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Robust pricing and informed investors

A central problem in robust finance is to prove

sup
Q∈M

EQ [Φ] = inf

{
c ∈ R :

Φ can be super-hedged starting
from initial capital c , M-q.s.

}

in various settings, where M is a suitable set of martingale measures.

Beiglböck, Henry-Labordère, Penkner (2013); Galichon, Henry-Labordère,
Touzi (2014); Acciaio, Beiglböck, Penkner, Schachermayer (2013);
Bouchard, Nutz (2013); Dolinsky, Soner (2014a,2014b); Beiglböck, Cox,
Huesmann (2014); Biagini, Bouchard, Kardaras, Nutz (2014); Beiglböck,
Nutz, Touzi (2015); Guo, Tan, Touzi (2015); Hou, Ob lój (2015); etc.
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A central problem in robust finance is to prove

sup
Q∈M

EQ [Φ] = inf

{
c ∈ R :

Φ can be super-hedged starting
from initial capital c , M-q.s.

}

in various settings, where M is a suitable set of martingale measures.

Observe: M =M(F) depends on the underlying filtration, as does the
set of available trading strategies.

Question:

I What can be said about the relation between the super-hedging
price and the choice of filtration?

I When passing from F to G ⊃ F, which measures Q ∈M(F) are still
relevant for pricing?
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Setup

I (Ω,F,F): Filtered measurable space with F = (Ft)0≤t≤T
right-continuous.

Later we will consider other filtrations.

I P: Any collection of probability measures on FT such that
P ∈ P, Q� P implies Q ∈ P.

I S = (St)0≤t≤T : càdlàg F-adapted discounted price process of an
asset available for dynamic trading. We assume S0 = 0.

I Ψ = {ψ1, . . . , ψn}: a set of FT -measurable payoffs available for
static (buy-and-hold) trading. Today’s price of ψi is zero for each i .

I A risk-free asset with price ≡ 1 is available for dynamic trading.
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Martingale measures and extreme points

Calibrated L2-martingale measures:

M(F) =

{
Q ∈ P :

S is an F-martingale, EQ[S2
T ] <∞,

EQ[ψi | F0] = 0, EQ[ψ2
i ] <∞ for all i

}

Extreme points: Q ∈M(F) is called an extreme point if

Q = λQ1 + (1− λ)Q2

for Qi ∈M(F), λ ∈ (0, 1)
=⇒ Q1 = Q2 = Q

Denote
extM(F) = {all extreme points of M(F)}

Note: Purely algebraic condition. Independent of any topology we may
put on the space of probability measures.
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Martingale measures and extreme points

Why do we care about extreme points?

I Consider an FT -measurable payoff Φ.

I Under suitable continuity and compactness assumptions,

sup
Q∈M(F)

EQ[Φ] = sup
Q∈ extM(F)

EQ[Φ]
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Martingale measures and extreme points

Why do we care about extreme points?

I Consider an FT -measurable payoff Φ.

I Under suitable continuity and compactness assumptions,

sup
Q∈M(F)

EQ[Φ] = sup
Q∈ extM(F)

EQ[Φ]

Furthermore:

I In the classical case Ψ = ∅ (no static claims), there is a well-known
connection between extreme points and completeness.

I An analogous connection exists in the semi-static case.
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Semi-static completeness and the

Jacod-Yor theorem
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Semi-static completeness and the Jacod-Yor theorem

I Suppose Ψ = ∅ (no static claims).

I For Q ∈M(F), the classical Jacod-Yor (1977) theorem yields

Q ∈ extM(F) ⇐⇒ L2(FT ,Q) = {x + (H · S)T : H ∈ L2(S)}.

I This result can be generalized to the semi-static case.
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Semi-static completeness and the Jacod-Yor theorem

Fix Q ∈M(F)

Definition. We say that semi-static completeness (un-
der (Q,F)) holds if any X ∈ L2(FT ) can be represented as

X = x + a1ψ1 + · · ·+ anψn + (H · S)T

for some x , a1, . . . , an ∈ R and H ∈ L2(S).

Theorem (semi-static Jacod-Yor theorem):

Q ∈ extM(F) ⇐⇒ semi-static completeness holds
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Semi-static completeness and the Jacod-Yor theorem

Remarks.

I No topological hypotheses on M(F), such as compactness, needed.

I The proof is easy: Define

W =

{
a0 +

n∑
i=1

aiψi + (H · S)T : ai ∈ R, H ∈ L2(S)

}

I Theorem of Douglas (1964) yields W dense in L1

I Hahn-Banach + theorem of Yor (1978) + induction yields

W
L1

∩ L2 = W
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Semi-static completeness and the Jacod-Yor theorem

Remarks.

I Infinitely many ψi would allow strategies like

f (ST ) + (H · S)T

where f ∈ L2(µ) for a fixed (by the market) marginal law ST ∼ µ.

I Our inductive proof does not work for such a setup. In fact:

Theorem (Acciaio-L.-Schachermayer, 2016). There exists
a stochastic basis (Ω,F ,F,P) with a Brownian motion B and
a stopping time T such that S := BT is bounded and

W =
{
f (ST ) + (H · S)T : f ∈ L2(µ), H ∈ L2(S)

}
is not closed in L2.
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Semi-static completeness and the Jacod-Yor theorem

Can we say more?

I In the classical case (Ψ = ∅), completeness is a strong property —
but still allows for many “unstructured” models.

I For instance, completeness holds if F is generated by S , and S is a
strong solution to a possibly path-dependent SDE of the form

dSt = σ(t;Su : u ≤ t)dWt

where W is a Brownian motion and σ is never zero.

Question: Should we expect additional structure in the semi-static case?

Notation: For any martingale N, let

S(N) = {H · N : H ∈ L2(N)}.

This is a closed subspace of H2.
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A curious consequence of completeness

For the next three slides: Ψ = {ψ}, Q ∈ extM(F), S is continuous

I Let K · S be the orthogonal projection of EQ[ψ | Ft ] onto S(S) and
define the unhedgeable part of ψ:

Mt = EQ[ψ | Ft ]− (K · S)t

I Then H ·M ⊥ S(S) for any H ∈ L2(M)

I By semi-static completeness,

H2 = span{1} ⊕ span{M} ⊕ S(S)

I Thus,
S(M) = span{M},

which is one-dimensional!
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A curious consequence of completeness

Consequence:

I for some t∗ ∈ (0,T ] and some Q-atom B of Ft∗−,

M = MT1B×[t∗,T ]

I By continuity of S ,

St = S0 on B for t ≤ t∗
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A curious consequence of completeness

Consequence: M = MT1B×[t∗,T ] St = S0 on B for t ≤ t∗

By semi-static completeness,

1B = EQ
[
Q(B) + aMT + (H · S)T | Ft∗−

]
= Q(B)1B + (H · S)t∗1B

= Q(B)1B

Hence Q(B) = 1. From this we deduce:

0 t∗ T

St

0 t∗ T

Mt
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Semi-static completeness for

continuous price processes
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Semi-static completeness for continuous price processes

Fix Q ∈M(F)

For A ∈ FT , let t(A) be the first time A is observed:

t(A) = inf{t ∈ [0,T ] : A ∈ Ft}

Definition (atomic tree). An atomic tree is finite collection T
of events in FT such that:

I every A ∈ T is a non-null Q-atom of Ft(A);

I for every A,A′ ∈ T with t(A) < t(A′), either A ⊇ A′ or
A ∩ A′ = ∅;

I for every A,A′ ∈ T with A ) A′, Q(A \ A′) > 0.

I leaf: A ∈ T such that there is no A′ ∈ T with A′ ( A.

I dim T = number of leaves in T.

I T is full if its leaves form a partition of Ω (up to nullsets), and if A
is an atom of Ft(A′)− whenever A′ is a child of A.

18/29
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Semi-static completeness for continuous price processes

Ω

A1

A2

A3

A4

A5

0 t(A5) t(A3) t(A1) T
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Semi-static completeness for continuous price processes

Remarks.

I σ(T) is well-defined. We have σ(T) = Fζ(T) where the stopping
time ζ(T) is the “end” of the tree:

ζ(T) =
∑

A∈T is a leaf

t(A)1A.

I If T is full, then dim T = dim L2(σ(T)).

Definition. S is complete on A× [t,T ] for given t ∈ [0,T ] and
A ∈ Ft if any X ∈ L2(FT ) can be dynamically replicated there:

X = x + (H · S)T on A

for some x ∈ R and some H ∈ L2(S) with H = 0 on [[0, t]].
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Semi-static completeness for continuous price processes

Recall: Q ∈M(F) is fixed.

Theorem. Assume S is continuous. Semi-static completeness
holds if and only if there exists a full atomic tree T such that

1. S is complete on A× [t(A),T ] for each leaf A ∈ T,

2. span
{
EQ[ψi | σ(T)] : i = 1, . . . , n

}
is (dim T− 1)-dim.

In this case, S is constant on [[0, ζ(T)]] and

L2(FT ) = span(1, ψ1, . . . , ψn) + S(S) = L2(σ(T))⊕ S(S).

Remark: ψi = EQ[ψi | σ(T)] + (H i · S)T for some H i .
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Semi-static completeness for continuous price processes

Ω

0 t1 t2 t3 T

The filtration F under Q ∈ extM(F). Each set of lines emanating from
the leaves of T corresponds to a dynamically complete stock price model. 22/29



Pricing by informed investors
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Pricing by informed investors

Setup:

I S is continuous

I G = (Gt)0≤t≤T : Right-continuous filtration with

Ft ⊆ Gt , 0 ≤ t ≤ T .

I Consider payoff Φ. Robust super-hedging price of informed agent:

sup
Q∈M(G)

EQ[Φ]

I As before, we wish to study extM(G).

Question: How are extM(G) and extM(F) related?
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Pricing by informed investors

Specification of G:

I Progressive enlargement of G with H:

Gt =
⋂
u>t

Fu ∨Hu.

Smallest right-continuous filtration that contains both F and H.

I H generated by a collection of single-jump processes X1[[τ,T ]], where
X is a r.v. and τ is a random time, i.e. [0,T ] ∪ {∞}-valued r.v.

I The classical progressive enlargement with random times as well as
initial enlargement with random variables are special cases.
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Pricing by informed investors

Let σ be the first time S starts moving:

σ = inf{t ∈ [0,T ] : St 6= 0}.

Theorem. Let H be generated by finitely many Xk1[[τk ,T ]]. Assume
τk > σ on {0 < τk <∞} for all k . Then

extM(G) = {Q : F and G coincide under Q, and Q ∈ extM(F)} .

This restricts Q rather severely

I Example: If τ = sup{t ∈ [0,T ] : St = 1}, then must have:

I Either Q(S < 1) = 1;
I Or Q(S = Sρ) = 1 with ρ = inf{t : St = 1}.

I Q should also price the ψi correctly.

I It can of course happen that M(G) = ∅.
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Pricing by informed investors

Extensions to infinitely many Xi1[[τi ,∞[[ are possible:

Theorem. Let H be generated by countably many Xk1[[τk ,T ]]. As-
sume τk > σ on {0 < τk < ∞} ∀k , and |{k : τk(ω) ≤ T}| < ∞
for every ω. Then

extM(G) = {Q : F and G coincide under Q, and Q ∈ extM(F)} .

Remark. Some condition on H is needed: Suppose

I G is generated by Brownian motion W

I F is generated by St =
∫ t

0
sgn(Ws)dWs

I Then completeness holds in both F and G, but they do not coincide.
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Conclusions

I Motivated by robust super-hedging price computation, we study
extremal calibrated martingale measures

I We obtain:

I Semi-static version of the Jacod-Yor theorem.

I Description of semi-statically complete models in terms of
dynamically complete models glued together by means of an
atomic tree.

I Application to robust pricing by informed agents: under
structural assumptions, informed agents price using only those
models that render the additional information uninformative.
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Thank you!
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