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Consider systems of a very large number of particles, being suspended in a
fluid, for example, which can diffuse and coagulate to form clusters that, in turn,
can merge to form larger clusters or can break apart into smaller ones. Models of
cluster growth arise in a variety of situations, for example in aerosol science, atmo-
spheric physics, colloidal chemistry, or polymer science, etc. The theory originates
in the work of M.V. Smoluchowski [9], [10] and has found various generalizations,
extensions, and applications in the physical literature (e.g., [5], [6]).

The Model. The aim of the theory is the description of the particle size distri-
bution function w as a function of time and space as the system undergoes changes
due to various physical influences.

The equations under consideration are of the form
Owu — V - (aVu + du) + aou = [04t]coag + [Ortt]frag (1)
where the coagulation term [0;u]coag is given by

1

[Orulcoag () = 5 /Oy Yy =y, v ) uly —y)u(y’) dy’ —u(y) /Ooo Y(y, v )uly') dy' (2)

and the fragmentation term [0;u]frag has the form

!/

Oulieag () = / " o ) dy' — uly) /0 "oy, Ly 3)

for y € Y, with y being the size of a cluster. Here it is assumed that either
Y = R* and dy is Lebesgue’s measure on Y (the case of continuous coagulation-
fragmentation equations) or Y = N := {1,2,3,...} and dy is the counting measure
(the discrete case). In general, the coagulation and fragmentation kernels y and ¢,
respectively, depend smoothly on ¢t € RT and z € R", where n = 1,2, 3. The diffu-
sion matrix a, the drift vector @, and the absorption rate ag also depend smoothly
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on (t,z) and on y € Y. In addition, a is supposed to be symmetric and uniformly
positive definite.

The coagulation kernel has to satisfy

0 <~y v)=~"",v) . v,y €Y, (4)

(in this note we suppress the (t, z)-dependence throughout). Thus the first integral
in (2) expresses the fact that a cluster of size y can come into existence only if two
clusters of sizes y — y’ and y’ collide. (Thus we neglect triple and higher collisions
assuming them to be rare.) The factor 1/2 guarantees that each combination is
counted only once. The last term in (2) says that a cluster of size y disappears if
it coagulates with a cluster of any size.

The fragmentation kernel is supposed to satisfy
0<o(y,y), 0<y<y<oo, yyeyY. (5)

Thus the first integral in (3) accounts for the production of clusters of size y by the
breakup of clusters of larger sizes. The second term takes care of the disappearance
of y-clusters by their fragmentation into smaller ones. In particular, multiple
fragmentation is allowed.

In order to understand the meaning of (1) we assume for a moment that @
and ag are identically zero and a is independent of (¢,z). Then, assuming also
that no fragmentation occurs, (1) takes the form

uly) —aln)duly) = 5 [y =o'/ uly — v July')
: ©

=] T,y dy

in R" for y € R", in the continuous case. In the discrete case (1) reduces (with
obvious notation) to the infinite system of coupled diffusion equations

o0

1 .
Opuj —ajAu; = 9 Z’Yj—k,kuj—kuk — Uj Z’yj,kuk , 1=1,2,...

on R™. This shows that, loosely speaking, (1) is — in the continuous case — an
uncountable system of coupled reaction-diffusion equations on R".

The Theorem. Besides of (4), (5), and regularity we also assume that the co-
agulation and fragmentation kernels are bounded, that is, there exists a constant
B > 0 such that

Y. ¥)<B, oy)<B, yyeY,
and the volume rate of change in the fragmentation process is also bounded, that is,
]' ° / / !
” oy, )y dy' <B, yeY.
0

Since u represents a density function we ought to have u > 0. The following
theorem shows that this is true if the initial distribution u° is nonnegative.



Theorem. Suppose that u® > 0 satisfies

//‘8§‘u0(x,y)|(1+y)dydx<oo, la] < 2.
nJy

Then there exists a maximal T > 0 such that the coagulation-fragmentation system
(1)—(3) possesses a unique solution u on [0,T) satisfying u > 0 and

/n/yu(:c,t,y)(l-l—y)dyda:<oo. (7)

It is a smooth function of x fort > 0 and depends continuously on all data.
If there is no absorption (i.e., ag = 0) then the total volume is conserved, that is,

/ /U(x,t,y)ydydxz/ /uo(af,y)ydydx
nJY nJY
for0<t<T.

Lastly, T = oo, that is, u is a global solution, if either n = 1 or a is independent
of y, or coagulation does not take place.

A few remarks are in order:
e Condition (7) means that the total number of particles, that is,

//U(x,t,y)dydx,

nJY

//U(t,m,y)ydydw
nJY

stay finite during the time evolution.

e Our theorem comprises continuous and discrete coagulation models simul-
taneously.

e We consider the case where coagulation, fragmentation, and diffusion occur.

as well as the total volume

Most of the mathematical research on coagulation-fragmentation problems is
concerned with the kinetic model

u = [8tu]coag + [8tu:|frag ’

where no diffusion is admitted (e.g., [3] for the discrete case and [8] for the contin-
uous one; see [1] for further references). The situation where diffusion is taken into
consideration has been studied in the discrete case only (e.g., [4], [7], [11]; again
see [1] for additional references and more precise information). Our theorem is
the first existence result at all in the case of continuous coagulation-fragmentation



models with diffusion. It is also the first general result, even in the discrete case,
guaranteeing the existence of a unique solution preserving the total volume.

Remarks on the Proof. The basic idea consists in interpreting (1)—(3) as a
vector-valued reaction-diffusion system, that is, as a reaction-diffusion equation for
a density function u which takes values in an infinite-dimensional Banach space,
namely in

F:=Li(Y,(1+y)dy) .

This space occurs naturally. Indeed, if v > 0 then

t1 tl
/ //u(t,a;,y)(l—l—y)dydmdt:/ /||u(t,:v,-)||Fda;dt
to X JY to X

is the sum of the number of particles and of the volume being contained during
the times interval (fg,¢1) in the domain X of R™ (where by the size of a cluster
we mean its volume). Since this quantity should be finite for X = R" during time
evolution one is led to consider problem (1)—(3) in the Banach space L;(R",F).
Thus, denoting by A the linear differential operator

u— —V - (aVu + du) + apu

on R™, operating on L;(R",F)-valued functions (i.e., F-valued regular distribu-
tions), and putting
F(U') = [8tu]coag + [6tu]frag )

we arrive at the initial value problem
G+ Au=F(u), t>0, u(0) = u® (8)

in Ly (R",F), that is, u(t) € Li(R",F) for ¢ > 0.

Formally, (8) is a semilinear parabolic evolution equation. The nonstandard
feature, however, is the fact that A operates on vector-valued functions. If we
knew that —A generated an analytic semigroup on L; (R™,F) then we could apply
the abstract theory of semilinear parabolic evolution equations to (8) to prove
local well-posedness, at least.

The standard way to establish the resolvent estimates guaranteeing that —.A is
the generator of an analytic semigroup on L, (in the classical finite-dimensional
case) is to look at constant coefficient operators first and to use Fourier analysis
and Fourier multiplier theorems of Mikhlin type.

In our case, even in the simplest situation where Au = —a/Awu for a smooth pos-
itive bounded function a: Y — R (independent of z € R™, which means ‘constant
coefficient’) the symbol (i.e., a |¢|* for —aA\) is operator-valued (a |¢| being an op-
erator of point-wise multiplication). But it is known that an analogue to Mikhlin’s
theorem for operator-valued symbols is not valid, in general, on L,(R", E) for any
p € [1,00), if E is an infinite-dimensional Banach space not isomorphic to a Hil-
bert space.



However, in [2] it is proven that a Mikhlin-type Fourier multiplier theorem is
valid for operator-valued symbols, provided L,(R", E) is replaced by any Besov
space By (R", E). In particular, we can take the vector-valued Slobodeckii spaces

Wis(Rn7]F) = Big,l(RnaF) ’ NS R\Z .

More precisely, it follows from the results in [2] and standard arguments that
—A generates a strongly continuous analytic semigroup on W (R", F) for s € R\Z

and that the domain of this generator equals W 2(R", ).
As for the right-hand side, we show that F' is a smooth map from W{(R",T)
into W] (R™,TF) where o > 7 are suitably chosen so that —1 < s <7 <o < s+ 2.

These facts and standard results from the theory of parabolic evolution equa-
tions guarantee the existence of a unique maximal solution

ue C([0,T), WsH(R*, F)) n C*([0,T), Wi (R",F)) ,

provided u® € WiT?(R",F) and s € (—1,00)\N. Furthermore, u(t) is smooth if
t > 0. Thanks to this regularizing effect and the fact that the semigroup generated
by —A is positive, it is possible to show that u(t) > 0 if u® > 0.

Finally, solving (1) in W$(R",F) with s < 0 and using the embedding
Wit (R",F) — Li(R*,F) < W{(R",F) , -1<s5<0,

it follows that u(t) € L1(R™,F) for 0 <t < T. Thus (7) is true.

Since our solution is smooth and nonnegative, it is not difficult, thanks to the
special structure of the right-hand side, to verify that the total volume is conserved.
This is an a priori estimate which is strong enough to imply a uniform bound if
n = 1, by virtue of Sobolev-type embedding theorems. Then the growth properties
of the nonlinearity and a Gronwall-type argument give global existence if n = 1.

If no coagulation occurs then (1) is linear and global existence is immediate.
Finally, if @ is independent of y € Y then integration of (8) with respect to dy
reduces our problem to a standard parabolic differential inequality for @ := fy u dy

on R”. In this case the parabolic maximum principle implies the bounds which
are needed to show that T' = co. For details we refer to [1].
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