# 2D convolutional codes

Raquel Pinto University of Aveiro

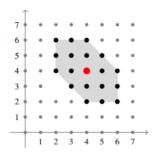
Workshop on Convolutional Codes, Zurich, 5-9 June

# Overview

- 2D convolutional codes (Fornasini, Valcher, 94; Weiner, Rosenthal, 94)
- MDS 2D convolutional codes
- Decoding of 2D convolutional codes

# 2D (two-dimensional) data

- representation of pictures or videos;
- storage of digital data information.



$$\begin{aligned} &\{u(4,2),u(5,2),u(6,2),u(3,3),u(4,3),u(5,3),u(6,3),u(2,4),\\ &u(3,4),u(4,4),u(5,4),u(6,4),u(2,5),u(3,5),u(4,5),u(5,5),u(2,6),\\ &u(3,6),u(4,6)\},\ \ u(i,j)\in\mathbb{F}^k \end{aligned}$$

$$\{u(i,j):u(i,j)\in\mathbb{F}^k,(i,j)\in\mathbb{N}^2\}$$
 with finite support  $\downarrow$   $u(z_1,z_2)=\sum_{(i,j)\in\mathbb{N}^2}u(i,j)z_1^iz_2^j\in\mathbb{F}^k[z_1,z_2]\simeq\mathbb{F}[z_1,z_2]^k$ 

Former example:

$$u(z_1, z_2) = u(4, 2)z_1^4z_2^2 + u(5, 2)z_1^5z_2^2 + \cdots + u(4, 6)z_1^4z_2^6$$

# 2D convolutional codes

#### Definition

A two-dimensional (2D) (n, k) convolutional code  $\mathcal{C}$  is a free  $\mathbb{F}[z_1, z_2]$ -submodule of  $\mathbb{F}[z_1, z_2]^n$  of rank k.

A matrix  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  whose rows form a basis for C is called an encoder.

$$C = \operatorname{Im}_{\mathbb{F}[z_1, z_2]} G(z_1, z_2)$$
  
=  $\left\{ v(z_1, z_2) = u(z_1, z_2) G(z_1, z_2) : u(z_1, z_2) \in \mathbb{F}[z_1, z_2]^k \right\}$ 

#### Definition

 $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$  is unimodular if it has a polynomial inverse.

#### Lemma

$$U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$$
 is unimodular iff  $\det U(z_1, z_2) \in \mathbb{F} \setminus \{0\}$ .

### **Definition**

$$G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$$
, with  $n \ge k$ , is,

1. left factor prime ( $\ell FP$ ) if for every factorization

$$G(z_1, z_2) = T(z_1, z_2)\bar{G}(z_1, z_2),$$

- with  $\bar{G}(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  and  $T(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$ , then  $T(z_1, z_2)$  is unimodular.
- 2. **left zero prime** ( $\ell$ ZP) if the ideal generated by the  $k \times k$  minors of  $G(z_1, z_2)$  is  $\mathbb{F}[z_1, z_2]$ .

#### Lemma

Let  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  be an encoder of  $\mathcal{C}$ . Then  $\bar{G}(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  is an encoder of  $\mathcal{C}$  if and only if

$$\bar{G}(z_1,z_2)=U(z_1,z_2)G(z_1,z_2),$$

for some unimodular matrix  $U(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times k}$ .

#### Thus:

- if C admits a left factor prime encoder, all its encoders are left factor prime encoders;
- if C admits a left zero prime encoder, all its encoders are left zero prime encoders.

#### Lemma

Let  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$ . Then

- 1.  $G(z_1, z_2)$  is  $\ell FP$  if and only if for all  $u(z_1, z_2) \in \mathbb{F}(z_1, z_2)^k$ ,  $u(z_1, z_2)G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^n \Rightarrow u(z_1, z_2) \in \mathbb{F}[z_1, z_2]^k$ .
- 2.  $G(z_1, z_2)$  is  $\ell ZP$  if and only if  $G(z_1, z_2)$  admits a polynomial right inverse.

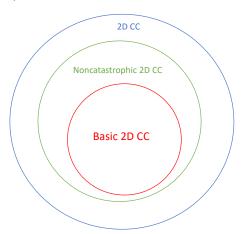
- A 2D convolutional code that admits a left factor prime encoder is said to be noncatastrophic.
- A 2D convolutional code that admits a left zero prime encoder is said to be basic.

# Example

The 2D convolutional code with encoder

$$G(z_1, z_2) = \begin{bmatrix} z_1 & z_2 \end{bmatrix}$$

is noncatastrophic but it is not basic.



### Lemma

A 2D (n,k) convolutional code is noncatastrophic if and only if there exists a full row rank matrix  $H(z_1,z_2) \in \mathbb{F}[z_1,z_2]^{(n-k)\times n}$  such that

$$\mathcal{C} = \{v(z_1, z_2) \in \mathbb{F}[z_1, z_2]^n \ : \ H(z_1, z_2)v(z_1, z_2)^T = 0\}.$$

# MDS 2D convolutional codes

The (total) degree of a polynomial  $p(z_1,z_2)=\sum_{(i,j)\in\mathbb{N}^2}p_{ij}z_1^iz_2^j$  in two indeterminates is defined as

$$max\{i+j: p_{ij} \neq 0\}$$

The *i*-th row degree of a matrix  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  is the maximum of the degrees of the polynomials in this row, and we call the external degree of  $G(z_1, z_2)$  as the sum of its row degrees.

The internal degree of a matrix  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  is the maximum of the degrees of full size minors of  $G(z_1, z_2)$ .

#### Definition

The degree,  $\delta$ , of  $\mathcal{C}$  is the minimum of the external degrees of the encoders of  $\mathcal{C}$  and  $\mathcal{C}$  is said to be an  $(n, k, \delta)$  convolutional code.

#### Definition

The complexity,  $\delta_c$ , of  $\mathcal C$  is the internal degree of an encoder.

Obviously,  $\delta_c \leq \delta$ .

# Example

The 2D convolutional code with encoder

$$G(z_1,z_2) = \left[ \begin{array}{ccc} 0 & z_2 & 1 \\ 1 & z_1 & 1 \end{array} \right]$$

has complexity  $\delta_c = 1$  and degree  $\delta = 2$ .

### Distance

The distance of a convolutional code  $\mathcal C$  is defined as

$$d(\mathcal{C}) = \{ wt(v(z_1, z_2)) : v(z_1, z_2) \in \mathcal{C}, v(z_1, z_2) \neq 0 \}$$

where  $wt(v(z_1, z_2))$  is the weight of a polynomial vector

$$v(z_1, z_2) = \sum_{(i,j) \in \mathbb{N}^2} v_{ij} z_1^i z_2^j \in \mathbb{F}^n[z_1, z_2]$$

given by

$$wt(v(z_1,z_2)) = \sum_{(i,j)\in\mathbb{N}^2} wt(v_{ij})$$

### Theorem (Climent, Napp, Perea, P., 2015)

Let C be a 2D  $(n, k, \delta)$  convolutional code. Then

$$d(\mathcal{C}) \leq n \frac{(\lfloor \frac{\delta}{k} \rfloor + 1)(\lfloor \frac{\delta}{k} \rfloor + 2)}{2} - k(\lfloor \frac{\delta}{k} \rfloor + 1) + \delta + 1$$

This upper bound is called the 2D generalized Singleton bound.

A 2D  $(n, k, \delta)$  convolutional code is said to be a Maximum Distance Separable (MDS) 2D convolutional code if its distance equals the generalized Singleton bound.

# Constructions of 2D MDS convolutional codes

#### Lemma

If  $\mathcal C$  is a MDS  $(n,k,\delta)$  2D convolutional code then  $\mathcal C$  has an encoder  $G(z_1,z_2)\in \mathbb F[z_1,z_2]^{k\times n}$  with  $t=k-\delta+k\lfloor\frac{\delta}{k}\rfloor$  rows of degree  $\lfloor\frac{\delta}{k}\rfloor$  and k-t rows of degree  $\lfloor\frac{\delta}{k}\rfloor+1$ .

Note that a row with degree  $\lfloor \frac{\delta}{k} \rfloor$  has  $\ell_1 = \frac{(\lfloor \frac{\delta}{k} \rfloor + 1)(\lfloor \frac{\delta}{k} \rfloor + 2)}{2}$  coefficients in  $\mathbb{F}^n$  and a row with degree  $\lfloor \frac{\delta}{k} \rfloor + 1$  has  $\ell_2 = \frac{(\lfloor \frac{\delta}{k} \rfloor + 2)(\lfloor \frac{\delta}{k} \rfloor + 3)}{2}$  coefficients in  $\mathbb{F}^n$ .

Let us construct an encoder  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  with the first k - t rows of degree  $\lfloor \frac{\delta}{k} \rfloor + 1$  and the last t rows of degree  $\lfloor \frac{\delta}{k} \rfloor$  (Climent,Napp,Perea, P.,2016).

Consider the matrices.

$$\mathcal{G}_r = \left\{ \begin{array}{l} \begin{bmatrix} g_0^{(r)} \\ g_1^{(r)} \\ \vdots \\ g_{\ell_2-1}^{(r)} \end{bmatrix} \in \mathbb{F}^{\ell_2 \times n} \text{ for } r = 1, 2, \dots, k-t. \\ \begin{bmatrix} g_0^{(r)} \\ g_1^{(r)} \\ \vdots \\ g_{\ell_1-1}^{(r)} \end{bmatrix} \in \mathbb{F}^{\ell_1 \times n} \text{ for } r = k-t+1, k-t+2, \dots, k. \end{array} \right.$$

$$G(z_1,z_2) = \left[egin{array}{c} G_1(z_1,z_2) \ G_2(z_1,z_2) \ dots \ G_k(z_1,z_2) \end{array}
ight] \in \mathbb{F}[z_1,z_2]^{n imes k}$$

with

$$G_r(z_1,z_2) = \left\{ egin{array}{ll} \sum_{0 \leq i+j \leq \lfloor rac{\delta}{k} 
floor} g_{\mu(i,j)}^{(r)} z_1^i z_2^j & ext{for } r=1,2,\ldots,k-t \ \sum_{0 \leq i+j \leq \lfloor rac{\delta}{k} 
floor} g_{\mu(i,j)}^{(r)} z_1^i z_2^j & ext{for } r=k-t+1,\ldots,k \end{array} 
ight.$$

where  $\mu(i,j) = j + \frac{(i+j)(i+j+1)}{2}$ .

where 
$$\mu(i,j) = j + \frac{(i+j)(i+j+1)}{2}$$

$$\bar{\mathcal{G}}_r = \left\{ \begin{array}{cccc} \left[ \begin{array}{cccc} g_0^{(r)} & g_1^{(r)} & \cdots & g_{\ell_2-1}^{(r)} \end{array} \right] & \text{for } r=1,2,\ldots,k-t. \\ \\ \left[ \begin{array}{cccc} g_0^{(r)} & g_1^{(r)} & \cdots & g_{\ell_1-1}^{(r)} \end{array} \right] & \text{for } r=k-t+1,k-t+2,\ldots,k. \end{array} \right.$$

lf

$$\mathcal{G} = \left[ egin{array}{c} \mathcal{G}_1 \ \mathcal{G}_2 \ dots \ \mathcal{G}_k \end{array} 
ight]$$

is full superregular and

$$ar{\mathcal{G}} = \left[ egin{array}{c} ar{\mathcal{G}}_1 \ dots \ ar{\mathcal{G}}_{k-t} \ ar{\mathcal{G}}_{k-t+1} \ 0 \ dots \ ar{\mathcal{G}}_k \ \end{array} 
ight]$$

is superregular, then  $G(z_1, z_2)$  is an encoder of an MDS  $(n, k, \delta)$  2D convolutional code if  $n > \ell_2 k$ .

• Constructions of MDS  $(n, k, \delta)$  2D convolutional codes if  $n > k + \delta$  (Almeida, Napp, P., 2018).

# Decoding of 2D convolutional codes

There is no decoding algorithm over the q-ary symetric channel where errors occur.

Decoding algorithms over the erasure channel:

• using parity-check matrices (Climent, Napp, P., Simões, 2016).

# Decoding algorithm over the erasure channel

(Lieb, P., 2023)

Let  $\mathcal{C}$  be a 2D convolutional code and  $G(z_1, z_2) \in \mathbb{F}[z_1, z_2]^{k \times n}$  be an encoder of  $\mathcal{C}$ .

Write

$$G(z_1, z_2) = G_0(z_1) + G_1(z_1)z_2 + G_2(z_1)z_2^2 + \cdots$$

and

$$u(z_1, z_2) = u_0(z_1) + u_1(z_1)z_2 + u_2(z_1)z_2^2 + \cdots \in \mathbb{F}^k[z_1, z_2]$$

Then

$$v(z_{1}, z_{2}) = u(z_{1}, z_{2})G(z_{1}, z_{2})$$

$$= u_{0}(z_{1})G_{0}(z_{1}) + (u_{1}(z_{1})G_{0}(z_{1}) + u_{0}(z_{1})G_{1}(z_{1}))z_{2} + (u_{2}(z_{1})G_{0}(z_{1}) + u_{1}(z_{1})G_{1}(z_{1}) + u_{0}(z_{1})G_{2}(z_{1}))z_{2}^{2} + \cdots$$

$$= u_{0}(z_{1})G_{0}(z_{1}) + \begin{bmatrix} u_{1}(z_{1}) & u_{0}(z_{1}) \end{bmatrix} \begin{bmatrix} G_{0}(z_{1}) \\ G_{1}(z_{1}) \end{bmatrix} z_{2} + \begin{bmatrix} u_{2}(z_{1}) & u_{1}(z_{1}) & u_{0}(z_{1}) \end{bmatrix} \begin{bmatrix} G_{0}(z_{1}) \\ G_{1}(z_{1}) \\ G_{2}(z_{1}) \end{bmatrix} z_{2}^{2}$$

Let  $\ell$  be as large as possible such that

$$\mathcal{C}_0 = \mathit{Im}_{\mathbb{F}[z_1]} G_0(z_1), \quad \mathcal{C}_1 = \mathit{Im}_{\mathbb{F}[z_1]} \left[ \begin{array}{c} G_0(z_1) \\ G_1(z_1) \end{array} \right], \cdots.$$

$$\mathcal{C}_\ell = \mathit{Im}_{\mathbb{F}[z_1]} \left[egin{array}{c} G_0(z_1) \ G_1(z_1) \ dots \ G_\ell(z) \end{array}
ight]$$

are full row rank (note that  $k(\ell+1) < n$ ).

# Decoding (over the erasure channel)

Input data: received word

$$\tilde{v}(z_1, z_2) = \tilde{v}_0(z_1) + \tilde{v}_1(z_1)z_2 + \tilde{v}_2(z_1)z_2^2 + \cdots$$

- 1) let  $i = \ell$ ;
- 2)  $\tilde{v}_i(z_1)$  is a codeword of  $C_i$  with erasures;
- 3) recover the most number of erasures of  $\tilde{v}_i(z)$  as possible;

3.1) if the the erasures of  $\tilde{v}_i(z)$  are completely recovered and  $v(z_1)$  is the corrected codeword, then compute  $u_0(z_1), u_1(z_1), \ldots, u_i(z_1)$  such that

$$v(z_1) = \begin{bmatrix} u_i(z_1) & u_{i-1}(z_1) & \dots & u_0(z_1) \end{bmatrix} \begin{bmatrix} G_0(z_1) \\ G_1(z_1) \\ \vdots \\ G_i(z_1) \end{bmatrix};$$

for 
$$j \geq i$$
, let  $\bar{v}_{i+j}(z_1) =$ 

$$\tilde{v}_{i+j}(z_1) - \begin{bmatrix} u_i(z_1) & u_{i-1}(z_1) & \cdots & u_0(z_1) \end{bmatrix} \begin{bmatrix} G_j(z_1) \\ \vdots \\ G_{i+j}(z_1) \end{bmatrix} \text{ and }$$

restart the decoding algorithm with input data

$$v(z_1,z_2) = \bar{v}_i(z_1) + \tilde{v}_{i+1}(z_1)z_2 + \tilde{v}_{i+2}(z_1)z_2^2 + \cdots$$

3.2) if the erasures of  $\tilde{v}_i(z)$  are not completely recovered let i:=i-1 and go to 2)

### Future work

- New constructions of MDS 2D convolutional codes.
- Decoding algorithms for error correction.
- Decoding algorithms for erasure correction define an equivalent notion of column distances.

# Thank you for your attention!

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), within project UIBD/MAT/04106/2020 (CIDMA).