We summarize the group's main research output in form of presentations, workshops and posters (since 2018). The list here is representative of our work but by no means exhaustive.
For (peer-reviewed journal) publications with R. Furrer as (co-)author, see also publication summary, arXiv or ZORA. Software output is listed here.
Furrer, R. (2024) "Wie sieht meine Zukunft mit KI aus? (ein paar Gedanken)" at Kick-start your Career with AI, (Slides)
Laguna, J. M., Nyantakyi, E., Bhattacharyya, U., Blum, K., Delucchi, M., Klingebiel, F. K.-L., Labarile, M., Roggo, A., Weber, M. Radtke, T., Puhan, M. A. and Hincapié C. A. (2024). Is blinding in studies of manual soft tissue mobilisation of the back possible? A feasibility randomised controlled trial with Swiss graduate students. Chiropr. Man. Therap., 32, 3 (2024). https://doi.org/10.1186/s12998-023-00524-x
Hediger, M.: A note on maximal conditional entropy on Lebesgue spaces. https://arxiv.org/abs/2310.05546
Gericke, C, Kirabali, T, Flury, R, et al.: Early β-amyloid accumulation in the brain is associated with peripheral T cell alterations. Alzheimer's Dement. 2023; 1-21. https://doi.org/10.1002/alz.13136
Grüninger, S.: Stefano Franscini: The Statistician who Built a Nation out of Numbers. Significance, 20(4), 40–43, https://doi.org/10.1093/jrssig/qmad066
Grüninger, S.: Stefano Franscini - Mit seinen Statistiken schuf er die Schweiz. NZZ am Sonntag.
Grüninger, S.: Linke Frauen, Rechte Männer? Wie man mit Zahlen politische Gräben aushebt. Reatch-Blog.
Drude, N.I., Martinez-Gamboa, L., Danziger, M. et al. BMC Translational Medicine Communications Planning preclinical confirmatory multicenter trials to strengthen translation from basic to clinical research. 7, 24. doi.org/10.1186/s41231-022-00130-8
Hemri, S., Hewson, T., Gascón, E., Rajczak, J., Bhend, J., Spirig, C., Moret, L., and Liniger M. A.: How do ecPoint precipitation forecasts compare with postprocessed multi-model ensemble predictions over Switzerland? ECMWF Tech Memo, Reading, UK. https://www.ecmwf.int/node/20459
Furrer, R.: Asymptotic properties of truncated-ML estimators based on covariance approximations. Compstat 2022, Bologna, Slides
Lakatos, M., Lerch, S., Hemri, S., & Baran, S.: Comparison of multivariate post-processing methods using global ECMWF ensemble forecasts. arXiv preprint, https://arxiv.org/pdf/2206.10237
Hemri, S., Bhend, J., Spirig, C., Nerini, D., Moret, L., Furrer, R., and Liniger, M. A.: Postprocessing of gridded precipitation forecasts using conditional generative adversarial networks and quantile regression, EGU General Assembly 2022, Vienna, Austria, 23-27 May 2022, EGU22-5609, https://doi.org/10.5194/egusphere-egu22-5609
Hemri, S., Dai, Y., Bhend, J., Spirig, C., Nerini, D., Furrer, R., Moret, L. and Liniger, M. A.: Spatially coherent postprocessing of cloud cover and precipitation forecasts using generative adversarial networks, ECMWF Machine Learning Workshop, online, 29 March - 1 April 2022, Slides
Kessler, S. H., Cano Pardo, M. S. and Grüninger, S.: Statistiken schlüssig schildern: Was grafische Statistiken verständlich und vertrauenswürdig macht. European Journalism Observatory.
Grüninger, S.: Schiefer Rahmen: Wie Medienschaffende eine Initiative schönschreiben. Medienwoche.
Paganini, C. and Grüninger, S.: Das kritische Denken der Intellektuellen ist heute so öffentlich wie nie zuvor. Neue Zürcher Zeitung. Link.
Hemri, S., Bhend, J., Spirig, C., Furrer, R., Moret, L., and Liniger, M. A.: Spatially consistent postprocessing of precipitation over complex topography , EMS Annual Meeting 2021, online, 6–10 Sep 2021, EMS2021-129, https://doi.org/10.5194/ems2021-129.
Furrer, R: Computational Reproduciblilty, DACH Epidemiologietagung, 1. - 3. September 2021, Bern, CH. Slides.
Furrer, R, Flury, R. and Blasi. F. Spatial Statistics for Huge Datasets and Best Practices, useR! 2021 Conference, online, https://www.youtube.com/watch?v=gQEM-cpLrmg.
Cherneva, K., Furrer, R. and Tarigan, B.: SampleSizeR: calculate sample sizes within completely randomized design, doi: 10.17605/OSF.IO/NF9P2 [online]. Available at: http://shiny.math.uzh.ch/git/reinhard.furrer/SampleSizeR/
Tarigan, B.: Planning Experiments and Sample Size Calculations, StatsBrief.
Tarigan, B. and Cherneva, K.: Sample Size Calculation for one-way ANOVA with Repeated Measures in Time, StatsBrief.
Tarigan, B.: Comparing survival curves, StatsBrief.
Dai, Y. and Hemri, S.: Spatially coherent postprocessing of cloud cover forecasts using generative adversarial networks, EGU General Assembly 2021, online, 19-30 Apr 2021, EGU21-4374, https://doi.org/10.5194/egusphere-egu21-4374
Brunner, M. I., Furrer, R., and Gilleland, E.: Functional data clustering as a powerful tool to group streamflow regimes and flood hydrographs, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-375, https://doi.org/10.5194/egusphere-egu21-375.
Dambon, J. A.: Gaussian Process-based Spatially Varying Coefficient Models, Kernel Club, Colorado School of Mines, Presentation. Slides.
Grüninger, S.: Datenkompetenz: Wer Zahlen sprechen hört, sollte zum Arzt gehen. Medienwoche. Link
Grüninger, S.: Mehr Mut zur Anekdote: Wissenschaftskommunikation in der Zahlenfalle. Medienwoche.
Grüninger, S.: Corona: Die Toten von gestern entschuldigen nicht das Sterben von heute. Neue Zürcher Zeitung.
Grüninger, S.: Corona-Statistiken auf dem Prüfstand: Was uns Schweizer Medien servieren. Medienwoche.
Kessler, S.H., Jobin, A., Grüninger, S. and Georgi, F.: Was können wir aus Covid-19 Fake News über die Verbreitung von Fehlinformationen im Allgemeinen lernen? https://www.zora.uzh.ch/id/eprint/208133/1/studien_covid_19_2_auflage.pdf
Grüninger, S.: Es geht nicht um Tierversuche, es geht um ein Forschungsverbot. NZZ am Sonntag.
Furrer, R.: How to Peer Review. Presentation for the EpiBiostat PhD Program. Recorded presentation (uncut).
Dambon, J.: varycoef: Modeling Spatially Varying Coefficients. eRum 2020, virtual conference. Presentation. Slides.
Flury, R.: Identification of Dominant Features in Spatial Data. Research in progress talk. Slides.
Staudinger, M., Furrer, R. and Viviroli, D.: A framework to characterize flood events of defined return period ranges using functional boxplots, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU2020-9950, https://doi.org/10.5194/egusphere-egu2020-9950.
Dambon, J. A., Fahrländer, S. S., Karlen, S., Lehner, M., Schlesinger, J., Sigrist, F., Zimmermann, A.: Examining the Vintage Effect in Hedonic Pricing using Spatially Varying Coefficients Models: A Case Study of Single-Family Houses in the Canton of Zurich, Preprint, ResearchGate.
Dambon, J. A.: organization and chairing of invited topic-contributed session “Advances in Disease Mapping” at Joint Statistical Meetings 2020, virtual conference, Session Info.
Grüninger, S.: Statistiken sollten Erkenntnisse schaffen, nicht Meinungen bestätigen. Neue Zürcher Zeitung.
Grüninger, S.: Auch bei Covid-19 gilt: Zahlen sprechen nie für sich. Higgs - Das Wissenschaftsmagazin.
Grüninger, S.: Statistiken geben niemandem recht, aber sie können Rechthaber entlarven. Reatch-Blog.
Dambon, J.: varycoef: An R Package to Model Spatially Varying Coefficients. Swiss Statistics Seminar, Bern, Switzerland. Poster.
Furrer, R.: Interpolation for huge spatial datasets: theory, implementations and ideas. University of Geneva, Presentation.
Flury, R.: A Spatial Field Decomposition Approach to Evaluate Biodiversity Indices on Dominant Scales. JSM Denver, USA, Presentation. Slides.
Dambon, J.: Spatially Varying Coefficients Models: How MLE Stacks up Against Other Methods. JSM Denver, USA, Presentation. Slides.
Furrer, R.: Scalable gapfilling in spatio- temporal remote sensing data. JSM Denver, USA, Presentation. Slides.
Flury, R.: Multiresolution Decomposition of Areal Count Data, Graspa 2019. Pescara, It. Poster.
Schuh, L.: Advancing Methods to Model Landscape Heterogeneity. Global Change and Biodiversity: Integrating the impact of earth and world drivers across scales, Monte Verità, Switzerland. Poster.
Dambon, J.: Spatially Varying Coefficients Models for Large Data using MLE. Spatial Statistics 2019, Sitges, S. Presentation.
Furrer, R.: Modeling and prediction of extreme events over networks. Workshop on "Causality and Extremes", Presentation. Slides.
Furrer, R.: Share your Code?. EBPI colloquium , Discussion. Slides.
Kratzer, G.: Regression models, mixed models and and introduction to ggplot: good scientific practice for Neuroscientists using R programming language. In: Advanced statistics workshop, University of Zurich, Feb. 6th. and 7th. Presentation in Workshop.
Furrer, R.: Interpolation for huge spatial datasets: theory, implementations and ideas. Department of Statistics, University of Uppsala, Sweden, Jan. 30th. Invited seminar talk. Slides.
Kratzer, G.: Bayesian Networks meet Observational data. 1st Causality workshop, Zurich University, Switzerland, Dec. 4th. Workshop (Main Organizer). Slides.
Furrer, R.: The Power and Limits of Statistics. 2-day Molecular Life Sciences PhD Programme Course "Different perspectives on Responsible Research and Good Scientific Practice", Nov. 12th. Presentation. Slides.
Furrer, R.: Imputing missing values in satellite data: From parametric to non-parametric approaches. Institute for Geoinformatics, University of Münster, Nov. 13th. Invited seminar talk. Slides.
Kratzer, G.: Information-Theoretic Scoring Rules to Learn Additive Bayesian Network Applied to Epidemiology. Swiss Statistical Society, Bern University, Switzerland, Nov. 9th. 2018. Poster.
Dambon, J.: Spatially Varying Coefficients Models: A Comparison of Maximum Likelihood Estimators with other Estimators. Swiss Statistics Seminar 2018, University of Bern, Switzerland, Nov.9th. Poster.
Kratzer, G.: Multivariable analysis: variable and model selection in system epidemiology. Danone, Utrecht, the Netherlands, Oct. 4th. 2018. Invited seminar talk. Slides.
Furrer, R.: Imputing missing values in satellite data: From parametric to non-parametric approaches. Department of Statistics and Operations Research, Public University of Navarre, Spain, Sept. 26th. Invited seminar talk. Slides.
Kratzer, G.: Academical statistical consulting service for veterinary research and case study about ethic and statistics. M-14E Current topics of Laboratory Animal Science, University of Zurich, Sep. 14th. Presentation in Workshop.
Wang, C.: Generalised Spatial Fusion Model Framework for Multivariate Analysis of Point and Areal Data. GeoEnv2018, Belfast, July 4th. Presentation. Slides.
Kratzer, G.: Comparison between Suitable Priors for Additive Bayesian Networks. BAYSM 2018, University of Warwick, United Kingdom, Jul. 2nd. 2018. Poster.
Furrer, R.: Predicting missing values in spatio-temporal satellite data. ISNPS 2018, Salerno, June 14th. Presentation in Invited Session. Slides.
Kratzer, G.: Bayesian Networks Learning in a Nutshell. Brown Bag Seminar at ZHAW, Winterthur, Switzerland, May 30th. Invited seminar talk. Slides.
Kratzer, G.: Advances in Additive Bayesian Network applied to observational systems epidemiology datasets. Institute of Global Health, Geneva University, Switzerland, May 2nd. Invited seminar talk. Slides.
Schuh, L.: Regional climate regulation by different land cover types: comparing homogeneous and heterogeneous structures in agricultural landscapes. EGU, Vienna. Poster.
Kratzer, G.: Information-Theoretic Scoring Rules to Learn Additive Bayesian Network Applied to Epidemiology. Society for Veterinary Epidemiology and Preventive Medicine (SVEPM), Tallinn, Estonia, Mar. 22th. 2018. Poster.