
⎟
⎠

⎞
⎟
⎠
≤ dc

j (C) ≤ min
r∈{1,⋯,k}

min(j,δ)

∑
i=0

wtr (Gi) (1)

and min
r∈{1,⋯,k}

min(j,δ)

∑
i=0

wtr (Gi) ≤ n((min(j, δ) + 1). (2)

Proof: The (2) is obvious. For (1) recall that by definition

dc
j (C) = min

u0≠0

j

∑
i=0

wt
⎛
⎜
⎝
(u0 ⋯ ui)

⎛
⎜
⎝

Gi
⋮

G0

⎞
⎟
⎠

⎞
⎟
⎠
.

From this the lower bound on dc
j (C) is clear. The upper bound follows as dc

j (C) is
upper bounded by the weight of any of the first k rows of Gc

j .

11 / 30



Why? Preliminaries Upper and lower bounds Construction of rate 1/n Construction with k > 1 Conclusion

Upper and lower bounds for column distances

Lemma
Let C be an (n, k , δ) convolutional code with generator matrix
G(z) = ∑µ

i=0 Gi z i ∈ Fq[z]k×n with Gµ ≠ 0. Denote by wtr (Gi) the weight of row r of Gi .
Then,

j

∑
i=0

min
u0≠0

wt
⎛
⎜
⎝
(u0 ⋯ ui)

⎛
⎜
⎝

Gi
⋮

G0

⎞
⎟
⎠

⎞
⎟
⎠
≤ dc

j (C) ≤ min
r∈{1,⋯,k}

min(j,δ)

∑
i=0

wtr (Gi) (1)

and min
r∈{1,⋯,k}

min(j,δ)

∑
i=0

wtr (Gi) ≤ n((min(j, δ) + 1). (2)

Proof: The (2) is obvious. For (1) recall that by definition

dc
j (C) = min

u0≠0

j

∑
i=0

wt
⎛
⎜
⎝
(u0 ⋯ ui)

⎛
⎜
⎝

Gi
⋮

G0

⎞
⎟
⎠

⎞
⎟
⎠
.

From this the lower bound on dc
j (C) is clear. The upper bound follows as dc

j (C) is
upper bounded by the weight of any of the first k rows of Gc

j .

11 / 30



Why? Preliminaries Upper and lower bounds Construction of rate 1/n Construction with k > 1 Conclusion

Definition
We say that a binary (n, k , δ) convolutional code C has optimal column distances if
there exists no binary (n, k , δ) convolutional code Ĉ such that

dc
j (Ĉ) > dc

j (C)

for some j ∈ N0 and
dc

i (Ĉ) = dc
i (C)

for all 0 ≤ i < j .
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Construction of rate 1/n

Maximize dc
0 , i.e. we have to choose G0 = (1 ⋯ 1).

Start with the generator matrix of a simplex code but only take the columns whose

first entry is equal to 1 and set the resulting matrix equal to
⎛
⎜
⎝

G0
⋮

Gδ

⎞
⎟
⎠

.

Example

For n = 3, the corresponding simplex code has generator matrix (1 1 0
1 0 1) and we

obtain from this the (2,1,1) convolutional code C with G0 = (1 1) and G1 = (1 0).

One has dc
0 (C) = 2, dc

1 (C) = dc
2 (C) = ⋯ = dfree(C) = 3.

Moreover, the lower and upper bound of (1) are sharp for all j and (2) shows us that
this is an optimal binary code for these parameters.
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Definition
Take a generator matrix S(δ + 1) of a simplex code and remove the columns with first

entry equal to zero and define the resulting matrix as S(δ + 1)1 ∈ F
(δ+1)×2δ

2 .

For m ∈ N, we call the (block) code with generator matrix

S(δ + 1)m1 ∶= [S(δ + 1)1 ⋯ S(δ + 1)1] ∈ F
(δ+1)×m⋅2δ

2 ,

an m-fold partial simplex code S(δ + 1)m1 of dimension δ + 1.
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Preposition

All codewords of S(δ + 1)m1 except (1⋯1) ∈ Fm⋅2δ
2 have weight m ⋅ 2δ−1. In particular,

the minimum distance of such a code is equal to m ⋅ 2δ−1.

Proof.
It is enough to show the statement for m = 1.
Take a generator matrix S(δ + 1) of a simplex code such that the first 2δ columns have
a 1 in the first row, i.e. write

S(δ + 1) = (S(δ + 1)1
01×(2δ−1)

S(δ)
) .

Since all codewords of S(δ + 1) have weight 2δ and all codewords in S(δ) have weight
2δ−1, all codewords of S(δ + 1)1 except the first row of S(δ + 1)1 have weight

2δ − 2δ−1 = 2δ−1.
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Theorem
Let n = m ⋅ 2δ and C be the (n,1, δ) convolutional code with generator matrix

G(z) = ∑δ
i=0 Gi ∈ F2[z]1×m⋅2δ where

⎛
⎜
⎝

G0
⋮

Gδ

⎞
⎟
⎠
= S(δ + 1)m1 .

Then, C is non-catastrophic and

dc
j (C) =

⎧⎪⎪
⎨
⎪⎪⎩

n + j n
2 for j ≤ δ

n + δ n
2 for j ≥ δ

and dfree(C) = n + δ
n
2
.

Theorem
Let C be a binary (m ⋅ 2δ,1, δ) convolutional code constructed as in the previous
theorem. Then, C has optimal column distances in the sense of Definition 16.
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If n is not of the form m ⋅ 2δ for some m ∈ N:

For this, we use that if we keep the length n and increase the degree from δ to δ + 1,
the coefficient matrices of the generator matrix of the optimal code of degree δ + 1 have
to coincide until Gδ with some optimal code of degree δ.

Similarly, if we keep the degree δ and increase the length from n to n + 1, the generator
matrix for an optimal code of length n + 1 has to coincide in its first n entries with an
optimal code of length n.

Hence, we can use S(δ + 1)m1 with m = ⌊ n
2δ
⌋ for the construction and add n − ⌊ n

2δ
⌋ ⋅ 2δ

further columns of S(δ + 1)1.
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For δ = 1 ∶

If n is even, we obtain optimal column distances from S(2)
n
2
1 .

If n is odd, to construct
⎛
⎜
⎝

G0
⋮

Gδ

⎞
⎟
⎠

we can use S(2)
⌊ n

2 ⌋
1 and add another column from

the matrix S(2)1 = (
1 1
1 0).

We obtain that dc
0 (C) = n and dfree(C) = dc

j (C) = n+ ⌊ n
2 ⌋ for j ∈ N, which is optimal.
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For δ = 2:

We can use S(3)
n
4
1 in case n ≡ 0 mod 4. If n /≡ 0 mod 4, to obtain (n,1, δ)

convolutional codes C with optimal distances, we just need to find optimal (s,1, δ)
convolutional codes Cmod 4 with s ∈ {1,2,3} such that n ≡ s mod 4 to use it to extend

S(3)
⌊ n

4 ⌋

1 .

For s = 1, i.e. n − 1 ≡ 0 mod 4, no matter which column of S(3)1 =
⎛
⎜
⎝

1 1 1 1
1 0 1 0
1 1 0 0

⎞
⎟
⎠

we choose to construct
⎛
⎜
⎝

G0
G1
G2

⎞
⎟
⎠

, we obtain that dc
j (Cmod 4) = 1 for all j ∈ N0, i.e.

dc
j (C) = n + (

n − 1
2
) j

for j ≤ δ = 2 and

dfree(C) = dc
j (C) = n + (

n − 1
2
) δ = 2n − 1

for j ≥ δ = 2.
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For s = 2, we know from the case δ = 1, which gives us (G0
G1
), that to have optimal

dc
0 and dc

1 , we need to choose two columns of S(3)1 of the form
⎛
⎜
⎝

1 1
1 0
x y

⎞
⎟
⎠

with

x , y ∈ F2.
One obtains in any case dc

0 = 2, dc
1 = 3, dc

2 = 3. For (x , y) ∈ {(0,0), (0,1)},
dc

i = 3 for i ≥ 3, for (x , y) = (1,0), dc
i = 4 for i ≥ 3, for (x , y) = (1,1), dc

3 = dc
4 = 4

and dc
i = 5 for i ≥ 5.

This means (x , y) = (1,1) yields the unique optimal choice leading to dc
0 (C) = n,

dc
1 (C) = n + n

2 , dc
2 (C) = 2n − 1, dc

3 (C) = dc
4 (C) = 2n, dfree(C) = dc

i (C) = 2n + 1 for
i ≥ 5.

For s = 3, using the previous results, we have the two options
⎛
⎜
⎝

1 1 1
1 0 1
1 1 0

⎞
⎟
⎠

and

⎛
⎜
⎝

1 1 1
1 0 0
1 1 0

⎞
⎟
⎠

for choosing three columns of S(3)1. For i ≤ 3, both lead to the same

column distances dc
i = i + 3. But, for i ≥ 4, the first option has dc

i = 7, while the
second option has dc

i = 6. So, the first choice is optimal, leading to dc
0 (C) = n,

dc
1 (C) = n + n−1

2 , dc
2 (C) = 2n − 1, dc

3 (C) = 2n, dfree(C) = dc
i (C) = 2n + 1 for i ≥ 4.
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For δ = 3:

We need to find optimal (s,1,3) convolutional codes Cs for s = 1,⋯,7.

From the case δ = 2 we deduce that
⎛
⎜
⎝

G0
G1
G2

⎞
⎟
⎠

has to be equal to the first s columns of the

matrix S(3)21.

wts - the minimal weight of the code generated by the first s columns of (
S(3)21

G̃3
).

We obtained with the help of the computer that in order to optimize wts , G̃3 has to be
equal to one of the following vectors:
(0 0 0 1 1 1 1 0), (0 0 1 0 1 1 0 1), (0 1 0 0 1 0 1 1), (0 1 1 1 1 0 0 0),
(1 0 0 0 0 1 1 1), (1 0 1 1 0 1 0 0), (1 1 0 1 0 0 1 0), (1 1 1 0 0 0 0 1).

For all these 8 optimal G̃3, we obtain the following values for wts :

s 1 2 3 4 5 6 7
wts 0 0 0 1 1 2 3

and we have that dc
3 (Cs) ≥ dc

2 (Cs) +wts .
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For δ = 4:

We can take any of these G̃3 to form the matrix S(4)1 = (
S(3)21 S(3)21

G̃3 G̃3
).

wt t - minimal weight of the code generated by the first t ∈ {1,⋯,15} columns of

(
S(4)1

G̃4
).

We found that for each optimal choice G̃3 = (G̃1
3 G̃2

3) with G̃1
3, G̃

2
3 ∈ F

4
2, there are the

same eight optimal choices for G̃4, namely exactly all vectors of the form
(G̃1

3 G̃1
3 G̃2

3 G̃2
3).

In this way, we obtain 64 optimal codes leading to the following optimal values for wt t :

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
wt t 0 0 0 0 1 1 1 2 2 3 4 4 5 6 7
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If 2δ ∤ n ∶

Theorem
Set m = ⌊ n

2δ
⌋, n1 ∶= m ⋅ 2δ and write n − n1 = 2a1−1 + ... + 2ab−1 with b,ai ∈ N for

i = 1,⋯,b and δ ≥ a1 > ... > ab .

Set
⎛
⎜
⎝

G0
⋮

Gδ

⎞
⎟
⎠
= [S(δ + 1)m1 S] where S consists of n − n1 columns of S(δ + 1)1 and has

the form S = D0 = (
S(a1)1 D1
∗ ∗

), D1 = (
S(a2)1 D2
∗ ∗

), ..., Di = (
S(ai+1)1 Di+1
∗ ∗

),

..., Db−1 = S(ab)1.

Then, the (n,1, δ) binary convolutional code C with generator matrix G(z) has column
distances which are near optimal in the following sense:

For j ≤ ab −1, dc
j (C) = n+ j n

2 , i.e. optimal, and for ax+1 < j +1 ≤ ax with x ∈ {1,⋯,b−1},

dc
j (C) ≥

n1

2
+ 2a1−2 +⋯ + 2ax−2 + dc

j−1(C)
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Example

Take δ = 4 and n = 14. First, note that 24 = 16 ∤ 14. In this example, m = ⌊ n
2δ
⌋ = 0 and

consecutively n1 = 0. So

n1 − n = n = 14 = 23 + 22 + 21.

Then a1 = 3 + 1 = 4, a2 = 2 + 1 = 3 and a3 = 0 + 1 = 1.

⎛
⎜
⎜
⎝

G0
G1
G2
G3
G4

⎞
⎟
⎟
⎠

=
⎛
⎜
⎝

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 1 1 1
1 0 1 0
1 1 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

1 1
1 0
∗ ∗
∗ ∗
∗ ∗

⎞
⎟
⎠

S(4)1 with 4 rows and 23 columns
S(3)1 with 3 rows and 22 columns
S(2)1 with 2 rows and 21 columns

The first two rows are optimal and the code is near optimal!
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Construction with k > 1

Definition
Take a generator matrix S(δ + k) of a simplex code and remove the columns whose
first k entries are equal to zero and define the resulting matrix as

S(k + δ)k ∈ F
(δ+k)×(2δ+k

−2δ)
2 .

For m ∈ N, we call the (block) code with generator matrix

S(δ + k)mk ∶= [S(δ + k)k ⋯ S(δ + k)k ] ∈ F
(δ+k)×m⋅(2δ+k

−2δ)
2

an m-fold k -partial simplex code S(δ + k)mk of dimension δ + k .

Preposition

All codewords of S(δ + k)mk that are linear combinations of just the first k rows of
S(δ + k)mk have weight m ⋅ 2δ+k−1 and all other codewords have weight
m ⋅ (2δ+k−1 − 2δ−1). In particular, the minimum distance of such a code is equal to
m ⋅ (2δ+k−1 − 2δ−1) = m ⋅ 2δ−1(2k − 1).
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Theorem
Let C be an (m ⋅ 2δ(2k − 1), k , δ) convolutional code with generator matrix

G(z) = ∑
⌈ δk ⌉
i=0 Gi z i ∈ F2[z]k×m⋅2δ(2k

−1) where
⎛
⎜
⎜
⎜
⎝

G0
⋮

Gµ−1
G̃µ

⎞
⎟
⎟
⎟
⎠

= S(δ + k)mk . Then, C is

non-catastrophic and

dc
j (C) =

⎧⎪⎪
⎨
⎪⎪⎩

n ⋅ 2k−1

2k−1
+ j n

2 for j ≤ ⌊ δk ⌋

n ⋅ 2k−1

2k−1
+ ⌊ δk ⌋ ⋅

n
2 for j ≥ ⌊ δk ⌋

Theorem
Let C be a binary (m ⋅ 2δ(2k − 1), k , δ) convolutional code constructed as in the
previous theorem. Then, C has optimal column distances in the sense of Definition 16.
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Example

Take k = 2, n = 12 and δ = 2. Then µ = 1, m = 1 and δ + k = 4.

The optimal G0, leading to dc
0 = 8 is

G0 = S(2)4 = (1 1 0 1 1 0 1 1 0 1 1 0
1 0 1 1 0 1 1 0 1 1 0 1) .

To maximize dc
1 we take

G1 = (
1 1 1 0 0 0 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0 0 0 0)

such that (G0
G1
) = S(4)2 and dc

1 = 14.
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Conclusion

Convolutional codes with optimal or near optimal column distances are attractive
as they are capable of correcting a maximal number of errors per time interval.

We start with simplex codes and using both the technique of puncturing and
folding we are able to construct new binary convolutional codes whose column
distances are optimal for certain parameters and near optimal for the other
parameters.

Zita Abreu, Julia Lieb, Joachim Rosenthal. Binary convolutional codes with
optimal column distances, submitted, http://arxiv.org/abs/2305.04693.

Future Work
Development of a decoding algorithm for these binary convolutional codes
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