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OVERVIEW: Finding conditions under which the Jeulin-Yor
enlargement formula can be compensated by the Girsanov
formula of an equivalent change of probability measure.

The Jeulin-Yor formula, initially proved with projection computations, has
long been supposed to be affiliated with the Girsanov formula.

Yoeurp (1985) gives a formal proof that the Jeulin-Yor formula can be
obtained by the Girsanov formula.

Actually, according to Song (1987, 2013), not only the Jeulin-Yor formula,
but most of the formulas in enlargement of filtration, can be retrieved by the
so-called local solution method, i.e. by the Girsanov formula.

However, the methodologies of these papers are not applicable to the study
of the above problem, notably because they operate in an enlarged probability
space and with a non equivalent probability measure.

Hence, a new approach is required for that problem.
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Financial motivation

Intensity models of counterparty credit risk with strong (adverse) dependence
between the credit risk of a counterparty and the underlying market exposure

Wrong way and gap risk modeling

Frailty and contagion in the case of a credit derivatives exposure

As opposed to factor dependence only in standard Cox (doubly stochastic)
models

When applied to a defaultable asset, a basic no-arbitrage pricing formula
explicitly involves the default time θ, whereas it’s only the intensity of θ that
is observable (through calibration to market data).

To tackle this issue, Duffie, Schroder, and Skiadas (1996) have established a
defaultable asset pricing formula stated in terms of the intensity process
(assumed to exist) of θ.

From a financial interpretation point of view, their intensity-based formula also
shows that credit risk can be valued as a shift in interest rates.
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However, the tractability of the Duffie, Schroder, and Skiadas (1996) formula
is subject to a technical no-jump condition at time θ.

In a progressive enlargement of filtration setup satisfying the restrictive
immersion assumption, this no-jump condition is satisfied (cf. Bielecki,
Jeanblanc, and Rutkowski (2009))

The present work extends the progressive enlargement pricing formula from
the restrictive immersion setup to the much broader invariance time setup.
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Standing notation

Y τ = Y1[0,τ) + Yτ1[τ,+∞)

Y τ− = Y1[0,τ) + Yτ−1[τ,+∞) (for any left-limited process Y )

SI(G,Q),MI(G,Q) Semimartingales, local martingales on a predictable
interval I (= R+ by default)

Y is a semimartingale (local martingale) , Z = L � Y on I means that

Y τn is a semimartingale (local martingale), Z τn = L � (Y τn) on R+

for each τn in at least one (i.e. any) nondecreasing sequence of stopping times
such that ∪[0, τn] = I.
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BSDEs of counterparty risk

Assume

a counterparty default time θ totally inaccessible with G compensator γ � λ,

a recovery (exposure at default) of the form 1{θ<T}Gθ, where T > 0 is a
fixed time horizon (maturity) and G is a G predictable process,

a P(G)⊗ B(R) running (funding) cost gt(ω, x)

Then the counterparty risk BSDE, which prices the funding cost g until θ and the
exposure at default Gθ at θ (if < T ), can be formulated as the following BSDE
for Z ∈ S(G,Q):

ZT−1{T≤θ} = 0,

Z θ∧T−
t +

∫ t∧θ∧T
0

(gs(Zs−) + (Gs − Zs−)γs) ds ∈M(G,Q).

(1)

Extendable to BSDEs with G = Gt(x , u) , g = gt(x , u), where additional
arguments u correspond to integrands in a stochastic integral representation
of the martingale part of Z .

Duffie et al. (1996)’s solution: forget θ in (1) (or “send it to infinity”), obtain a
solution Z̄ of the resulting (simpler) equation and then set Z = Z̄ θ−

Only yields a solution Z to (1) if Z̄ does not jump at θ
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Reduction of filtration

Let θ be a G stopping time (not necessarily with an intensity), J = 1[0,θ) and let F
be a subfiltration of G (both satisfying the usual conditions).

Condition (B)

For any G predictable process L, there exists an F predictable process L′, which
we call the F predictable reduction of L, such that L′ coincides with L until θ, i.e.
J−L′ = J−L.

Lemma 1 (“If” part = Lemma 1 in Jeulin and Yor (1978))

The filtration F satisfies the condition (B) if and only if G is a subfiltration of
F = (F t)t∈R+ , where

F t = {B ∈ A : ∃A ∈ Ft ,A ∩ {t < θ} = B ∩ {t < θ}}.
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Even if the filtration F was introduced in Jeulin and Yor (1978) or Chapitre
XX in Dellacherie, Maisonneuve, and Meyer (1992) for a classical progressive
enlargement setting, where G is given as F progressively enlarged by θ, their
proofs depend only on the relation G ⊆ F.
Hence, in view of Lemma 1, all the classical results of progressive
enlargement of filtration: “key lemma of credit risk”, existence of F optional
reductions (also denoted ′) coinciding with G optional processes before θ,
etc., are valid under (B).

In particular, let S = oJ represent the F Azéma supermartingale of θ, with
Doob-Meyer decomposition S = Q− D. The Jeulin-Yor theorem says that for
any bounded (F,Q) martingale X , the process

X θ− − J−
S−

� 〈S ,X〉(F,Q)

is a G uniformly integrable martingale.

→ any F semimartingale stopped at θ is G semimartingale
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The next result addresses the “inverse problem” of knowing when an F
semimartingale X is such that X θ− is a G local martingale.

Lemma 2 (Song (2014))

If Y ∈M(G,Q) with ∆θY = 0, then Y ′ ∈ S{S−>0}(F,Q) and
S− � Y ′ + [S,Y ′] ∈M{S−>0}(F,Q).

Conversely, for any X ∈ S{S−>0}(F,Q) such that

S− � X + [S,X ] ∈M{S−>0}(F,Q), then X θ− ∈M(G,Q).

The Jeulin formula and Lemma 2 can be viewed as progressive enlargement
formal analogs of the predictable and optional Girsanov measure change
formulas, the Azéma supermartingale S playing the role of the measure
change density from the probability measure Q to some Q absolutely
continuous probability measure P

Predictable Girsanov formula
“For any bounded X ∈M(F,Q), X − 1

S−
� 〈S ,X〉(F,Q) ∈M(F,P)”

Optional Girsanov formula
“X ∈M(F,P) iff X ∈ S{S−>0}(F,Q) and S− � X + [S,X ] ∈M{S−>0}(F,Q)”

These analogies can be made precise by representing the Azéma
supermartingale S as a subdensity
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Lemma 3 (Song (2014))

One has the following unique predictable multiplicative decomposition of the
Azéma supermartingale S on {pS > 0}:

S = S0E(− 1

S−
� D)E(

1
pS

� Q).

The following result is classical:

Lemma 4

Assuming ST > 0, two F optional processes that coincide before θ coincide on
[0,T ], hence F optional reductions are uniquely defined on [0,T ].
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Reduced BSDE

For any càdlàg process X on R+ (or any predictable set of interval type), we
write

X = X + (g ′· (X−) + (G ′ − X−)γ′) � λ.

Assuming the BSDE (1) has a solution Z , let U = Z ′. The martingale term
in the BSDE (1) satisfies

Z θ∧T−
t +

∫ t∧θ∧T

0

(
gs(Zs−) + (Gs − Zs−)

)
γsds

= Uθ∧T−
t +

∫ t∧θ∧T

0

(
g ′s(Us−) + (G ′s − Us−)γ′s

)
ds

= U
θ∧T−
t = (U

T−
)θ−t .

This suggests to solve the BSDE (1) with Lemma 2.
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Namely, we consider the following BSDE for U ∈ S{S−>0}(F,Q):

UT−ST− = 0 , S− � U
T−

+ [S,U
T−

] ∈M{S−>0}(F,Q). (2)

Proposition 1

The BSDEs (1) and (2) are equivalent. Specifically:
• If Z is a solution to the BSDE (1), then U = Z ′ is a solution to the BSDE (2).
• Conversely, if U is a solution to the BSDE (2), then Z = Uθ− is a solution to
the BSDE (1).

“Immersion case” where S is continuous and nondecreasing: The martingale

condition in (2) reduces to U
T− ∈M{S−>0}(F,Q).
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Alternatively, suppose

Condition (A)

There exists a probability measure P equivalent to Q on FT such that, for any
(F,P) local martingale P, Pθ− is a (G,Q) local martingale on [0,T ].

Then any solution U ∈ S{S−>0}(F,P) to

UT−ST− = 0 , U
T−
t ∈M{S−>0}(F,P) (3)

yields a solution Z = Uθ− to (1).

Equivalence, under the condition (A), between (3) and (1)?

Strength of the condition (A)??
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Condition (A)

↔ The measure change “compensates” the reduction of filtration

The condition (A) is nonstandard in the enlargement of filtration literature.

On top of the fact that stopping P at (θ−) rather than at θ in the condition
(A) appears naturally in the above BSDE application, there are (at least) two
“a priori” reasons for it:

First, as visible in the original proof of the Jeulin-Yor formula (Theorem 1 in

Jeulin and Yor (1978)), the bracket 〈S,P〉(F,Q) is intrinsically linked with Pθ−,
rather than with Pθ.
Second, by optional reduction, Pθ− is uniquely determined by the information
of F, which is not the case of Pθ.

Definition 1

If the condition (A) is satisfied, we call the random time θ an invariance time and
the related probability measure P an invariance probability measure.
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Given F ⊂ G, let

S = oJ denote the Azéma supermartingale of θ, i.e. St = Q(θ > t |Ft),
t > 0,

S = Q− D denote the (F,Q) canonical Doob-Meyer decomposition of S;

q = E(q) denote the (F,Q) martingale density function dP
dQ

∣∣∣
Ft∧T

, t ∈ R+.

Theorem 1

Assuming the condition (B) on F and given a constant T > 0:
(i) A probability measure P equivalent to Q on FT is an invariance probability
measure if and only if one of the following two equivalent conditions holds:

q = q0E( 1
pS � Q) on {pS > 0} ∩ [0,T ] (4)

pS � q = Q− Q0 on [0,T ] (5)

(ii) The condition (A) holds if and only if

E(1{pS>0}
1
pS � Q) is a positive (F,Q) true martingale on [0,T ]. (6)

In this case, an invariance probability measure P is defined by the Q density
E(1{pS>0}

1
pS � Q)T .
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Proof. (ii) is integrability + (i), which is proven as follows.

The invariance probability measure property for P says that

∀P ∈M(F,P), (Pθ−)T = (PT )θ− ∈M(G,Q).

By Lemma 2, this property holds if and only if

∀P ∈M(F,P), S− � PT + [S,PT ] ∈M{S−>0}(F,Q).

Note that M(F,P) = {Qp; Q ∈M(F,Q)}, where p = 1
q .

By IP and Yoeurp’s lemma, the above property is then reduced to

∀Q ∈M(F,Q), QT (pTS + pT
− � D) ∈M{S−>0}(F,Q),

i.e. (by density)

pTS + pT
− � D = p0S0 on {S− > 0}, (7)

i.e. (noting that pS + p− � D = pS + (pS)−
1

S−
� D)

pS = p0S0E(− 1

S−
� D) on {S− > 0} ∩ [0,T ]. (8)
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Lemma 5 (Cf. Jacod (1979))

We have
{S− > 0} \ {pS > 0} = [η], (9)

where

η = inf{s > 0; Ss− = ∆sD > 0} = inf{s ∈ {S− > 0}; E(− 1

S−
� D)s = 0}. (10)

Hence, (8) is trivially satisfied at time η (whenever finite), so that (8) is
equivalent to the analogous identity on the “smaller” set {pS > 0} ∩ [0,T ],
where it reduces, via the multiplicative decomposition of S in Lemma 3, to
(4).

The equivalence between (4) and (5) is a question of integrability.
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Despite the nature of the problem addressed, neither the Girsanov formula
nor the Jeulin-Yor formula is involved in the above proof of Theorem 1: the
use of Lemmas 2 and 3 make the use of the Girsanov and the Jeulin-Yor
formulas unnecessary.

However, in so doing, we fail to explain how a Girsanov drift can compensate
the Jeulin-Yor drift.

Given the importance of that matter, we provide in the paper an alternative
(longer but “direct”) proof of Theorem 1, starting with

(P − q � [p,P])θ− − J−
1

S−
� 〈Q,P − q � [p,P]〉

= Pθ− −
(
Jq � [p,P] + J−

1

S−
� 〈Q,P − q � [p,P]〉

)
∈M[0,T ](G,Q),

for any P ∈M(F,P)

Then project, use density arguments, etc.
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Proposition 2

If F = G and θ has an intensity, then θ cannot be an invariance time unless
Q(θ ≤ T ) = 1.

Given F ⊆ G satisfying (B), P = Q is an invariance probability measure for all
T > 0 if and only if Q = S0.

Proof. 1) In the case where F = G and θ has an intensity, we have

S = J , D is continuous , pS = J−, Q = J + D and Q0 = S0 = 1.

Hence, using the stochastic exponential formula

E(1{pS>0}
1
pS

� Q)t = E(Q)t = eQt−Q0

∏
s≤t

(1 + ∆sQ)e−∆sQ = eJt+Dt−1Jt = eDt Jt ,

which vanishes at θ on {θ ≤ T}. Therefore, in view of Theorem 1, the condition
(A) cannot hold on [0,T ] unless Q(θ ≤ T ) = 0.
2) In the case where P = Q, we have q = q0 on [0,T ], i.e. q = 0 on [0,T ].
Hence, in view of Theorem 1 and (5), P is an invariance probability measure for all
T > 0 if and only if Q is constant on [0,T ].
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Example 1

Let G be the augmentation of the natural filtration of the jump process at an
exponential time θ relative to some probability measure Q.

For F = G (so that the condition (B) holds trivially), Proposition 2 1) shows
that the condition (A) does not hold. This can also be recovered directly
from the definitions. In fact, for any probability measure P equivalent to Q
on FT , each (F,P) local martingale P is necessarily a (F,P) stochastic
integral against the compensated jump process. Thus, the process Pθ− is
absolutely continuous, hence it is not a (G,Q) local martingale unless it is
constant. Therefore, P is not an invariance probability measure.

For F trivial, any G predictable process coincides with a Borel function before
θ, hence the condition (B) is satisfied. The constants are the only
(F = {∅,Ω},Q) local martingales, so that P = Q is an invariance probability
measure and θ is an invariance time. Consistent with this conclusion in
regard of Theorem 1, S is deterministic (equal to the survival function of θ),
Q is constant and q ≡ 1, hence (4) is satisfied.
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Assume that 1{pS>0}
1
pS is Q integrable on [0,T ] with respect to (F,Q).

Let ς = inf{s > 0; Ss = 0}.

Theorem 2

E(1{pS>0}
1
pS � Q) > 0 on [0,T ] ⇐⇒ pSς = 0 on {ς ≤ T} ⇐⇒ ς{ς≤T} is a

predictable stopping time.

Theorem 3

Under the condition (A), if θ has an intensity, then

{S− > 0} = {pS > 0} = {S > 0} (11)

and a process P is an (F,P) local martingale on {S− > 0} ∩ [0,T ] if and only if
S− � P + [S,P] is an (F,Q) local martingale on {S− > 0} ∩ [0,T ].

This can be used to establish that, under the assumptions of Theorem 3,

the BSDEs (3) and (1) are equivalent .
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LetM◦(G,Q) denote the set of the (G,Q) local martingales on [0, θ ∧T ] without
jump at θ and letM(F,P) denote the set of the (F,P) local martingales on [0,T ].

Theorem 4

Under the condition (A), if θ has an intensity, then we have the following
bijections inverse to each other:

M(F,P)
·θ−−→←−
·′
M◦(G,Q),

where ·′ stands for the F optional reduction.

Proof. For any M ∈M◦(G,Q), Lemma 2 yields that M ′ is an (F,Q)
semimartingale on [0,T ] such that S−�M ′ + [S,M ′] is an (F,Q) local martingale
on [0,T ]. Therefore, Theorem 3 yields that M ′ ∈M(F,P). Hence the condition
(A) implies that M = (M ′)θ− ∈M◦(G,Q). Moreover, M and M coincide before θ
and don’t jump at θ, hence they agree on [0, θ ∧ T ].
Conversely, for any P ∈M(F,P), the condition (A) yields that Pθ− ∈M◦(G,Q).
Hence, the argument used for M ′ above shows that P = (Pθ−)′ ∈M(F,P). In
addition, P = P before θ, hence on [0,T ] by Lemma 4.
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We suppose that the conditions (B) and (A) are satisfied on [0,T ], that θ > 0 is a
G totally inaccessible stopping time with compensator given as dvt = γtdt, for
some (G,Q) intensity process γ, and that θ has a positive Azéma supermartingale
on [0,T ], i.e. ST > 0. We write Γ =

∫ ·
0
γ′sds.

We denote the P expectation by Ẽ.

Theorem 5
For any F stopping time σ ≤ T and nonnegative Fσ measurable random variable
χ,

E[χ1{σ<θ}] = Ẽ[χe−Γσ ].

For any nonnegative F predictable process K ,

E[Kθ1{θ≤T}] = Ẽ[

∫ T

0

Kse−Γsγ′s ds].
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Connection with Collin-Dufresne et al. (2004)

Assume that θ satisfies all the conditions in Collin-Dufresne et al. (2004,
Theorem 1), i.e. is a positive time with absolutely continuous Q compensator

v =
∫ ·∧θ

0
1

Ss−
dDs (cf. Jeulin (1980)) on [0, θ], such that evθ is Q integrable.

Under the conditions, Collin-Dufresne et al. (2004) introduce the “default
pricing measure” P with the density process ev1[0,θ).

Since {θ ≤ T} has zero probability under P, Collin-Dufresne et al. (2004) are
able to propose a reinterpretation of the Duffie et al. (1996) formula under
P, exempt from no-jump condition.

However, P is not equivalent to Q, even under the classical immersion setup.

Theorem 6

Under the conditions of Collin-Dufresne et al. (2004, Theorem 1), assuming the
condition (B) and ST > 0, then θ is an invariance time and the corresponding
invariance probability measure P is the restriction to FT of the default pricing
measure P.

Proof. Projections, integrability and Theorem 2.
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Hence, under these conditions, the “right” pricing measure for defaultable
securities, in terms of which one obtains tractable pricing equations without
restrictive immersion or so conditions, is (essentially) the same for any
subfiltration F ⊆ G satisfying the condition (B).

Namely, it is the (restriction to FT of the) default pricing measure P in
Collin-Dufresne et al. (2004).

This is one more reason that justifies the “invariance” terminology.

Even though the default pricing measure P is not equivalent to Q, it can be
viewed as (the extension of) an equivalent martingale measure P, calling P a
martingale measure in view of its invariance property.

On top of making the connection with Collin-Dufresne et al. (2004),

Theorem 6 provides a mild and tractable invariance time sufficiency condition .
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Connection with pseudo-stopping times

This part gives examples which illustrate how the condition (A) can be
satisfied in cases where (F,P) martingales really jump at θ, as well as the
connection between the condition (A) and the notion of pseudo-stopping
time in Nikeghbali and Yor (2005).

Consider a (0,+∞) valued random time θ. It is an (F,Q) pseudo-stopping
time if and only if X θ is a (G,Q) uniformly integrable martingale for any
bounded F martingale X (cf. Nikeghbali and Yor (2005)).

Clearly, if a pseudo-stopping time θ avoids the F stopping times, then it is an
invariance time satisfying the condition (A) for any positive constant T , with
invariance probability measure P = Q.
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More generally, let A denote the F dual optional projection of 1[θ,∞).
Nikeghbali and Yor (2005) show that θ is a pseudo-stopping time if and only
if S = 1− A.

By comparison, Proposition 2 2) shows that P = Q is an invariance
probability measure for any positive constant T if and only if S = 1− D
(noting that S0 = 1 here, as θ > 0).

Both conditions coincide if and only if A = D.

We recall that in the case where θ is a G totally inaccessible stopping time,
A = D if and only if θ avoids the F stopping times. Hence, as soon as θ does
not have the avoidance property, we have two similar, but “orthogonal” in a
sense, characterizations.

The difference is due to the fact that a pseudo-stopping time is defined in
terms of stopping at θ, whereas invariance is defined in terms of stopping at
(θ−).

Having said this regarding the case where P = Q, we emphasize that, with
respect to a pseudo-stopping time that is defined with respect to the fixed
probability measure Q, the additional flexibility of invariance times lies in the
possibility to consider the martingale property under a changed measure P.

In fact, the pseudo-stopping time condition is very restrictive. By contrast
Theorem 6 shows that invariance times are the rule rather the exception.
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Example 2 (An invariance time intersecting F stopping times..)

For i = 1, 2, let µi > 0 be a finite F stopping time with bounded
compensator vi . Assuming µ2 > T , define θ = 1Aµ1 + 1Acµ2, which
intersects the F stopping times µi , for some A ∈ G∞ independent from F∞
such that α = Q(A) ∈ (0, 1).

On [0,T ], S = 1[0,µ1)α + 1[0,µ2)(1− α) , S− ≥ 1− α, and

v =
∫ ·∧θ

0
1

Ss−
dDs ≤ 1

1−αD is bounded. Therefore the conditions of Theorem

6 are fulfilled and θ is an invariance time.

Easy computations yield

A = (1[θ,∞))
o = 1[µ1,∞)α + 1[µ2,∞)(1− α) , A∞ ≡ 1,

so that, by application of Theorem 1 (3) in Nikeghbali and Yor (2005), θ is
also a pseudo-stopping time.
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Example 3 (..which is not a pseudo stopping time)

Now, to obtain an invariance time θ intersecting F stopping times without
being a pseudo-stopping time, one can set

θ = 1A1µ1 + 1A2µ2 + 1A3τ,

for a non pseudo-stopping time τ and a partition Ai , i = 1, 2, 3, independent
from F∞ and τ .

With αi = Q(Ai ) > 0, we have

A = (1[θ,∞))
o = α11[µ1,∞) + α21[µ2,∞) + α3(1[τ,∞))

o ,

where (1[τ,∞))
o
∞ 6= 1, hence A∞ 6= 1, with positive Q probability. so that, by

the converse part in the above mentioned theorem, θ is not a
pseudo-stopping time.

But the Azéma supermartingale of θ is given by

S = 1[0,µ1]α1 + 1[0,µ2]α2 +o (1[0,τ))α3 ≥ α2 on [0,T ].

Hence, the other computations above do not change, which shows that θ is
an invariance time.
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Counterparty risk on credit derivatives

Copula model of θ0, θ1, . . . , θn, where θ0 = θ corresponds to the default time
of the counterparty of a bank in credit derivatives on names 1, . . . , n

Counterparty risk computations: need make the model dynamic by
introduction of a suitable model filtration G
Can one separate the information that comes from θ0 from a reference
filtration F?

→ Reduction of filtration in this sense
Not unrelated with, but different from, filtration shrinkage, whereby Föllmer
and Protter (2011) project local martingales onto smaller filtrations

For applications, some kind of martingale invariance property is required, but
under minimal assumptions, so that the model stays as flexible

→ Invariance times
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Dynamic copula models

Dynamic Gaussian copula model

θ = θ0 is an invariance time
(A) achieved with P 6= Q and G equal to the classical progressive enlargement
of F by θ0

“wrong-way risk”

Dynamic Marshall-Olkin copula (common-shock) model

θ = θ0 is an invariance time
(A) achieved with P = Q but G greater than the classical progressive
enlargement of F by θ
“gap risk”
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ANNOUNCEMENT: Postdoc position

Starting as soon as possible and ending 31 December 2017.

The position will be based at Université d’Evry, near Paris, and will involve
interactions with the team of Ecole Polytechnique as well as with financial
practitioners.

Candidates willing to develop high-quality research on topics such as financial
imperfections, new market structures (central counterparties in particular)
and risk more generally are invited to apply.

A solid mathematical finance profile as well as a strong appeal and ability for
applications are expected. There are no teaching duties.

Gross salary range: e30,000 – e36,000 per annum.

Candidates holding a PhD (or near completion) should send their CV along
with the names of two referees, a research statement and two research papers
by email to stephane.crepey@univ-evry.fr. Referee letters should be sent
directly to the same email address.

The review of applications will continue until the position is filled.
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