
1 Scientific and Social Program

Thursday, September 30

Time Speaker Title

14:45 Arne Ogrowsky
Universität Paderborn

Attractors of random differential equations
with random delay

15:15 Andreas Gegg
KU Eichstätt-Ingolstadt

Change-Point in Profile-Data and Residual
Partial Sums in Multivariate Regression

15:45 Hella Timmermann
Universität zu Köln

Sequential testing of gradual changes in the
drift of a stochastic process

16:15 Coffee break

16:45 Lorenz Pfeifroth
TU München

About the Uniqueness of the Mixing Measure
for a Random Walk in a Random Environment
on the Integers

17:15 Hadrian Heil
Universität Tübingen

Branching Random Walks in Random Envi-
ronment: where are the particles?

17:45 Laura Vinckenbosch
EPF Lausanne

Pushing a Brownian particle out of an interval
subject to a switching cost

18:45 Dinner at Irchel in 13M Foyer

Friday, October 1

Time Speaker Title

09:00 Chiranjib Mukherjee
MPI MIS Leipzig

Large deviations for Brownian intersection
measures

09:30 Patrick Schmid
Universität Leipzig

Brownian motion in a truncated Weyl
chamber

10:00 Philipp Thomann
Universität Zürich

Numerical Simulations of Random Walks in
Random Environments

10:30 Coffee break
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11:00 Wael Mohammed
Universität Augsburg

Amplitude Equations for SPDEs with Cubic
Nonlinearities

11:30 Matteo Casserini
ETH Zürich

A characterization of Widder’s theorem via
Hermite polynomials

12:00 Discussion session

12:30 Lunch and leisure time

16:15 Guided tour by Martin Herdegen

17:45 Boat excursion and dinner on MS Glärnisch

Saturday, October 2

Time Speaker Title

09:30 Roman Muraviev
ETH Zürich

A Limit Theorem for a Double Stochastic
Integral

10:00 Sandra Haas
Université de Lausanne

Ruin Probabilities with Excess of Loss Rein-
surance and Reinstatements

10:30 Coffee break

11:00 Le Chen
EPF Lausanne

Intermittence Properties for Stochastic Heat
and Wave Equations in One Space Dimension

11:30 Adrian Schnitzler
TU Berlin

Time Correlations for the Parabolic Anderson
Model

12:00 End of conference
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2 Abstracts

Matteo Casserini:
A characterization of Widder’s theorem via Hermite polyno-
mials

It is a well known consequence of a classical result by Widder that continuous positive
Brownian martingales of the form (g(t,Wt))t≥0 can be represented as g(t,Wt) =∫
R
E(a ·W )tµ(da), for some measure µ. However, there is no explicit characterization

of the measure µ.
In this work, we consider stochastic integrals with respect to a complex Brownian
motion, and we obtain an explicit representation of their predictable projections on
the real line. By applying these results to series of Hermite polynomials, we then
provide a characterization of the exponential moments of Widder’s measure µ.

Le Chen:
Intermittence Properties for Stochastic Heat and Wave Equa-
tions in One Space Dimension

In this talk, I will present some our recent results on the intermittence properties
for stochastic heat and wave equations driven by space-time white noise in one-space
dimension. In particular, we shall consider the following model

(
∂

∂t
− ν

2
∂2

∂x2

)
u(t, x) = u(t, x)Ẇ (t, x), x ∈ R, t > 0

u(0, x) = g(x), x ∈ R
(1)

where Ẇ is space-time white noise, g(x) is some initial data, and ν > 0 is some
constant. When dealing with stochastic integral, we shall use standard Walsh’s
integral. We are interested in the second moment of the solution u(t, x) of the above
equation, which is denoted by

f(t, x) ∆= E(u(t, x)2) .

One aim of my research is to impose assumptions on the initial condition g as weak
as possible such that the intermittence properties continue to hold, i.e., the second
Lyapunov exponent

λ2(x) ∆= lim
t→∞

log f(t, x)
t

is strictly greater than zero. If time is permitted, I shall also present some work on
the stochastic wave equation case.
A standard reference for intermittency problem is [CM94]. Our analytical method
recovers some results in [BC94], where the same property is proved by a probabilistic
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method. A closely related recent work is [CK10], where we hope to refine their results
at least in this simple case. See also some recent papers [DMT06, DM09, FK08] and
references therein for more references.
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type formula for the deterministic and stochastic wave equations and
other P.D.E.’s. Transactions of the American Mathematical Society,
360(9):4681–4703, 2006.

[FK08] Mohammud Foondun and Davar Khoshnevisan. Intermittence and nonlin-
ear parabolic stochastic partial differential equations. Electr. J. Probab.,
14(14):548–568, 2008.

Andreas Gegg:
Change-Point in Profile-Data and Residual Partial Sums in
Multivariate Regression

We are interested in testing the constancy of regression parameters in a linear pro-
file data set (panel data in econometrics). For that, we use residual partial sums in
several dimensions.
We introduce the one-dimensional partial sums operator and cite some well-known
results concerning residual partial sums processes for univariate linear regression.
Particularly, we show that the residual partial sums limit process is a function of
Brownian motion – no matter which distribution is used in the linear model .
In a second step, we extend this technique to the multivariate case and show that
the corresponding residual partial sums limit process is a function of multivariate
Brownian motion. Using this result, we propose a change-point approach for param-
eter vectors of linear profile data. In our setting, each sample collected over time
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consists of several multivariate observations for which a linear regression model is
appropriate. The question now is whether all of the profiles follow a linear regression
model with the same parameter vector or whether a change occurred in one or more
model parameters after a special sample. We use the partial sums operator in several
dimensions to test the null hypothesis ”H0: no change–point occurred” and propose
a size α-test.

Sandra Haas:
Ruin Probabilities with Excess of Loss Reinsurance and Rein-
statements

Joint work with Hansjörg Albrecher1.
The present paper studies the probability of ruin of an insurer, if excess of loss
reinsurance with reinstatements is applied. In the setting of the classical Cramer-
Lundberg risk model, piecewise deterministic Markov processes (PDMP) are used to
describe the surplus process in this more general situation. It is shown that the finite-
time ruin probability is both the solution of a partial integro-differential equation and
the fixed point of a contractive integral operator. We exploit the latter representation
to develop and implement a recursive algorithm for numerical approximation of the
ruin probability that involves high-dimensional integration. Furthermore we study
the behavior of the finite-time ruin probability under various levels of initial capital
and security loadings and compare the efficiency of the numerical algorithm with the
computational alternative of stochastic simulation of the risk process.
The presented probabilistic approach for the numerical solution of a deterministic
equation can also be employed in other applications.

References

ALBRECHER, H., KAINHOFER, R., TICHY, R. (2003): Simulation methods in
ruin models with non-linear dividend barriers, Math. Comput. Simulation 62(3-
6), 277-287.

DASSIOS, A., EMBRECHTS, P. (1989): Martingals and insurance risk, Stochas-
tic Models, 5(2), 181-217.

MATA, A.J. (2000): Pricing excess of loss reinsurance with reinstatements, Astin
Bulletin, 30(2), 349-368.

ROLSKI, T., SCHMIDLI, H., SCHMIDT, V., TEUGELS, J. (1999): Stochastic
Processes for Insurance and Finance, John Wiley and Sons.

1Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne
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WALHIN, J.F., PARIS, J. (2000): The effect of excess of loss reinsurance with
reinstatements on the cedent’s portfolio, Blätter der Deutschen Gesellschaft für
Versicherungsmathematik, 24, 616-627.

Hadrian Heil:
Branching Random Walks in Random Environment: where are
the particles?

We treat branching random walks in a space-time-i.i.d. random environment. There
is a phase-transition between regulare growth (where the number of particles grows
as fast as its expectation) and slow growth (where it does not). In spatial dimensions
three or larger, diffusive behaviour holds in the entire regular growth phase. On the
other hand, in the slow growth phase, localization occurs under weak assumptions on
the environment. The talk is about joint work with Makoto Nakashima and Nobuo
Yoshida.
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Wael Mohammed:
Amplitude Equations for SPDEs with Cubic Nonlinearities

We consider a quite general class of SPDEs with cubic nonlinearities and derive
rigorously amplitude equations and their higher order corrections, using the natural
separation of time-scales near a change of stability. We show that degenerate additive
noise has the potential to stabilize the dynamics of the dominant modes. We focus
on equations with cubic nonlinearity and give applications to the Swift-Hohenberg
equation, the Ginzburg-Landau / Allen-Cahn equation and a model from surface
growth.

Chiranjib Mukherjee:
Large deviations for Brownian intersection measures

We consider a number of independent Brownian motions running in the d-dimensional
Euclidean space until their first exit from a domain. Classical results from the 1950’s
show that Brownian paths have mutual intersections. Le Gall and others constructed
an object which measures the intensity of the path intersections. This measure was
called the “Brownian intersection local time”, keeping track of the notion of Brownian
local time for the case of one single path. Donsker and Varadhan developed the
celebrated theory of large deviations for a single path Brownian local time (in fact,
the occupation measures). In a joint project with Wolfgang Koenig, we study large
deviations for the (many-path) intersection local time (as measures).

Roman Muraviev:
Heterogeneous Equilibrium with Habit Formation

We study Arrow-Debreu equilibrium in a pure exchange economy populated by het-
erogeneous investors represented by habit forming utility functions. The heterogene-
ity might be reflected in the following parameters: beliefs concerning the economy,
risk aversion, impatience (time preference rate) and strength of the habits.
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Arne Ogrowsky:
Attractors of random differential equations with random delay

We investigate a random differential equation with random delay. First the non–
autonomous case is considered. We show the existence and uniqueness of a solution
that generates a cocycle. In particular, the existence of an attractor is proved. Finally
we look at the random case. We pay special attention to the measurability. This
allows us to prove that the solution to the random differential equation generates a
random dynamical system. The existence result of the attractor can be carried over
to the random case.

Lorenz Pfeifroth:
About the uniqueness of the mixing measure for a random walk
in a random environment on the integers

In this talk we will consider a Random walk in a random environment on Z. First,
I introduce the correct model. Then we have a look on the mixing measure of a
random walk in a random environment and prove that under a certain condition
this measuere is unique. In the last part of this talk I give an example that if the
condition fails I can construct two mixing measures for the same random walk in
a random environment. About the uniqueness of the mixing measure for a random
walk in a random environment on the integers.

Patrick Schmid:
Brownian motion in a truncated Weyl chamber

Joint work with Wolfgang König.
We examine the non-exit probability of a multidimensional Brownian motion from a
growing truncated Weyl chamber. Different regimes are identified according to the
growth speed, ranging from polynomial decay over stretched-exponential to expo-
nential decay. Furthermore we derive associated large deviation principles for the
empirical measure of the properly rescaled and transformed Brownian motion as the
dimension grows to infinity. Our main tool is an explicit eigenvalue expansion for
the transition probabilities before exiting the truncated Weyl chamber.

Adrian Schnitzler:
Time Correlations for the Parabolic Anderson Model

We consider asymptotics of time correlations for the parabolic Anderson model, i.e.
the Cauchy problem for the heat equation on the lattice with a random potential.
We show how to derive exact formulae for the case of a potential that consists of an
i.i.d. field of nonnegative random variables with tails that decay more slowly than
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those of a double-exponential distribution. Furthermore, we apply these results to
investigate intermittency and ageing properties of the model.

Philipp Thomann:
Numerical Simulations of Random Walks in Random Environ-
ments

Random Walks in Random Environments are a well established area of Probability
Theory. Even though they are not difficult to treat numerically there seems to be
quite few published knowledge. We use the new Schroedinger Cluster in Zurich to
calculate exit probabilities of lattices up to side length 215 therefore solving linear
equations with over a billion of unknowns. We use this numerical evidence to get
some insight into theoretical conjectures.

Hella Timmermann:
Sequential testing of gradual changes in the drift of a stochastic
process

I will describe and analyze some sequential monitoring procedures for detecting a
gradual change in the drift parameter of a general stochastic process satisfying a cer-
tain (weak) invariance principle. It is shown that the tests can be constructed such
that the false alarm rate attains a prescribed level and that the tests have asymptotic
power one. A more precise analysis of the procedures under the alternative proves
that the stopping times, suitably normalized, have a standard normal limit distribu-
tion. A few results from a small simulation study are also presented in order to give
an idea of the finite sample behavior of the suggested procedures.

Laura Vinckenbosch:
Pushing a Brownian particle out of an interval subject to a
switching cost

The game we are considering is to force a Brownian particle out of the interval [0, 1] as
quickly as possible using two opposite constant forces, either upwards or downwards.
The player is allowed to change between the two forces at any time, subject to a time
penalty c > 0.
More precisely, we consider a stochastic control model where the state of the system
is driven by the stochastic differential equation

dXA
t = Atµdt+ dBt,

where µ > 0, (Bt) is a Brownian motion and (At) is the control process. We require
the control to be piecewise constant and to take values in {±1}. The value function
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of the game is then defined by

V c(x, a) = inf
A

Ex,a
(
τA + cNτA(A)

)
where τA = inf{t ≥ 0 : XA

t /∈ ]0, 1[} is the exit time of the controlled process and

Nt(A) = ]{s ∈ (0, t] : As− 6= As}

is the number of times the drift is changed up to time t. We compute this function and
exhibit the optimal strategy (A∗t ) as a function of the switching cost c. The method
of proof makes use of a free boundary problem and the principle of smooth-fit, as
well as a local time-space formula.
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