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1. Abstract theory

Let E0 and E1 be Banach spaces such that E1
d
↪→ E0, set J := JT0 := [0, T0) for

some fixed positive T0, and suppose that 1 < p <∞. Put
� 1
p (J) :=

� 1
p

(
J, (E1, E0)

)
:= Lp(J,E1) ∩W 1

p (J̊ , E0).

Then
B ∈ L∞

(
J,L(E1, E0)

)

possesses the property of maximal Lp regularity on J with respect to (E1, E0)
if the map � 1

p (J)→ Lp(J,E0)×E, u 7→
(
u̇+Bu, u(0)

)

is a bounded isomorphism, where E is the real interpolation space (E0, E1)1/p′,p

and the overdot denotes the distributional derivative on J̊ . Since (e.g., [1, Theo-
rem III.4.10.2]) � 1

p (J) ↪→ C(J,E), (1)

u(0) is well defined. The set of all such maps B is denoted by

MRp(J) :=MRp
(
J, (E1, E0)

)
.

We also writeMR :=MR(E1, E0) for the set of all C ∈ L(E1, E0) such that the
constant map t 7→ C belongs toMRp(J). Since the latter property is independent
of p and the (bounded) interval (e.g., [3]), this notation is justified.

We are interested in quasilinear evolution equations of the form

u̇+A(u)u = f(u) on J̊ , u(0) = u0. (2)

By a solution on JT , where 0 < T ≤ T0, we mean a u ∈ � 1
p,loc(JT ) satisfying (2)

in the sense of distributions on J̊T or, equivalently, a.e. on JT .
Henceforth, we write C1− for spaces of locally Lipschitz continuous maps, and

C1− if the Lipschitz continuity is uniform on bounded subsets of the domain (which
is always the case if the latter is finite dimensional).

Due to (1) it is natural to assume that

(A, f) ∈ C1−(E,L(E1, E0)×E
)
. (3)

Indeed, this type of assumption has been used in practically all investigations
of (2). In particular, Clément and Li [11] were the first to study (2) — in a concrete
setting — by imposing the maximal regularity hypothesis that A(e) ∈ MR for
each e ∈ E. Recently, Prüss [13] has extended this method to a nonautonomous
abstract setting.

An assumption like (3) uses only part of the information contained in the state-
ment: u ∈ � 1

p (J). Consequently, it imposes stronger restrictions on (A, f) than

the hypothesis that this map be defined on
� 1
p (J), which, after all, is the space

in which solutions live.
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Considering a map

(A, f) :
� 1
p (J)→ L∞

(
J,L(E1, E0)

)
× Lp(J,E0)

we say that it possesses the Volterra property if, given u ∈ � 1
p (J) and 0 < T < T0,

the restriction of (A, f)(u) to JT depends on u |JT only. Now we can formulate
our main result, whose proof is found in [2].

Theorem Suppose that
• A ∈ C1−( � 1

p (J),MRp(J)
)
;

• f − f(0) ∈ C1−( � 1
p (J), Lr(J,E0)

)
for some r ∈ (p,∞], and f(0) ∈ Lp(J,E0);

• (A, f) possesses the Volterra property;
• u0 ∈ E.
Then:
• there exist a maximal T ∗ ∈ (0, T0] and a unique solution u of (2) on J∗ := JT∗ ;
• the map (A, f, u0) 7→ u is locally Lipschitz continuous with respect to the natural

Fréchet topologies of the spaces occurring above;
• if u ∈ � 1

p (J∗), then J∗ = J , that is, u is global.

The following proposition gives two important sufficient conditions for maximal
regularity in the nonautonomous case.

Proposition (i) If B ∈ C(J,MR), then B ∈ MRp(J).

(ii) Let V
d
↪→ H

d
↪→ V ′ be real Hilbert spaces and let B ∈ L∞

(
J,L(V, V ′)

)
be

such that there exist constants α > 0 and β ≥ 0 with

〈
v,B(t)v

〉
+ β ‖v‖2H ≥ α ‖v‖2V , a.a. t ∈ J, v ∈ V,

where 〈·, ·〉 : V × V ′ → � is the duality pairing. Then B ∈ MR2

(
J, (V, V ′)

)
.

Proof (i) has been shown in [14] by constructing an evolution family. A simple
direct proof is given in [3].

(ii) is a consequence of the well known Galerkin approach to evolution equations
in a variational setting, essentially due to J.-L. Lions (see [2] for details). �

2. Applications

To give an idea of the scope of the Theorem we consider two model problems.
For this we suppose that

• Ω is a bounded Lipschitz domain;

• a ∈ C1−( � , � ) and a(ξ) ≥ α > 0 for ξ ∈ � .

We also set Q := Ω× J and Σ := ∂Ω× J .
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Example 1 (nonlocal problems) Let a0,m ∈ L∞(Ω) and 1 ≤ λ < 1 + 4/n. De-
note by Ω′ a measurable subset of Ω. Then the nonlocal parabolic problem

∂tu−∇ ·
(
a
(
m
∫

Ω′u(x, ·) dx
)
∇u
)

= a0 |u|λ−1 u+ f0 on Q,

u = 0 on Σ,

u(·, 0) = u0 on Ω,

has for each f0 ∈ L2(Q) and u0 ∈ L2(Ω) a unique maximal weak solution u. If f0

and u0 are positive, then so is u. It is global if a is bounded and a0 ≤ 0. �

By a maximal weak solution we mean, of course, a

u ∈ � 1
2,loc

(
J∗,
(
H̊1(Ω), H−1(Ω)

))

satisfying u(0) = u0 and

〈v, u̇〉+
〈
∇v, a

(
m
∫

Ω′u(x, ·) dx
)
∇u
〉

=
〈
v, a0 |u|λ−1 u+ f0

〉

a.e. on J∗ and for every v ∈ D(Ω).
We mention that an application of the results in [13], based on hypothesis (3),

would require λ = 1.
Problems of this type have been intensively studied by M. Chipot and coworkers

(cf. [4]–[10] and [15]–[18]). More precisely, in those papers the differential equations
are either of the form

∂tu− a
(
〈v, u〉

)
∆u = f0,

where v ∈ L2(Ω), or they are semilinear with nonlocal lower order terms. (The
Laplace operator can be replaced by a general second order elliptic operator.) It
is crucial that a

(
〈v, u(·, t)〉

)
is a pure function of t, that is, independent of x ∈ Ω.

The proofs, except the ones in [18], rely on Schauder’s fixed point theorem and
are completely different from our approach.

Example 2 (equations with memory) Assume that Ω has a C2 boundary, that
b, f ∈ C1−( � , � ), that k ∈ Lρ( � + , � ) for some ρ > 1, and µ is a bounded Radon
measure on [0,∞) with suppµ ⊂ [0, S) for some 0 < S ≤∞. Also suppose that
2/p+ n/q < 1. Then

∂tu−∇ ·
(
a(µ ∗ u)∇u

)
+ k ∗

(
∇ · (b(u)∇u)

)
= f(u) + f0 on Q,

u = 0 on Σ,

u = u on Ω× (−S, 0],

has for each f0 ∈ Lp
(
J,H−1

q (Ω)
)

and each

u ∈ � 1
p

(
(−S, 0),

(
H̊1(Ω), H−1(Ω)

))

a unique maximal weak solution

u ∈ � 1
p,loc

(
(−S, T ∗),

(
H̊1
q (Ω), H−1

q (Ω)
))
. (4)

If there exists r > 0 such that suppµ ⊂ [r, S), then the unique maximal weak
solution in (4) of

∂tu−∇ ·
(
a(µ ∗ u)∇u

)
= f0 on Q, u = 0 on Σ
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with u |(−S, 0] = u is global. �

Choosing for µ the Dirac measure supported on {r} for some r > 0, it follows
that the retarded quasilinear parabolic problem

∂tu−∇ ·
(
a
(
u(t− r)

)
∇u
)

= f0 on Q,

u = 0 on Σ,

has for each f0 ∈ Lp
(
J,H−1

q (Ω)
)

and each u ∈ � 1
p

(
(−S, 0],

(
H̊1
q (Ω), H−1

q (Ω)
))

,
where S > r, a unique global weak solution in (4) (with T ∗ = T ).

It should be remarked that problems like the one of Example 2 cannot be treated
at all by theorems invoking hypotheses of type (3).

There is a large literature on parabolic equations involving delays and memory
terms. However, most of it concerns semilinear equations. Very little seems to be
known about an Lp theory for quasilinear equations with memory terms in the
top order part (see [12] and the references therein, and [19]). In fact, we do not
know of any result for quasilinear equations in which (nondistributed) delay terms
occur within the diffusion matrix.

For proofs of the above facts and many more examples we refer to [2].
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