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Throughout this note m > 3 and either 2 = R™, or ) is a half-space of R™,
or 2 is a smooth domain in R™ with a compact boundary 9. We consider the
Navier-Stokes equations

V-v=0 in O,

O+ (v-V)v—vAv=-Vp in Q,
v=20 on 00, )

v(-,0) = o° in Q.

Of course, there is no boundary condition if 2 = R™.

In a recent paper [1] we have investigated the strong solvability of (1) for
initial data v° belonging to certain spaces of distributions (modulo gradients).
In this note we explain some of our main results in a very particular and simple
setting. As usual, we concentrate on the velocity field v since the pressure field p
is determined up to a constant by v.

Function Spaces

We suppose that 1 < ¢ < oo and denote by H, (f the Sobolev spaces H, (f (Q,R™)
for k € N. We write L, , for the closure in L, = H] of the space D, of all smooth
solonoidal vector fields with compact supports in Q2. Moreover,

,  [{weH;; V-u=0}, Q=R",
W0\ {ueH2; Vou=0,uld0 =0}, QFR".

We write By . for the Besov spaces B; .(Q,R™), s € R, 1<r < oo, and refer
to [13] for precise definitions. If ¢ > m then we put

1-m/q ._ pl-m/q
Bq’,l,a’ - Bq’,l ﬂ qu,g—

and ,
Ctm 1-
Bq,é:,a /9= (Bq’,lnjtr °)
where ¢’ := ¢/(¢ — 1) and the dual space is determined by means of the L, , du-
ality pairing

(u,v) = (u,v) := / u-vdz , (u,v) € Lyr,p X Ly 5 -
Q



Finally, we set

n—1+m/q L Lq,o‘ ifq:m 5
2.0 o in B-14m/a  if
closure of Ly, in B, 7 ifg>m .

If g >m and Q = R™ then n,, 4m/4 i simply the closure of L, ., equiva-

lently, of D, in By et ™/4_Tf 90 # @ then the situation is more complicated. To

explain it we put
Loz ={v€Ly; Ip€ Ly1oc(QR™): v=Vp}.

Then it is shown in [1] that n, " ™7 is isometrically isomorphic to the closure of

L,/Lqxin Byad™1) (B;,T{:’U/ )L for ¢ > m, where (B;,Tf:,/ )L is the annihilator

of the closed subspace B;,_’f," U/ 7 of B;,Tlm /4. Thus, loosely speaking, v belongs

to n;(lfm/q for ¢ > m iff v is a distribution in qugm/q

functions in Ly joc(Q2, R).
In [1] it is also shown that

modulo gradients of

4 _ d _
Ly <> nygtm/m S ptm/s m<r<s<oo, (2)

d . S
where — denotes ‘continuous and dense injection’.

Very Weak, Mild, and Strong Solutions

The solvability of (1) has been investigated by many authors under various
hypotheses on v° and using several seemingly distinct concepts of weak solutions.
(We refer to [1] for extensive discussions and references.) The following theorem
shows that all these concepts coincide.

Suppose that 0 < T < 0o and ¢ > m. By a very weak ¢-solution of (1)
on [0,T) we mean a function

v e C([0,T),Ly0) 3)
satisfying
T
/ {{(8 + vA)w,v) + (Vw,v ® v)} dt = (w(0),°)
0
for all
w e Li((0,T),H} o) "W, ((0,T), Ly )

vanishing near T'.

Denoting by P: Ly = Lg,, the Helmholtz projector we recall that the Stokes
operator S := Sy in Ly, is defined by S := —vPA|HZ, ,. If (3) is satisfied then
v is said to be a mild solution in L, , of (0.1) on [0,T) if

t
v(t) = e %0 —/ e~ ISPy @) (r)dr , 0<t<T,
0

in Ly .



Finally, by a strong g-solution of (0.1) on [0,7') we mean a function

veC([0,T),n ™) nC((0,T), H?

q,0,0

) NCH((0,T), Ly,o)
satisfying v(0) = v® and

v+ Sv=—-Pv-V)v, 0<t<T. (4)
Note that (2) implies

C([0,T),Ly,0) = C([0,T),n ™) .

Theorem 1  Suppose that ¢ > m and v° € L, ,. Then the following are equi-
valent:

(i) v is a very weak g-solution on [0,T).
(ii) v is a mild solution in Ly, on [0,T).
(iii) v is a strong g-solution in C([0,T),Lq,).

It should be remarked that the only related result known so far is due to Fabes,
Jones, and Riviére [4]. These authors essentially proved the equivalence of (i)
and (ii) in the case where () = R™.

Uniqueness

Our next theorem guarantees uniqueness of very weak solutions.

Theorem 2 Ifqg > m and v® € L, , then (1) possesses at most one very weak
g-solution on [0,T).

If @ =R3 then it has recently been shown by Monniaux [10] that there
exists at most one mild m-solution. If 89 # () then Lions and Masmoudi [9]
have sketched a different proof for uniqueness of mild m-solutions. Our proof
in [1] is rather simple, relying on maximal L,-regularity if ¢ = m.

Existence
Now we turn to existence and present the following general result.

Theorem 3  Suppose that ¢ > m and 1° € n;<1,+m/q.

(i) The Navier-Stokes equations possess a unique mazimal strong q-solution
satisfying
tA=m/D/2 (1) 50 in L, ast—0
if g > m.
(ii) Ifv® € Ly, then
vy € C([0,84), Lgo) ,

where tj s the maximal existence time.



(iii) For each T >0 there exists R > 0 such that t} > T whenever 00 satisfies

”UO“n;f’"/q <R.

(iv) ve C@x (0,t]),R™).

This theorem extends and simplifies corresponding existence results due to
Kato [6], Giga and Miyakawa [5], Kobayashi and Muramatu [7], and others
(see [1] for extensive references and the relation of our work to previous results).
In particular, it should be noted that v, is the unique strong g-solution in
C([0,t)),Lg,c) if v° € Ly 5, as follows from Theorems 1 and 2.

Theorem 3 and (2) imply that, given r > ¢, problem (1) has a unique max-
imal strong r-solution v, on the maximal interval of existence [0,%}). In [1] it
is shown that ¢ >t} and v, D v,. Denote by n3}', the inductive limit of the

spaces nr_,,lfm/r, r > m, and set tT :=sup{t} ; r > q}. Then it follows that

r
there is a unique function
v:[0,t7) = ny,

such that v|[0,¢) = v, for ¢ < r < oo. This function is the unique maximal
strong solution of (1).

Clearly, v satisfies (4) on (0,t+) and v(t) = v° in ng st ™4 as t — 0. More-
over, v is smooth on Q x (0,T).

Global Existence

Although Theorem 3 guarantees the existence of a unique maximal strong solu-
tion on an arbitrarily large interval for small initial data, it does not imply that
v is a global solution, that is, t* = oo. This fact can be established, however,
provided € is bounded and v° is small in n_} . Here and below ||-|, is the norm
in L,.

Theorem 4  Suppose that Q is bounded, ¢ > m, and v° € n;};rm/q. Given
r > q, there exists R > 0 such that tT = oo, provided
||U0||n;,;+m/r <R. (5)
Furthermore, there exists w > 0 such that
lo@)lr <ce™*,  t>0.
Suppose that v° € L, ,. Then it follows from the fact that n, M/ s iso-

metrically isomorphic to a closed subspace of B, amir /(B

tion (5) is satisfied, provided

1—m/r
r',1,0

)+ that condi-

”’UOHB:)};;'—M/T S R.

This shows that Theorem 4 is the analogue for bounded domains of a recent
result which has been proven by Cannone [2] if @ = R® and by Cannone, Plan-
chon, and Schonbek [3] if £ is a half-space of R®. The proofs of these authors rely



heavily on the fact that there are rather explicit representations of the Stokes
semigroup as well as of the Helmholtz projector in the situations they consider.
This is not the case for bounded domains. Thus our approach is rather different
and is based on semigroup, inter- and extrapolation theories.

Leray-Hopf Weak Solutions
If v° € Ly, then u is said to be a weak solution on [0,7') of (1), provided
u € Lo ((0,T),La,,)) N L2((0,T), Hy)

and
/0 [ (@, u) + (Y, V) + (i, (u- V)u) } dt = {p(0),0°)

for all ¢ € D([0,T),D,). The function u: R — Ly, is a Leray-Hopf weak
solution of (1) if u|[0,7) is a weak solution on [0,7) for every T > 0 and if
u satisfies the energy inequality

t
llu@®)llz + 2V/ IVu(r)ll3dr < 1W°l3,  t>0.
0

Recall that it is well-known that there exists at least one Leray-Hopf weak
solution of (1).

The following theorem establishes the relations between the maximal strong
solution v and Leray-Hopf weak solutions.

Theorem 5  Suppose that v° € Ly , N Ly, for some ¢ > m.

(i) The unique mazimal strong solution v of (1) is a weak solution on [0,T)
for every T < t* and belongs to C([0,t), L,).

(ii) If u is any Leray-Hopf weak solution then u D v. In particular, u is smooth
and unique on (0,tT).

This theorem guarantees local uniqueness and smoothness of Leray-Hopf
weak solutions without further restrictions. In particular, if v exists globally
then there is a unique Leray-Hopf weak solution and it is smooth for ¢ > 0. This
is in contrast to known uniqueness theorems of Serrin [11], Fabes, Jones, and
Riviere [4], Sohr and von Wahl [12], Kozono and Sohr [8], and others, which
are conditional in the sense that they require the solutions to belong to more
restricted classes.

The proofs of the above theorems are given in [1] together with many addi-
tional details. In particular, there are precise descriptions of the function spaces
related to Navier-Stokes equations and being useful in precise regularity state-
ments. These descriptions are also essential for the derivation of precise mapping
properties of the convection term, a result which is basic for establishing the
sharp results given above. In addition, we consider more general domains, the
case where m/3 < ¢ < m, and non-vanishing exterior forces.
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