Approximation

Ziel: Approximation der Funktion $f(x) = \sqrt{x}$ mit Polynomen (global und stückweise) **Experiment:** Abhängigkeit des Approximationsfehlers E(N) (in der Maximumnorm) von der Anzahl der Freiheitsgrade N

1. Globale Interpolation

Die Theorie besagt, dass sich der Approximationsfehler für hinreichend glatte Funktionen und hinreichend kleines Intervall verhält wie

$$E(N) = C10^{-\alpha N}$$
 bzw. $\log_{10} E(N) = \log_{10} C - \alpha N$ (1)

und für Funktionen mit reduzierter Glattheit wie

$$E(N) = CN^{-\alpha}$$
 bzw. $\log_{10} E(N) = \log_{10} C - \alpha \log_{10} N$. (2)

Ziel: Experimentelle Bestimmung von α und C.

In einem halb-logarithmischen Plot erhält man im Fall (1) eine Gerade mit Steigung α . Im Fall (2) erhält man in einem doppelt-logarithmischen Plot eine Gerade mit Steigung α . C ergibt sich jeweils als Schnittpunkt mit der y-Achse.

Programmparameter: n: Anzahl der Intervalle (hier n = 1), b: Polynomgrad (variiert hier)

(a) auf dem Intervall [0, 1]:

N	2	4	8	16	32
Fehler	2.5000e-1	1.0434e-1	5.6988e-2	3.4248e-2	2.1531e-2

Der doppelt-logarithmische Plot dieser Daten (siehe Abbildung 2, Farbe: rot) zeigt, dass sich der Fehler verhält wie

$$E(N) \approx 0.3 N^{-0.75}$$
.

(b) auf dem Intervall [0.25, 1]:

	N	2	4	8	16	32
I	Fehler	4.1667e-2	1.5258e-3	1.5455e-5	8.2310e-9	1.7945e-9

Der halb-logarithmische Plot dieser Daten (siehe Abbildung 3, Farbe: rot) zeigt, dass sich der Fehler verhält wie

$$E(N) \approx 0.04 \cdot 10^{-0.41N}$$
.

Beachte: Der Wert für N=32 ist vernachlässigt, da er in der Grössenordnung der Rechengenauigkeit liegt.

2. Globale Bestapproximation auf dem Intervall [0, 1]:

Die Theorie besagt, dass sich der Approximationsfehler wegen der reduzierten Glattheit wie in (2) verhält.

Programmparameter: n: Anzahl der Intervalle (hier n = 1), b: Polynomgrad (variiert hier)

N	2	4	8	16
Fehler	2.6667e-1	1.2698e-1	6.2745e-2	3.1279e-2

Der doppelt-logarithmische Plot dieser Daten (siehe Abbildung 2, Farbe: grün) bestätigt die Theorie und ergibt

$$E(N) \approx 0.5 \cdot N^{-1} \,.$$

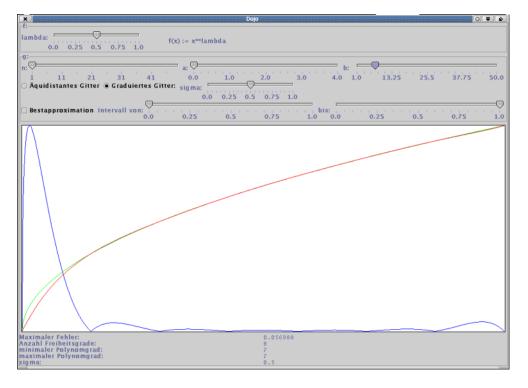


Abbildung 1: Bei der globalen Interpolation konzentriert sich der Fehler auf den Bereich reduzierter Glattheit

3. Stückweise Interpolation

Der Polynomgrad auf dem *i*-ten Intervall ist durch ai + b gegeben, bei i = 0 beginnend. Für a > 0 wächst er linear von links nach rechts.

(a) **Stückweise Interpolation** mit äquidistanten Stützstellen und festem Polynomgrad: Die Theorie besagt, dass sich der Approximationsfehler wegen der reduzierten Glattheit wie in (2) verhält.

Programmparameter: n: Anzahl der Intervalle (variiert hier), a: Steigung des Polynomgrads auf den Intervallen (hier a=0), b: Polynomgrad (hier b=1 bzw. b=2)

i. auf dem Intervall [0, 1]:

N	2	4	8	16	32	
Fehler	2.5000e-1	1.4434e-1	9.4490e-2	6.4550e-2	4.4879e-2	
N	3	5	9	17	33	65

ii. auf dem Intervall [0.25, 1]:

N	2	4	8	16	32	
Fehler	4.1667e-2	8.8834e-3	2.1703e-3	5.4333e-4	1.3629e-4	
N	3	5	9	17	33	65
Fehler	6.5319e-3	1.6374e-3	3.2955e-4	5.5385e-5	8.2025e-6	1.1237e-6

Der doppelt-logarithmische Plot dieser Daten (siehe Abbildung 2, Farben: blau, magenta, cyan, gelb) ergibt

$$E(N) = C \cdot N^{-\alpha}$$

mit $\alpha \approx 0.5, 0.5, 2, 2.75$ und $C \approx 0.27, 0.22, 0.15, 0.14$.

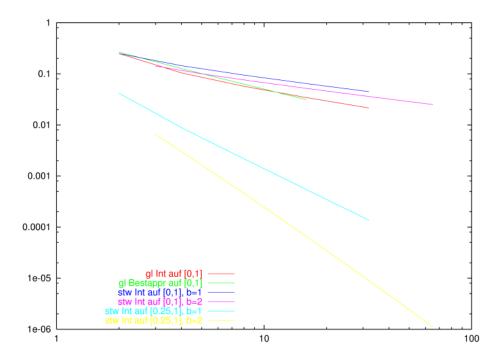


Abbildung 2: Doppelt-logarithmische Plots

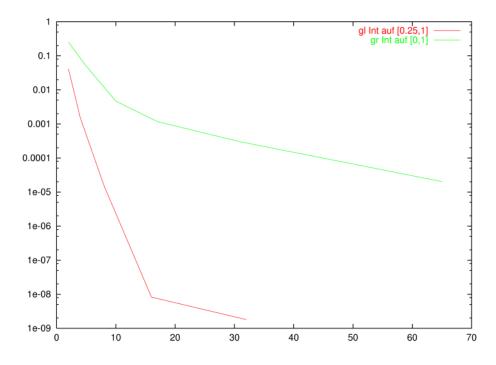


Abbildung 3: Halb-logarithmische Plots

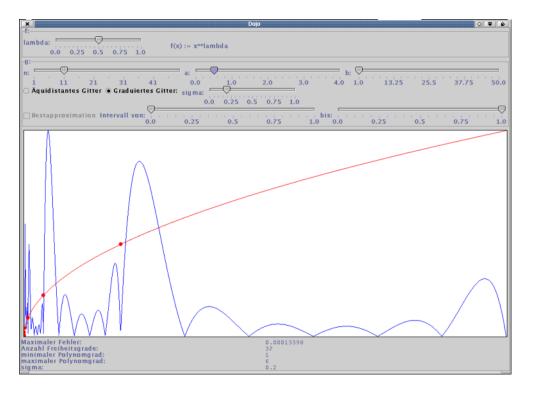


Abbildung 4: Der Fehler ist gleichmässig verteilt

(b) **Stückweise Interpolation** mit graduierten Stützstellen und variablem Polynomgrad auf dem Intervall [0, 1]:

Programmparameter: n: Anzahl der Intervalle (variiert hier), a: Steigung des Polynomgrads auf den Intervallen (hier a=0.5), b: minimaler Polynomgrad (hier b=1), σ : Verteilung der Intervalle (hier $\sigma=0.2$)

N	2	5	10	17	31	65
Fehler	2.5000e-1	4.9990e-2	4.6682e-3	1.1716e-3	2.9973e-4	2.0313e-5

Der halb-logarithmische Plot dieser Daten (siehe Abbildung 3, Farbe: grün) zeigt, dass sich der Fehler verhält wie

$$E(N) \approx 0.0035 \cdot 10^{-0.035N}$$
.

Trotz der reduzierten Glattheit der Funktion in x = 0 erhalten wir hier also eine exponentielle Konvergenz.

Wir können mit diesen Daten bestimmen, wie gross für die verschiedenen Arten der Approximation die minimale Anzahl Freiheitsgrade N_{ε} ist, um eine bestimmte Genauigkeit ε zu erhalten. Wir geben uns dazu eine Genauigkeit von $\varepsilon = 1\text{e-8}$ vor.

1. Globale Interpolation

(a) auf dem Intervall [0,1]:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : CN^{-\alpha} \le \varepsilon\} = \min\{N \in \mathbb{N} : 0.3N^{-0.75} \le 1\text{e-8}\} \approx 9.33\text{e+9}$$

(b) auf dem Intervall [0.25, 1]:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.04 \cdot 10^{-0.41N} \le 1\text{e-8}\} = 17$$

2. Globale Bestapproximation auf dem Intervall [0,1]:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.5N^{-1} \le 1\text{e-8}\} = 5\text{e+7}$$

- 3. Stückweise Interpolation
 - (a) mit äquidistanten Stützstellen und festem Polynomgrad:
 - i. auf dem Intervall [0,1] für b=1:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.27N^{-0.5} \le 1\text{e-8}\} \approx 7.3\text{e}+14$$

und für b = 2:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.22N^{-0.5} \le 1\text{e-8}\} \approx 4.85\text{e} + 14$$

ii. auf dem Intervall [0.25, 1] für b = 1:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.15N^{-2} \le 1\text{e-8}\} = 3873$$

und für b = 2:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.14N^{-2.75} \le 1\text{e-8}\} = 397$$

(b) mit graduierten Stützstellen und variablem Polynomgrad auf dem Intervall [0, 1]:

$$N_{\varepsilon} = \min\{N \in \mathbb{N} : 0.0035 \cdot 10^{-0.035N} \le 1\text{e-8}\} = 159$$