Universal Decoding of Interleaved Linearized Reed–Solomon Codes in the Sum-Rank Metric

Thomas Jerkovits, Felicitas Hörmann, Hannes Bartz
{thomas.jerkovits, felicitas.hoermann, hannes.bartz}@dlr.de

Institute of Communications and Navigation
German Aerospace Center, DLR
Outline

1. Introduction
2. Interleaved Linearized Reed–Solomon Codes
3. Universal Decoding of ILRS Codes
4. Summary & Outlook
Introduction

Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22]

Our contribution:

- We consider interleaving of different linearized Reed–Solomon codes by generalizing the universal decoding concept for Gabidulin codes from [SLK20]
- We propose an efficient universal decoding framework for ILRS codes
Introduction

Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22]

Our contribution:

- We consider interleaving of different linearized Reed–Solomon codes by generalizing the universal decoding concept for Gabidulin codes from [SLK20]
- We propose an efficient universal decoding framework for ILRS codes
Introduction

Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius.
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered.
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22].

Our contribution:

- We consider interleaving of different linearized Reed–Solomon codes by generalizing the universal decoding concept for Gabidulin codes from [SLK20].
- We propose an efficient universal decoding framework for ILRS codes.
Introduction

Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22]

Our contribution:

- We consider interleaving of different linearized Reed–Solomon codes by generalizing the universal decoding concept for Gabidulin codes from [SLK20]
- We propose an efficient universal decoding framework for ILRS codes
Introduction

Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius.
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered.
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22].

Our contribution:

- We consider interleaving of *different linearized Reed–Solomon codes* by generalizing the universal decoding concept for Gabidulin codes from [SLK20].
- We propose an *efficient universal decoding framework* for ILRS codes.
Introduction
Motivation

- Interleaving of codes allows for decoding errors beyond the unique decoding radius
- Usually interleaving of codewords of the same code (or a subcode thereof) is considered
- Interpolation-based decoding of vertically interleaved linearized Reed–Solomon (ILRS) codes is considered in [BP22]

Our contribution:
- We consider interleaving of different linearized Reed–Solomon codes by generalizing the universal decoding concept for Gabidulin codes from [SLK20]
- We propose an efficient universal decoding framework for ILRS codes
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \mapsto \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 \[N_i^\theta(a) = \theta^{i-1}(a)\theta^{i-2} \cdots \theta(a)a \]
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 \[D_a^i(b) = D_a(D_a^{i-1}(b)) = \theta^i(b)N_i^\theta(a) \]
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 \[\exists c \in \mathbb{F}_{q^m}^* : a^c := \theta(c)ac^{-1} = b \]
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{ a^c : c \in \mathbb{F}_{q^m}^* \}$
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \rightarrow \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 \[
 N_i^\theta(a) = \theta^{i-1}(a)\theta^{i-2} \ldots \theta(a) a
 \]
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 \[
 D_a^i(b) = D_a(D_a^{i-1}(b)) = \theta^i(b)N_i^\theta(a)
 \]
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 \[
 \exists c \in \mathbb{F}_{q^m}^* : a^c := \theta(c)ac^{-1} = b
 \]
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{a^c : c \in \mathbb{F}_{q^m}^*\}$
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \mapsto \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 $$N_i^\theta(a) = \theta^{i-1}(a)\theta^{i-2}\ldots\theta(a)a$$
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 $$D_a^i(b) = D_a(D_a^{i-1}(b)) = \theta^i(b)N_i^\theta(a)$$
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 $$\exists c \in \mathbb{F}_{q^m}^* : a^c := \theta(c)ac^{-1} = b$$
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{a^c : c \in \mathbb{F}_{q^m}^*\}$
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \mapsto \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 \[N_i^\theta (a) = \theta^{i-1}(a)\theta^{i-2} \ldots \theta(a) a \]
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 \[D^i_a(b) = D_a(D^{i-1}_a(b)) = \theta^i(b)N^\theta_i (a) \]
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 \[\exists c \in \mathbb{F}_{q^m}^* : a^c := \theta(c)ac^{-1} = b \]
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{ a^c : c \in \mathbb{F}_{q^m}^* \}$
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \mapsto \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 \[N_i^\theta (a) = \theta^{i-1}(a)\theta^{i-2} \ldots \theta(a)a \]
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 \[D^i_a(b) = D_a(D^{i-1}_a(b)) = \theta^i(b)N_i^\theta (a) \]
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 \[\exists c \in \mathbb{F}^*_{q^m} : a^c := \theta(c)ac^{-1} = b \]
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{ a^c : c \in \mathbb{F}^*_{q^m} \}$
Some Definitions

- Finite field \mathbb{F}_q of order q (prime power) and extension field \mathbb{F}_{q^m} of \mathbb{F}_q of degree m
- $\theta : \mathbb{F}_{q^m} \mapsto \mathbb{F}_{q^m}$: field automorphism (e.g. Frobenius automorphism: $\sigma(\cdot) = \cdot^q$)
- The i-th generalized norm of $a \in \mathbb{F}_{q^m}$ is
 \[N_i^\theta(a) = \theta^{i-1}(a)\theta^{i-2} \ldots \theta(a)a \]
- Operator $D_a(b) := \theta(b)a$ for $a, b \in \mathbb{F}_{q^m}$. The i-fold application of D to b w.r.t. a is given by
 \[D_a^i(b) = D_a(D_a^{i-1}(b)) = \theta^i(b)N_i^\theta(a) \]
- Two elements $a, b \in \mathbb{F}_{q^m}$ are called conjugates if
 \[\exists c \in \mathbb{F}_{q^m}^* : a^c := \theta(c)ac^{-1} = b \]
- Conjugacy class of $a \in \mathbb{F}_{q^m}$ defined as $C(a) := \{a^c : c \in \mathbb{F}_{q^m}^*\}$
Some Definitions

- Let $n \in (\mathbb{N}^*)^\ell$ be a **length partition** such that $\sum_{i=1}^\ell n_i = n$ and let $\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_q^n$.

- The $d \times n$ **generalized Moore matrix** of $x = (x^{(1)} | \cdots | x^{(\ell)}) \in \mathbb{F}_q^n$ with $x^{(i)} \in \mathbb{F}_{q^{n_i}}$ for all $i = 1, \ldots, \ell$ is defined as

 $$\lambda_d(x)\xi := (V_d(x^{(1)})\xi_1 | V_d(x^{(2)})\xi_2 | \cdots | V_d(x^{(\ell)})\xi_\ell) \in \mathbb{F}_{q^m}^{d \times n}$$

 where

 $$V_d(x^{(i)})\xi_i = \begin{pmatrix} x_1^{(i)} & x_2^{(i)} & \cdots & x_{n_i}^{(i)} \\ D_{\xi_i}(x_1^{(i)}) & D_{\xi_i}(x_2^{(i)}) & \cdots & D_{\xi_i}(x_{n_i}^{(i)}) \\ \vdots & \vdots & \ddots & \vdots \\ D_{\xi_i}^{d-1}(x_1^{(i)}) & D_{\xi_i}^{d-1}(x_2^{(i)}) & \cdots & D_{\xi_i}^{d-1}(x_{n_i}^{(i)}) \end{pmatrix} \in \mathbb{F}_{q^m}^{d \times n_i}, \ \forall i = 1, \ldots, \ell.$$

- We have $\text{rk}_{q^m}(\lambda_d(x)\xi) = \min\{n, d\}$ iff. $x_1^{(i)}, \ldots, x_{n_i}^{(i)}$ are \mathbb{F}_q-linearly independent for all $i = 1, \ldots, \ell$ and ξ_1, \ldots, ξ_ℓ belong to different conjugacy classes of \mathbb{F}_{q^m}.
Some Definitions

- Let $n \in (\mathbb{N}^*)^\ell$ be a length partition such that $\sum_{i=1}^{\ell} n_i = n$ and let $\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_q^\ell$.

- The $d \times n$ generalized Moore matrix of $x = (x^{(1)} | \cdots | x^{(\ell)}) \in \mathbb{F}_q^n$ with $x^{(i)} \in \mathbb{F}_{q_{n_i}}$ for all $i = 1, \ldots, \ell$ is defined as

$$\lambda_d(x)_{\xi} := (V_d(x^{(1)})_{\xi_1} | V_d(x^{(2)})_{\xi_2} | \cdots | V_d(x^{(\ell)})_{\xi_\ell}) \in \mathbb{F}_q^d \times n$$

where

$$V_d(x^{(i)})_{\xi_i} = \begin{pmatrix} x_1^{(i)} & x_2^{(i)} & \cdots & x_{n_i}^{(i)} \\ D_{\xi_i}(x_1^{(i)}) & D_{\xi_i}(x_2^{(i)}) & \cdots & D_{\xi_i}(x_{n_i}^{(i)}) \\ \vdots & \vdots & \ddots & \vdots \\ D_{\xi_i}^{d-1}(x_1^{(i)}) & D_{\xi_i}^{d-1}(x_2^{(i)}) & \cdots & D_{\xi_i}^{d-1}(x_{n_i}^{(i)}) \end{pmatrix} \in \mathbb{F}_q^{d \times n_i}, \space \forall i = 1, \ldots, \ell.$$

- We have $\text{rk}_{q^m}(\lambda_d(x)_{\xi}) = \min\{n, d\}$ iff. $x_1^{(i)} , \ldots , x_{n_i}^{(i)}$ are \mathbb{F}_q-linearly independent for all $i = 1, \ldots, \ell$ and ξ_1, \ldots, ξ_ℓ belong to different conjugacy classes of \mathbb{F}_q^m.

"DLR"
Some Definitions

- Let \(n \in (\mathbb{N}^*)^\ell \) be a length partition such that \(\sum_{i=1}^\ell n_i = n \) and let \(\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_q^\ell \).

- The \(d \times n \) generalized Moore matrix of \(x = (x^{(1)} | \cdots | x^{(\ell)}) \in \mathbb{F}_q^n \) with \(x^{(i)} \in \mathbb{F}_{q^{n_i}} \) for all \(i = 1, \ldots, \ell \) is defined as

\[
\lambda_d(x)_\xi := (V_d(x^{(1)})_{\xi_1} | V_d(x^{(2)})_{\xi_2} | \cdots | V_d(x^{(\ell)})_{\xi_\ell}) \in \mathbb{F}_{q^m}^{d \times n}
\]

where

\[
V_d(x^{(i)})_{\xi_i} = \begin{pmatrix}
x_1^{(i)} & x_2^{(i)} & \cdots & x_{n_i}^{(i)} \\
D_{\xi_i}(x_1^{(i)}) & D_{\xi_i}(x_2^{(i)}) & \cdots & D_{\xi_i}(x_{n_i}^{(i)}) \\
\vdots & \vdots & \ddots & \vdots \\
D_{\xi_i}^d(x_1^{(i)}) & D_{\xi_i}^d(x_2^{(i)}) & \cdots & D_{\xi_i}^d(x_{n_i}^{(i)})
\end{pmatrix} \in \mathbb{F}_{q^m}^{d \times n_i}, \ \forall i = 1, \ldots, \ell.
\]

- We have \(\text{rk}_{q^m}(\lambda_d(x)_\xi) = \min\{n, d\} \) iff. \(x_1^{(i)}, \ldots, x_{n_i}^{(i)} \) are \(\mathbb{F}_q \)-linearly independent for all \(i = 1, \ldots, \ell \) and \(\xi_1, \ldots, \xi_\ell \) belong to different conjugacy classes of \(\mathbb{F}_{q^m} \).
Some Definitions

- The **sum-rank weight** of a vector $x = (x^{(1)} | x^{(2)} | \cdots | x^{(\ell)}) \in \mathbb{F}_{q^m}^n$ with $x^{(i)} \in \mathbb{F}_{q^m}$ for all $i = 1, \ldots, \ell$ is defined as [NUF10]

 $$\text{wt}_{\Sigma R}(x) := \sum_{i=1}^{\ell} \text{rk}_q(x^{(i)})$$

 where $\text{rk}_q(x^{(i)})$ denotes the rank of the matrix obtained by expanding $x^{(i)}$ over \mathbb{F}_q.

- The **sum-rank distance** between two vectors $x = (x^{(1)} | x^{(2)} | \cdots | x^{(\ell)}) \in \mathbb{F}_{q^m}^n$ and $y = (y^{(1)} | y^{(2)} | \cdots | y^{(\ell)}) \in \mathbb{F}_{q^m}^n$ is then defined as

 $$d_{\Sigma R}(x, y) := \text{wt}_{\Sigma R}(x - y) = \sum_{i=1}^{\ell} \text{rk}_q(x^{(i)} - y^{(i)})$$

- The sum-rank metric is a hybrid between the Hamming metric and the rank metric:
 - $\ell = n$: Hamming metric
 - $\ell = 1$: rank metric

- There is an **isometry** between the sum-rank metric and the skew metric [MP18]
Some Definitions

- The **sum-rank weight** of a vector $\mathbf{x} = (x^{(1)} | x^{(2)} | \cdots | x^{(\ell)}) \in \mathbb{F}_{q^m}^n$ with $x^{(i)} \in \mathbb{F}_{q^m}$ for all $i = 1, \ldots, \ell$ is defined as [NUF10]
 \[
 \text{wt}_{\Sigma R}(\mathbf{x}) := \sum_{i=1}^{\ell} \text{rk}_q(x^{(i)})
 \]
 where $\text{rk}_q(x^{(i)})$ denotes the rank of the matrix obtained by expanding $x^{(i)}$ over \mathbb{F}_q.

- The **sum-rank distance** between two vectors $\mathbf{x} = (x^{(1)} | x^{(2)} | \cdots | x^{(\ell)}) \in \mathbb{F}_{q^m}^n$ and $\mathbf{y} = (y^{(1)} | y^{(2)} | \cdots | y^{(\ell)}) \in \mathbb{F}_{q^m}^n$ is then defined as
 \[
 d_{\Sigma R}(\mathbf{x}, \mathbf{y}) := \text{wt}_{\Sigma R}(\mathbf{x} - \mathbf{y}) = \sum_{i=1}^{\ell} \text{rk}_q(x^{(i)} - y^{(i)}).
 \]

- The sum-rank metric is a hybrid between the Hamming metric and the rank metric:
 - $\ell = n$: Hamming metric
 - $\ell = 1$: rank metric

- There is an isometry between the sum-rank metric and the skew metric [MP18]
Some Definitions

- The **sum-rank weight** of a vector \(\mathbf{x} = (\mathbf{x}^{(1)} | \mathbf{x}^{(2)} | \cdots | \mathbf{x}^{(\ell)}) \in \mathbb{F}_{q^m}^n \) with \(\mathbf{x}^{(i)} \in \mathbb{F}_{q^m}^n \) for all \(i = 1, \ldots, \ell \) is defined as [NUF10]

 \[
 \text{wt}_{\Sigma R}(\mathbf{x}) := \sum_{i=1}^{\ell} \text{rk}_q(\mathbf{x}^{(i)})
 \]

 where \(\text{rk}_q(\mathbf{x}^{(i)}) \) denotes the rank of the matrix obtained by expanding \(\mathbf{x}^{(i)} \) over \(\mathbb{F}_q \).

- The **sum-rank distance** between two vectors \(\mathbf{x} = (\mathbf{x}^{(1)} | \mathbf{x}^{(2)} | \cdots | \mathbf{x}^{(\ell)}) \in \mathbb{F}_{q^m}^n \) and \(\mathbf{y} = (\mathbf{y}^{(1)} | \mathbf{y}^{(2)} | \cdots | \mathbf{y}^{(\ell)}) \in \mathbb{F}_{q^m}^n \) is then defined as

 \[
 d_{\Sigma R}(\mathbf{x}, \mathbf{y}) := \text{wt}_{\Sigma R}(\mathbf{x} - \mathbf{y}) = \sum_{i=1}^{\ell} \text{rk}_q(\mathbf{x}^{(i)} - \mathbf{y}^{(i)}).
 \]

- The sum-rank metric is a hybrid between the Hamming metric and the rank metric:
 - \(\ell = n \): **Hamming metric**
 - \(\ell = 1 \): **rank metric**

- There is an isometry between the sum-rank metric and the skew metric [MP18]
Some Definitions

- The **sum-rank weight** of a vector $\mathbf{x} = (\mathbf{x}^{(1)} | \mathbf{x}^{(2)} | \cdots | \mathbf{x}^{(\ell)}) \in \mathbb{F}_{q^m}^n$ with $\mathbf{x}^{(i)} \in \mathbb{F}_{q^m}^n$ for all $i = 1, \ldots, \ell$ is defined as [NUF10]

 $$\text{wt}_{\Sigma R}(\mathbf{x}) := \sum_{i=1}^{\ell} \text{rk}_q(\mathbf{x}^{(i)})$$

 where $\text{rk}_q(\mathbf{x}^{(i)})$ denotes the rank of the matrix obtained by expanding $\mathbf{x}^{(i)}$ over \mathbb{F}_q.

- The **sum-rank distance** between two vectors $\mathbf{x} = (\mathbf{x}^{(1)} | \mathbf{x}^{(2)} | \cdots | \mathbf{x}^{(\ell)}) \in \mathbb{F}_{q^m}^n$ and $\mathbf{y} = (\mathbf{y}^{(1)} | \mathbf{y}^{(2)} | \cdots | \mathbf{y}^{(\ell)}) \in \mathbb{F}_{q^m}^n$ is then defined as

 $$d_{\Sigma R}(\mathbf{x}, \mathbf{y}) := \text{wt}_{\Sigma R}(\mathbf{x} - \mathbf{y}) = \sum_{i=1}^{\ell} \text{rk}_q(\mathbf{x}^{(i)} - \mathbf{y}^{(i)}).$$

- The sum-rank metric is a hybrid between the Hamming metric and the rank metric:
 - $\ell = n$: *Hamming metric*
 - $\ell = 1$: *rank metric*

- There is an *isometry* between the *sum-rank metric* and the *skew metric* [MP18]
Skew Polynomials
Definition

- A *skew polynomial* over \mathbb{F}_{q^m} is a polynomial of the form [Ore33]

$$f(x) = \sum_i f_i x^i, \quad f_i \in \mathbb{F}_{q^m} \quad (1)$$

- **Addition**: ordinary monomial-wise polynomial addition
- **Multiplication**:
 $$xa = \theta(a)x$$

- The set of skew polynomials $\mathbb{F}_{q^m}[x; \theta]$ over \mathbb{F}_{q^m} forms a *non-commutative* ring under addition “+” and multiplication “·.”
- The set of skew polynomials in $\mathbb{F}_{q^m}[x; \theta]$ of degree less than k is denoted by $\mathbb{F}_{q^m}[x; \theta]_{<k}$
Skew Polynomials

Definition

- A *skew polynomial* over \mathbb{F}_{q^m} is a polynomial of the form [Ore33]

\[
f(x) = \sum_i f_i x^i, \quad f_i \in \mathbb{F}_{q^m}
\] (1)

- **Addition**: ordinary monomial-wise polynomial addition

- **Multiplication**:
 \[xa = \theta(a)x\]

- The set of skew polynomials $\mathbb{F}_{q^m}[x; \theta]$ over \mathbb{F}_{q^m} forms a *non-commutative* ring under addition “+” and multiplication “⋅”

- The set of skew polynomials in $\mathbb{F}_{q^m}[x; \theta]$ of degree less than k is denoted by $\mathbb{F}_{q^m}[x; \theta]_{<k}$
Skew Polynomials

Definition

- A *skew polynomial* over \mathbb{F}_{q^m} is a polynomial of the form [Ore33]
 \[f(x) = \sum_i f_i x^i, \quad f_i \in \mathbb{F}_{q^m} \]

- **Addition**: ordinary monomial-wise polynomial addition
- **Multiplication**:
 \[xa = \theta(a)x \]

- The set of skew polynomials $\mathbb{F}_{q^m}[x; \theta]$ over \mathbb{F}_{q^m} forms a *non-commutative* ring under addition “+” and multiplication “·”
- The set of skew polynomials in $\mathbb{F}_{q^m}[x; \theta]$ of degree less than k is denoted by $\mathbb{F}_{q^m}[x; \theta]_{<k}$
Skew Polynomials
Definition

- A skew polynomial over \mathbb{F}_{q^m} is a polynomial of the form [Ore33]

$$f(x) = \sum_i f_i x^i, \quad f_i \in \mathbb{F}_{q^m}$$ \hspace{1cm} (1)

- Addition: ordinary monomial-wise polynomial addition
- Multiplication:

$$xa = \theta(a)x$$

- The set of skew polynomials $\mathbb{F}_{q^m}[x; \theta]$ over \mathbb{F}_{q^m} forms a non-commutative ring under addition “+” and multiplication “·”
- The set of skew polynomials in $\mathbb{F}_{q^m}[x; \theta]$ of degree less than k is denoted by $\mathbb{F}_{q^m}[x; \theta]_{\leq k}$
Skew Polynomials
Definition

- A skew polynomial over \mathbb{F}_{q^m} is a polynomial of the form [Ore33]

$$f(x) = \sum_i f_i x^i, \quad f_i \in \mathbb{F}_{q^m}$$ \hspace{1cm} (1)

- Addition: ordinary monomial-wise polynomial addition
- Multiplication:

$$xa = \theta(a)x$$

- The set of skew polynomials $\mathbb{F}_{q^m}[x; \theta]$ over \mathbb{F}_{q^m} forms a non-commutative ring under addition “+” and multiplication “·”
- The set of skew polynomials in $\mathbb{F}_{q^m}[x; \theta]$ of degree less than k is denoted by $\mathbb{F}_{q^m}[x; \theta]_{<k}$
Skew Polynomials

Example:

\[x^2 \cdot (ax^2 + bx + c) = x^2 ax^2 + x^2 bx + x^2 c = \theta^2(a)x^4 + \theta^2(b)x^3 + \theta^2(c)x^2. \]

- We consider the generalized operator evaluation at an element \(b \in \mathbb{F}_{q^m} \) w.r.t. \(a \in \mathbb{F}_{q^m} \):

\[f(b)_a = \sum_i f_i \mathcal{D}_a^i(b) \]

- The generalized operator evaluation forms an \(\mathbb{F}_q \)-linear map, i.e. we have

\[f(\beta b + \gamma c)_a = \beta f(b)_a + \gamma f(c)_a, \quad \forall \beta, \gamma \in \mathbb{F}_q, \forall a, b, c \in \mathbb{F}_{q^m} \]

- For a skew polynomial \(f \in \mathbb{F}_{q^m}[x; \theta] \), a vector \(b = (b_1, b_2, \ldots, b_n) \in \mathbb{F}_{q^m}^n \) and \(a \in \mathbb{F}_{q^m} \) we define

\[f(b)_a := (f(b_1)_a, \ldots, f(b_n)_a) \]
Skew Polynomials

Example:

\[x^2 \cdot (ax^2 + bx + c) = x^2 ax^2 + x^2 bx + x^2 c = \theta^2(a)x^4 + \theta^2(b)x^3 + \theta^2(c)x^2. \]

- We consider the generalized operator evaluation at an element \(b \in \mathbb{F}_{q^m} \) w.r.t. \(a \in \mathbb{F}_{q^m} \):

\[f(b)_a = \sum_i f_i \mathcal{D}_a^i(b) \]

- The generalized operator evaluation forms a \(\mathbb{F}_q \)-linear map, i.e. we have

\[f(\beta b + \gamma c)_a = \beta f(b)_a + \gamma f(c)_a, \quad \forall \beta, \gamma \in \mathbb{F}_q, \forall a, b, c \in \mathbb{F}_{q^m} \]

- For a skew polynomial \(f \in \mathbb{F}_{q^m}[x; \theta] \), a vector \(b = (b_1, b_2, \ldots, b_n) \in \mathbb{F}_{q^m}^n \) and \(a \in \mathbb{F}_{q^m} \) we define

\[f(b)_a := (f(b_1)_a, \ldots, f(b_n)_a) \]
Skew Polynomials

Example:

\[x^2 \cdot (ax^2 + bx + c) = x^2ax^2 + x^2bx + x^2c \]
\[= \theta^2(a)x^4 + \theta^2(b)x^3 + \theta^2(c)x^2. \]

- We consider the **generalized operator evaluation** at an element \(b \in \mathbb{F}_{q^m} \) w.r.t. \(a \in \mathbb{F}_{q^m} \):

\[f(b)_a = \sum_i f_i D^i_a(b) \]

- The generalized operator evaluation forms an \(\mathbb{F}_q \)-linear map, i.e. we have

\[f(\beta b + \gamma c)_a = \beta f(b)_a + \gamma f(c)_a, \quad \forall \beta, \gamma \in \mathbb{F}_q, \forall a, b, c \in \mathbb{F}_{q^m} \]

- For a skew polynomial \(f \in \mathbb{F}_{q^m}[x; \theta] \), a vector \(b = (b_1, b_2, \ldots, b_n) \in \mathbb{F}_{q^m}^n \) and \(a \in \mathbb{F}_{q^m} \) we define

\[f(b)_a := (f(b_1)_a, \ldots, f(b_n)_a) \]
Skew Polynomials

Example:

\[x^2 \cdot (ax^2 + bx + c) = x^2ax^2 + x^2bx + x^2c = \theta^2(a)x^4 + \theta^2(b)x^3 + \theta^2(c)x^2. \]

- We consider the \textit{generalized operator evaluation} at an element \(b \in \mathbb{F}_{q^m} \) w.r.t. \(a \in \mathbb{F}_{q^m} \):
 \[f(b)_a = \sum_i f_i D_a^i(b) \]

- The generalized operator evaluation forms an \(\mathbb{F}_q \)-linear map, i.e. we have
 \[f(\beta b + \gamma c)_a = \beta f(b)_a + \gamma f(c)_a, \quad \forall \beta, \gamma \in \mathbb{F}_q, \forall a, b, c \in \mathbb{F}_{q^m} \]

- For a skew polynomial \(f \in \mathbb{F}_{q^m}[x; \theta] \), a vector \(b = (b_1, b_2, \ldots, b_n) \in \mathbb{F}_{q^n} \) and \(a \in \mathbb{F}_{q^m} \) we define
 \[f(b)_a := (f(b_1)_a, \ldots, f(b_n)_a) \]
Linearized Reed–Solomon Codes

Definition

- Define $\beta := (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n$ with vectors $\beta^{(i)} = (\beta_1^{(i)}, \ldots, \beta_{n_i}^{(i)}) \in \mathbb{F}_{q^m}^{n_i}$ containing \mathbb{F}_q-linearly independent elements of \mathbb{F}_{q^m} for all $i = 1, \ldots, \ell$ (i.e. $\text{wt}_{\Sigma R}(\beta) = n$)

- Let $\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_{q^m}^\ell$ be a vector containing elements from distinct nontrivial conjugacy classes of \mathbb{F}_q^m and consider a length partition $n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell$ s.t. $n = \sum_{i=1}^\ell n_i$

- A linearized Reed–Solomon (LRS) code of length n and dimension k is defined as [MP18, Car19]

 $$\text{LRS}[\theta, \beta, \xi, \ell; n, k] := \left\{ \left(f(\beta^{(1)})_{\xi_1} | \cdots | f(\beta^{(\ell)})_{\xi_\ell} \right) : f \in \mathbb{F}_{q^m}[x; \theta]_{<k} \right\} \subseteq \mathbb{F}_{q^m}^n$$

- Minimum distance: $n - k + 1 \Rightarrow$ LRS codes are maximum sum-rank distance (MSRD) codes

- Efficient unique decoding up to errors of sum-rank weight $t \leq \frac{n-k}{2}$
Linearized Reed–Solomon Codes

Definition

- Define $\beta := (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q}^{n}$ with vectors $\beta^{(i)} = (\beta_{1}^{(i)}, \ldots, \beta_{n_{i}}^{(i)}) \in \mathbb{F}_{q}^{n_{i}}$ containing \mathbb{F}_{q}-linearly independent elements of \mathbb{F}_{q} for all $i = 1, \ldots, \ell$ (i.e. $\text{wt}_{\Sigma R}(\beta) = n$)

- Let $\xi = (\xi_{1}, \ldots, \xi_{\ell}) \in \mathbb{F}_{q}^{\ell}$ be a vector containing elements from distinct nontrivial conjugacy classes of \mathbb{F}_{q} and consider a length partition $n = (n_{1}, \ldots, n_{\ell}) \in \mathbb{N}^{\ell}$ s.t. $n = \sum_{i=1}^{\ell} n_{i}$

- A linearized Reed–Solomon (LRS) code of length n and dimension k is defined as [MP18, Car19]

$$
\text{LRS}[\theta, \beta, \xi, \ell; n, k] := \left\{ \left(f(\beta^{(1)})_{\xi_{1}}, \cdots, f(\beta^{(\ell)})_{\xi_{\ell}} \right) : f \in \mathbb{F}_{q}[x; \theta]_{<k} \right\} \subseteq \mathbb{F}_{q}^{n}
$$

- Minimum distance: $n - k + 1 \Rightarrow$ LRS codes are MSRD codes

- Efficient unique decoding up to errors of sum-rank weight $t \leq \frac{n-k}{2}$
Linearized Reed–Solomon Codes

Definition

- Define \(\beta := (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n \) with vectors \(\beta^{(i)} = (\beta_1^{(i)}, \ldots, \beta_{n_i}^{(i)}) \in \mathbb{F}_{q^m}^{n_i} \) containing \(\mathbb{F}_q \)-linearly independent elements of \(\mathbb{F}_{q^m} \) for all \(i = 1, \ldots, \ell \) (i.e. \(\text{wt}_{\Sigma R}(\beta) = n \))

- Let \(\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_{q^m}^\ell \) be a vector containing elements from distinct nontrivial conjugacy classes of \(\mathbb{F}_{q^m} \) and consider a length partition \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \) s.t. \(n = \sum_{i=1}^\ell n_i \)

- A linearized Reed–Solomon (LRS) code of length \(n \) and dimension \(k \) is defined as [MP18, Car19]

\[
\text{LRS}[\theta, \beta, \xi, \ell; n, k] := \left\{ \left(f(\beta^{(1)}), \ldots, f(\beta^{(\ell)}) \right) : f \in \mathbb{F}_{q^m}[x; \theta]_{<k} \right\} \subseteq \mathbb{F}_{q^m}^n
\]

- Minimum distance: \(n - k + 1 \Rightarrow \text{LRS codes are MSRD codes} \)

- Efficient unique decoding up to errors of sum-rank weight \(t \leq \frac{n-k}{2} \)
Linearized Reed–Solomon Codes

Definition

- Define \(\beta := (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n \) with vectors \(\beta^{(i)} = (\beta_1^{(i)}, \ldots, \beta_{n_i}^{(i)}) \in \mathbb{F}_{q^m}^{n_i} \) containing \(\mathbb{F}_q \)-linearly independent elements of \(\mathbb{F}_{q^m} \) for all \(i = 1, \ldots, \ell \) (i.e. \(\text{wt}_{\Sigma_R}(\beta) = n \))

- Let \(\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_{q^m}^\ell \) be a vector containing elements from distinct nontrivial conjugacy classes of \(\mathbb{F}_{q^m} \) and consider a length partition \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \) s.t. \(n = \sum_{i=1}^\ell n_i \)

- A linearized Reed–Solomon (LRS) code of length \(n \) and dimension \(k \) is defined as \([\text{MP18, Car19}]\)

\[
\text{LRS}[\theta, \beta, \xi, \ell; n, k] := \left\{ (f(\beta^{(1)})_{\xi_1} | \cdots | f(\beta^{(\ell)})_{\xi_\ell}) : f \in \mathbb{F}_{q^m}[x; \theta]_{<k} \right\} \subseteq \mathbb{F}_{q^m}^n
\]

- Minimum distance: \(n - k + 1 \Rightarrow \) LRS codes are MSRD codes

- Efficient unique decoding up to errors of sum-rank weight \(t \leq \frac{n-k}{2} \)
Linearized Reed–Solomon Codes

Definition

- Define $\beta := (\beta^{(1)} | \cdots | \beta^{(\ell)}) \in \mathbb{F}_{q^m}^n$ with vectors $\beta^{(i)} = (\beta_1^{(i)}, \ldots, \beta_{n_i}^{(i)}) \in \mathbb{F}_{q^m}^{n_i}$ containing \mathbb{F}_q-linearly independent elements of \mathbb{F}_{q^m} for all $i = 1, \ldots, \ell$ (i.e. $\text{wt}_{\Sigma R}(\beta) = n$)

- Let $\xi = (\xi_1, \ldots, \xi_\ell) \in \mathbb{F}_{q^m}^\ell$ be a vector containing elements from distinct nontrivial conjugacy classes of \mathbb{F}_{q^m} and consider a length partition $n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell$ s.t. $n = \sum_{i=1}^\ell n_i$

- A linearized Reed–Solomon (LRS) code of length n and dimension k is defined as $[\text{MP18, Car19}]$

$$\text{LRS}[\theta, \beta, \xi, \ell; n, k] := \left\{ (f(\beta^{(1)})_{\xi_1} | \cdots | f(\beta^{(\ell)})_{\xi_\ell}) : f \in \mathbb{F}_{q^m}[x; \theta]_{<k} \right\} \subseteq \mathbb{F}_{q^m}^n$$

- **Minimum distance:** $n - k + 1 \Rightarrow$ LRS codes are MSRD codes

- Efficient unique decoding up to errors of sum-rank weight $t \leq \frac{n-k}{2}$
Interleaved Linearized Reed–Solomon Codes

Definition

Fix a length partition \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \) with \(n = \sum_{i=1}^\ell n_i \), an interleaving order \(s \geq 1 \) and \(k = (k_1, \ldots, k_s) \in \mathbb{N}^s \) for \(1 \leq k_j \leq n \)

Let \(\beta_j = (\beta_j^{(1)} | \cdots | \beta_j^{(\ell)}) \in \mathbb{F}_{q^m}^{n_i} \) with \(\beta_j^{(i)} \in \mathbb{F}_{q^m}^{n_i} \) have \(\text{wt}_{SR}(\beta_j) = n \) for all \(j = 1, \ldots, s \) and define \(\beta = (\beta_1 | \cdots | \beta_s) \).

Let \(\xi_j \in \mathbb{F}_{q^m}^{\ell} \) contain representatives of distinct nontrivial conjugacy classes of \(\mathbb{F}_{q^m} \) and define \(\xi = (\xi_1 | \cdots | \xi_s) \).

An \(s \)-interleaved linearized Reed–Solomon (ILRS) code is defined as

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] := \left\{ (c_1, c_2, \ldots, c_s) : c_j \in \text{LRS}[\theta, \beta_j, \xi_j, \ell; n, k_j], \forall j = 1, \ldots, s \right\} \subseteq \mathbb{F}_{q^m}^{sn}.
\]

Minimum distance: \(n - \max_j \{k_j\} + 1 \Rightarrow \text{LRS codes are MSRD codes iff. } k_1 = k_2 = \cdots = k_s \)
Interleaved Linearized Reed–Solomon Codes

Definition

- Fix a length partition \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \) with \(n = \sum_{i=1}^\ell n_i \), an interleaving order \(s \geq 1 \) and \(k = (k_1, \ldots, k_s) \in \mathbb{N}^s \) for \(1 \leq k_j \leq n \).

- Let \(\beta_j = (\beta_j^{(1)} | \cdots | \beta_j^{(\ell)}) \in \mathbb{F}^{n_j}_{q^m} \) with \(\beta_j^{(i)} \in \mathbb{F}^{n_i}_{q^m} \) have \(\text{wt}^{SR}(\beta_j) = n \) for all \(j = 1, \ldots, s \) and define \(\beta = (\beta_1 | \cdots | \beta_s) \).

- Let \(\xi_j \in \mathbb{F}^r_{q^m} \) contain representatives of distinct nontrivial conjugacy classes of \(\mathbb{F}^r_{q^m} \) and define \(\xi = (\xi_1 | \cdots | \xi_s) \).

- An \(s \)-interleaved linearized Reed–Solomon (ILRS) code is defined as

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] := \left\{ (c_1, c_2, \ldots, c_s) : c_j \in \text{LRS}[\theta, \beta_j, \xi_j, \ell; n, k_j], \quad \forall j = 1, \ldots, s \right\} \subseteq \mathbb{F}^{sn}_{q^m}.
\]

- Minimum distance: \(n - \max_j \{k_j\} + 1 \Rightarrow \text{LRS codes are MSRD codes iff. } k_1 = k_2 = \cdots = k_s \).
Interleaved Linearized Reed–Solomon Codes

Definition

- Fix a length partition \(n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell \) with \(n = \sum_{i=1}^\ell n_i \), an interleaving order \(s \geq 1 \) and \(k = (k_1, \ldots, k_s) \in \mathbb{N}^s \) for \(1 \leq k_j \leq n \).

- Let \(\beta_j = (\beta_j^{(1)} \mid \cdots \mid \beta_j^{(\ell)}) \in \mathbb{F}_{q^m}^{n_j} \) with \(\beta_j^{(i)} \in \mathbb{F}_{q^m}^{n_i} \) have \(\text{wt}_{\Sigma R}(\beta_j) = n \) for all \(j = 1, \ldots, s \) and define \(\beta = (\beta_1 \mid \cdots \mid \beta_s) \).

- Let \(\xi_j \in \mathbb{F}_{q^m}^{\ell} \) contain representatives of distinct nontrivial conjugacy classes of \(\mathbb{F}_{q^m} \) and define \(\xi = (\xi_1 \mid \cdots \mid \xi_s) \).

- An \(s \)-interleaved linearized Reed–Solomon (ILRS) code is defined as

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] := \left\{ (c_1, c_2, \ldots, c_s) : c_j \in \text{LRS}[\theta, \beta_j, \xi_j, \ell; n, k_j], \quad \forall j = 1, \ldots, s \right\} \subseteq \mathbb{F}_{q^m}^{sn}.
\]

- Minimum distance: \(n - \max_j \{k_j\} + 1 \Rightarrow \text{LRS codes are MSRD codes iff. } k_1 = k_2 = \cdots = k_s \)
Interleaved Linearized Reed–Solomon Codes

Definition

- Fix a length partition $n = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell$ with $n = \sum_{i=1}^\ell n_i$, an interleaving order $s \geq 1$ and $k = (k_1, \ldots, k_s) \in \mathbb{N}^s$ for $1 \leq k_j \leq n$.

- Let $\beta_j = (\beta_j^{(1)} | \cdots | \beta_j^{(\ell)}) \in \mathbb{F}_q^{n_j}$ with $\beta_j^{(i)} \in \mathbb{F}_q^{n_i}$ have $\text{wt}_{\Sigma R}(\beta_j) = n$ for all $j = 1, \ldots, s$ and define $\beta = (\beta_1 | \cdots | \beta_s)$.

- Let $\xi_j \in \mathbb{F}_q^{n_j}$ contain representatives of distinct nontrivial conjugacy classes of \mathbb{F}_q and define $\xi = (\xi_1 | \cdots | \xi_s)$.

- An s-interleaved linearized Reed–Solomon (ILRS) code is defined as

$$\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] := \left\{ (c_1, c_2, \ldots, c_s) : c_j \in \text{LRS}[\theta, \beta_j, \xi_j, \ell; n, k_j], \quad \forall j = 1, \ldots, s \right\} \subseteq \mathbb{F}_q^{sn}.$$

- Minimum distance: $n - \max_j \{k_j\} + 1 \Rightarrow \text{LRS codes are MSRD codes iff. } k_1 = k_2 = \cdots = k_s$.
Interleaved Linearized Reed–Solomon Codes

Definition

- Fix a length partition $\mathbf{n} = (n_1, \ldots, n_\ell) \in \mathbb{N}^\ell$ with $n = \sum_{i=1}^\ell n_i$, an interleaving order $s \geq 1$ and \(\mathbf{k} = (k_1, \ldots, k_s) \in \mathbb{N}^s \) for $1 \leq k_j \leq n$.

- Let $\beta_j = (\beta_j^{(1)}, \ldots, \beta_j^{(\ell)}) \in \mathbb{F}_{q^m}^{n_j}$ with $\beta_j^{(i)} \in \mathbb{F}_{q^m}^{n_i}$ have $\text{wt}_{\Sigma_R}(\beta_j) = n$ for all $j = 1, \ldots, s$ and define $\beta = (\beta_1, \ldots, \beta_s)$.

- Let $\xi_j \in \mathbb{F}_{q^m}^{\ell}$ contain representatives of distinct nontrivial conjugacy classes of \mathbb{F}_{q^m} and define $\xi = (\xi_1, \ldots, \xi_s)$.

- An s-interleaved linearized Reed–Solomon (ILRS) code is defined as

$$
\text{ILRS}[\theta, \beta, \xi, \ell; \mathbf{n}, \mathbf{k}] := \left\{ (\mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_s) : \mathbf{c}_j \in \text{LRS}[\theta, \beta_j, \xi_j, \ell; n_j, k_j], \quad \forall j = 1, \ldots, s \right\} \subseteq \mathbb{F}_{q^m}^{sn}.
$$

- Minimum distance: $n - \max_j \{k_j\} + 1 \Rightarrow$ LRS codes are MSRD codes iff. $k_1 = k_2 = \cdots = k_s$.
Interleaved Linearized Reed–Solomon Codes

Definition

- The sum-rank weight of a horizontally interleaved vector

\[x = \left((x_1^{(1)} \mid \cdots \mid x_1^{(\ell)}), (x_2^{(1)} \mid \cdots \mid x_2^{(\ell)}), \ldots, (x_s^{(1)} \mid \cdots \mid x_s^{(\ell)}) \right) \in \mathbb{F}_{q^m}^{sn} \]

is defined as

\[
\text{wt}_{\Sigma R}(x) := \sum_{i=1}^{\ell} \text{rk}_q(x_1^{(i)}, \ldots, x_s^{(i)})
\]

We call ILRS codes

- **locator-homogeneous**, if the code locators \(\beta \) of the component codes are equal, i.e.

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \left\{ \left(f_1(\beta)_{\xi_1}, \ldots, f_s(\beta)_{\xi_s} \right) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<k_j}, \forall j = 1, \ldots, s \right\}
\]

- **evaluation-homogeneous**, if the component codes use the same evaluation parameters \(\xi \)

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \left\{ \left(f_1(\beta_1)_{\xi_1}, \ldots, f_s(\beta_s)_{\xi_s} \right) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<k_j}, \forall j = 1, \ldots, s \right\}
\]
Interleaved Linearized Reed–Solomon Codes

Definition

- The sum-rank weight of a horizontally interleaved vector
 \[x = \left((x_1^{(1)} | \cdots | x_1^{(\ell)}), (x_2^{(1)} | \cdots | x_2^{(\ell)}), \ldots, (x_s^{(1)} | \cdots | x_s^{(\ell)}) \right) \in \mathbb{F}_{q^m}^{sn} \]
 is defined as
 \[\text{wt}_{\Sigma R}(x) := \sum_{i=1}^{\ell} \text{rk}_q(x_1^{(i)}, \ldots, x_s^{(i)}) \]

We call ILRS codes

- **locator-homogeneous**, if the code locators \(\beta \) of the component codes are equal, i.e.
 \[\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \{ (f_1(\beta)\xi_1, \ldots, f_s(\beta)\xi_s) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<kj}, \forall j = 1, \ldots, s \} \]

- **evaluation-homogeneous**, if the component codes use the same evaluation parameters \(\xi \)
 \[\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \{ (f_1(\beta_1)\xi, \ldots, f_s(\beta_s)\xi) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<kj}, \forall j = 1, \ldots, s \} \]
Interleaved Linearized Reed–Solomon Codes

Definition

- The sum-rank weight of a horizontally interleaved vector

\[
x = \left((x_1^{(1)} | \cdots | x_1^{(\ell)}), (x_2^{(1)} | \cdots | x_2^{(\ell)}), \ldots, (x_s^{(1)} | \cdots | x_s^{(\ell)}) \right) \in \mathbb{F}_{q^m}^{sn}
\]

is defined as

\[
\text{wt}_{\Sigma R}(x) := \sum_{i=1}^{\ell} \text{rk}_q(x_1^{(i)}, \ldots, x_s^{(i)})
\]

We call ILRS codes

- **locator-homogeneous**, if the code locators \(\beta \) of the component codes are equal, i.e.

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \{ (f_1(\beta)_{\xi_1}, \ldots, f_s(\beta)_{\xi_s}) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<k_j}, \forall j = 1, \ldots, s \}
\]

- **evaluation-homogeneous**, if the component codes use the same evaluation parameters \(\xi \)

\[
\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] = \{ (f_1(\beta_1)_{\xi}, \ldots, f_s(\beta_s)_{\xi}) : f_j \in \mathbb{F}_{q^m}[x; \theta]_{<k_j}, \forall j = 1, \ldots, s \}
\]
Evaluation-Homogeneous ILRS Codes

- Consider an evaluation-homogeneous ILRS code \(\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) where the code locators \(\beta_1, \ldots, \beta_s \) of the component codes span the same \(\mathbb{F}_q \)-linear space block-wise, i.e. we have

\[
\langle \beta_1^{(i)} \rangle_q = \langle \beta_2^{(i)} \rangle_q = \cdots = \langle \beta_s^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell
\]

- Let \(\beta_* := (\beta_1^{(1)} | \cdots | \beta_\ell^{(\ell)}) \in \mathbb{F}_{q^m}^n \) be such that

\[
\langle \beta_*^{(i)} \rangle_q = \langle \beta_j^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s
\]

- Then there exist full-rank matrices \(W_j^{(i)} \in \mathbb{F}_q^{n_j \times n_i} \) such that

\[
\beta_j^{(i)} = \beta_*^{(i)} W_j^{(i)}, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s
\]

- Hence, \(\beta_j W_j = \beta_* \) with \(W_j = \text{diag}(W_1^{(1)}, \ldots, W_\ell^{(\ell)}) \) for all \(j = 1, \ldots, s \)
Evaluation-Homogeneous ILRS Codes

Consider an evaluation-homogeneous ILRS code $\text{ILRS}[\theta, \beta, \xi, \ell; s, n, k]$ where the code locators β_1, \ldots, β_s of the component codes span the same \mathbb{F}_q-linear space block-wise, i.e. we have

$$\langle \beta^{(i)}_1 \rangle_q = \langle \beta^{(i)}_2 \rangle_q = \cdots = \langle \beta^{(i)}_s \rangle_q, \quad \forall i = 1, \ldots, \ell$$

Let $\beta_* := (\beta^{(1)}_* | \cdots | \beta^{(\ell)}_*) \in \mathbb{F}_q^n$ be such that

$$\langle \beta^{(i)}_* \rangle_q = \langle \beta^{(i)}_{j} \rangle_q, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s$$

Then there exist full-rank matrices $W^{(i)}_j \in \mathbb{F}_q^{n_j \times n_i}$ such that

$$\beta^{(i)}_j = \beta^{(i)}_* W^{(i)}_j, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s$$

Hence, $\beta_j W_j = \beta_*$ with $W_j = \text{diag}(W^{(1)}_j, \ldots, W^{(\ell)}_j)$ for all $j = 1, \ldots, s$
Evaluation-Homogeneous ILRS Codes

- Consider an evaluation-homogeneous ILRS code ILRS[$\theta, \beta, \xi, \ell, s; n, k$] where the code locators β_1, \ldots, β_s of the component codes span the same \mathbb{F}_q-linear space block-wise, i.e. we have
 \[\langle \beta_1^{(i)} \rangle_q = \langle \beta_2^{(i)} \rangle_q = \cdots = \langle \beta_s^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell \]
- Let $\beta_* := (\beta_1^{(1)} | \cdots | \beta_\ell^{(\ell)}) \in \mathbb{F}_{q^m}$ be such that
 \[\langle \beta_*^{(i)} \rangle_q = \langle \beta_j^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s \]
- Then there exist full-rank matrices $W_j^{(i)} \in \mathbb{F}_q^{n_i \times n_i}$ such that
 \[\beta_j^{(i)} = \beta_*^{(i)} W_j^{(i)}, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s \]
- Hence, $\beta_j W_j = \beta_*$ with $W_j = \text{diag}(W_j^{(1)}, \ldots, W_j^{(\ell)})$ for all $j = 1, \ldots, s$
Evaluation-Homogeneous ILRS Codes

Consider an evaluation-homogeneous ILRS code $\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ where the code locators β_1, \ldots, β_s of the component codes span the same \mathbb{F}_q-linear space block-wise, i.e. we have

$$\langle \beta_1^{(i)} \rangle_q = \langle \beta_2^{(i)} \rangle_q = \cdots = \langle \beta_s^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell$$

Let $\beta_* := (\beta_*^{(1)} | \cdots | \beta_*^{(\ell)}) \in \mathbb{F}_{q^m}$ be such that

$$\langle \beta_*^{(i)} \rangle_q = \langle \beta_j^{(i)} \rangle_q, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s$$

Then there exist full-rank matrices $W_j^{(i)} \in \mathbb{F}_q^{n_i \times n_i}$ such that

$$\beta_j^{(i)} = \beta_*^{(i)} W_j^{(i)}, \quad \forall i = 1, \ldots, \ell, \forall j = 1, \ldots, s$$

Hence, $\beta_j W_j = \beta_*$ with $W_j = \text{diag}(W_j^{(1)}, \ldots, W_j^{(\ell)})$ for all $j = 1, \ldots, s$
Evaluation-Homogeneous ILRS Codes

Lemma (Transformed Codewords)

For any \(c = (c_1, \ldots, c_s) \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) we have that

\[
\tilde{c} = (c_1 W_1, \ldots, c_s W_s) \in \text{ILRS}[\theta, \beta^*, \xi, \ell, s; n, k]
\]

The statement follows from the \(\mathbb{F}_q \)-linearity of the generalized operator evaluation, i.e. for all \(j = 1, \ldots, s \) we have:

\[
c_j W_j = \left(f_j(\beta_j^{(1)})_{\xi_j,1} W_j^{(1)} \mid \cdots \mid f_j(\beta_j^{(\ell)})_{\xi_j,\ell} W_j^{(\ell)} \right) = \left(f_j(\beta_j^{(1)} W_j^{(1)})_{\xi_j,1} \mid \cdots \mid f_j(\beta_j^{(\ell)} W_j^{(\ell)})_{\xi_j,\ell} \right).
\]

\[
= \beta_j^{(1)} \mid \cdots \mid \beta_j^{(\ell)}
\]
Evaluation-Homogeneous ILRS Codes

Lemma (Transformed Codewords)
For any $c = (c_1, \ldots, c_s) \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ we have that

$$\tilde{c} = (c_1 W_1, \ldots, c_s W_s) \in \text{ILRS}[\theta, \beta^*, \xi, \ell, s; n, k]$$

The statement follows from the \mathbb{F}_q-linearity of the generalized operator evaluation, i.e. for all $j = 1, \ldots, s$ we have:

$$c_j W_j = \left(f_j(\beta_j^{(1)}) \xi_{j,1} W_j^{(1)} \mid \cdots \mid f_j(\beta_j^{(\ell)}) \xi_{j,\ell} W_j^{(\ell)} \right) = \left(f_j(\beta_j^{(1)}) W_j^{(1)} \xi_{j,1} \mid \cdots \mid f_j(\beta_j^{(\ell)}) W_j^{(\ell)} \xi_{j,\ell} \right).$$

$$= \beta_j^{(1)} \xi_{j,1} \mid \cdots \mid \beta_j^{(\ell)} \xi_{j,\ell}.$$
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi, \ell; s, n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_{\Sigma R}(e) = t.
\]

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices \(H_1, \ldots, H_s \) of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \(\hat{e} \) of the error vector and return \(\hat{c} = y - \hat{e} \)

Universal Decoding procedure:
- Compute the transformed received word

\[
\tilde{y} = (y_1 W_1 \ldots y_s W_s) = (c_1 W_1 \ldots c_s W_s) + (e_1 W_1 \ldots e_s W_s)
\]
- Apply a decoder \(\tilde{D} \) for ILRS[\(\theta, \beta, \xi, \ell, s; n, k \)] to \(\tilde{y} \):
 - Interpolation-based: recovers message polynomials \(f_1, \ldots, f_s \) directly (no transformation required)
 - Decoding scheme has the same characteristic as decoding \(e \) directly
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of $c \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ over a sum-rank channel

$$y = c + e \quad \text{with} \quad \text{wt}_R(e) = t.$$

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices H_1, \ldots, H_s of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \hat{e} of the error vector and return $\hat{c} = y - \hat{e}$

Universal Decoding procedure:
- Compute the transformed received word

$$\tilde{y} = (y_1 W_1 \ldots y_s W_s) = (c_1 W_1 \ldots c_s W_s) + (e_1 W_1 \ldots e_s W_s)$$

- Apply a decoder \tilde{D} for ILRS[\theta, \beta^*, \xi, \ell, s; n, k] to \tilde{y}:
 - **Interpolation-based:** recovers message polynomials f_1, \ldots, f_s directly (no transformation required)
- Decoding scheme has the same characteristic as decoding e directly
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_{\Sigma_R}(e) = t.
\]

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices \(H_1, \ldots, H_s \) of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \(\hat{e} \) of the error vector and return \(\hat{c} = y - \hat{e} \)

Universal Decoding procedure:
- Compute the transformed received word

\[
\tilde{y} = (y_1W_1 \ldots y_sW_s) = (c_1W_1 \ldots c_sW_s) + (e_1W_1 \ldots e_sW_s)
\]
- Apply a decoder \(\tilde{D} \) for ILRS[\(\theta, \beta, \xi, \ell, s; n, k \)] to \(\tilde{y} \):
 - Interpolation-based: recovers message polynomials \(f_1, \ldots, f_s \) directly (no transformation required)
 - Decoding scheme has the same characteristic as decoding \(e \) directly
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_{\Sigma_R}(e) = t.
\]

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices \(H_1, \ldots, H_s \) of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \(\hat{e} \) of the error vector and return \(\hat{c} = y - \hat{e} \)

Universal Decoding procedure:
- Compute the transformed received word

\[
\tilde{y} = (y_1 W_1 \ldots y_s W_s) = (c_1 W_1 \ldots c_s W_s) + (e_1 W_1 \ldots e_s W_s)
\]
- Apply a decoder \(\tilde{D} \) for ILRS[\(\theta, \beta, \xi, \ell, s; n, k \)] to \(\tilde{y} \):
 - Interpolation-based: recovers message polynomials \(f_1, \ldots, f_s \) directly (no transformation required)
 - Decoding scheme has the same characteristic as decoding \(e \) directly
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of $c \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ over a sum-rank channel

$$y = c + e \quad \text{with} \quad \text{wt}_{\Sigma_R}(e) = t.$$

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices H_1, \ldots, H_s of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \hat{e} of the error vector and return $\hat{c} = y - \hat{e}$

Universal Decoding procedure:
- Compute the transformed received word
 $$\tilde{y} = (y_1 W_1 \ldots y_s W_s) = (c_1 W_1 \ldots c_s W_s) + (e_1 W_1 \ldots e_s W_s)$$
- Apply a decoder \tilde{D} for ILRS$[\theta_*, \beta_*, \xi, \ell, s; n, k]$ to \tilde{y}:
 - **Interpolation-based:** recovers message polynomials f_1, \ldots, f_s directly (no transformation required)
- Decoding scheme has the same characteristic as decoding e directly
Decoding of Evaluation-Homogeneous ILRS Codes

Consider the transmission of $c \in \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ over a sum-rank channel

$$y = c + e \quad \text{with} \quad \text{wt}_{\Sigma R}(e) = t.$$

Syndrome Decoding procedure:
- Compute syndromes using the parity-check matrices H_1, \ldots, H_s of the component codes
- Solve key equations (multi-sequence skew-feedback shift-register synthesis)
- Recover estimate \hat{e} of the error vector and return $\hat{c} = y - \hat{e}$

Universal Decoding procedure:
- Compute the transformed received word

$$\tilde{y} = \begin{pmatrix} y_1 W_1 & \cdots & y_s W_s \end{pmatrix} = \begin{pmatrix} c_1 W_1 & \cdots & c_s W_s \end{pmatrix} + \begin{pmatrix} e_1 W_1 & \cdots & e_s W_s \end{pmatrix}$$

- Apply a decoder \tilde{D} for ILRS[$\theta, \beta_*, \xi, \ell, s; n, k$] to \tilde{y}:
 - **Interpolation-based:** recovers message polynomials f_1, \ldots, f_s directly (no transformation required)
- Decoding scheme has the same characteristic as decoding e directly
Locator-Homogeneous ILRS Codes

- Consider a locator-homogeneous ILRS code ILRS[\(\theta, \beta, \xi, \ell, s; n, k\)] with code locators
 \(\beta = (\beta_* | \cdots | \beta_*)\) where \(\beta_* = (\beta_*^{(1)} | \beta_*^{(2)} | \cdots | \beta_*^{(s)}) \in \mathbb{F}_q^n\) with \(\text{wt}_{\Sigma R}(\beta_*) = n\)

- Let \(G_j \in \mathbb{F}_{q^m}^{k_j \times n}\) be a generator matrix of the \(j\)-th component code of the form
 \[G_j = \lambda_{k_j}(\beta_*)^\gamma = \left(V_{k_j}(\beta_*^{(1)})_{\xi_{j,1}} | V_{k_j}(\beta_*^{(2)})_{\xi_{j,2}} | \cdots | V_{k_j}(\beta_*^{(\ell)})_{\xi_{j,\ell}} \right)\]

Lemma

For a vector \(\beta = (\beta_1, \ldots, \beta_r) \in \mathbb{F}_q^r\), an element \(\xi \in \mathbb{F}_q^m\), a nonzero \(c \in \mathbb{F}_q^m\) and \(k \in \mathbb{N}^*\) we have that
\[V_k(\beta)_{\xi^c} = N_k(c) \cdot V_k(\beta)_{\xi}\]
with \(N_k(c) := \text{diag}(N_0^\theta(\theta(c)c^{-1}), \ldots, N_{k-1}^\theta(\theta(c)c^{-1})) \in \mathbb{F}_{q^m}^{k \times k}\).
Locator-Homogeneous ILRS Codes

Consider a locator-homogeneous ILRS code $\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ with code locators $\beta = (\beta_\ast | \cdots | \beta_\ast)$ where $\beta_\ast = (\beta_\ast^{(1)} | \beta_\ast^{(2)} | \cdots | \beta_\ast^{(s)}) \in \mathbb{F}_q^m$ with $\text{wt}_\Sigma(\beta_\ast) = n$

Let $G_j \in \mathbb{F}_q^{k_j \times n}$ be a generator matrix of the j-th component code of the form

$$G_j = \lambda_{k_j}(\beta_\ast^\gamma) = \left(V_{k_j}(\beta_\ast^{(1)})_{\xi_j, 1} | V_{k_j}(\beta_\ast^{(2)})_{\xi_j, 2} | \cdots | V_{k_j}(\beta_\ast^{(\ell)})_{\xi_j, \ell} \right)$$

Lemma

For a vector $\beta = (\beta_1, \ldots, \beta_r) \in \mathbb{F}_q^m$, an element $\xi \in \mathbb{F}_q^m$, a nonzero $c \in \mathbb{F}_q^*$ and $k \in \mathbb{N}^*$ we have that

$$V_k(\beta)_{\xi^c} = N_k(c) \cdot V_k(\beta)_{\xi}$$

with $N_k(c) := \text{diag}(N_0^\theta(c\xi^{-1}), \ldots, N_{k-1}^\theta(c\xi^{-1})) \in \mathbb{F}_q^{k \times k}$.

DLR
Locator-Homogeneous ILRS Codes

- Consider a locator-homogeneous ILRS code $\text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]$ with code locators $\beta = (\beta_1 | \cdots | \beta_s)$ where $\beta_* = (\beta_*^{(1)} | \beta_*^{(2)} | \cdots | \beta_*^{(s)}) \in F_{qm}^n$ with $\text{wt}_R(\beta_*) = n$.

- Let $G_j \in F_{q^m}^{k_j \times n}$ be a generator matrix of the j-th component code of the form

$$G_j = \lambda_{k_j}(\beta_*^{(j)}) \gamma = \begin{pmatrix} V_{k_j}(\beta_*^{(1)})\xi_{j,1} & V_{k_j}(\beta_*^{(2)})\xi_{j,2} & \cdots & V_{k_j}(\beta_*^{(\ell)})\xi_{j,\ell} \end{pmatrix}$$

Lemma

For a vector $\beta = (\beta_1, \ldots, \beta_r) \in F_{q^m}^r$, an element $\xi \in F_{q^m}$, a nonzero $c \in F_{q^m}^*$ and $k \in \mathbb{N}^*$ we have that

$$V_k(\beta)\xi^c = N_k(c) \cdot V_k(\beta)\xi$$

with $N_k(c) := \text{diag}(N_0^\theta(\theta(c)c^{-1}), \ldots, N_{k-1}^\theta(\theta(c)c^{-1})) \in F_{q^m}^{k \times k}$.
Locator-Homogeneous ILRS Codes

- Let $c_j = (c_{j,1}, \ldots, c_{j,\ell}) \in \mathbb{F}_{q^m}^{\ell}$ contain only nonzero entries and define the conjugate vectors $\xi_j^{c_j} = (\xi_{j,1}^{c_j}, \ldots, \xi_{j,\ell}^{c_j}) \in \mathbb{F}_{q^m}^{\ell}$ for all $j = 1, \ldots, s$ and $\xi^c = (\xi_1^c | \cdots | \xi_s^c) \in \mathbb{F}_{q^m}^{s\ell}$.

- Then there exists a generator matrix for the j-th component code of ILRS $[\theta, \beta, \xi^c, \ell, s; n, k]$ of the form

$$
\begin{pmatrix}
N_{kj}(c_{j,1}) \cdot V_{kj}(\beta^{(1)}_{*})_{\xi_{j,1}} & N_{kj}(c_{j,2}) \cdot V_{kj}(\beta^{(2)}_{*})_{\xi_{j,2}} & \cdots & N_{kj}(c_{j,\ell}) \cdot V_{kj}(\beta^{(\ell)}_{*})_{\xi_{j,\ell}}
\end{pmatrix}
$$

(2)

- If $c_{j,1} = c_{j,2} = \cdots = c_{j,\ell}$ or $c_j \in \mathbb{F}_q^{\ell}$, then we can write (2) as

$$
N_{kj}(c_{j,1}) \cdot \left(V_{kj}(\beta^{(1)}_{*})_{\xi_{j,1}} | V_{kj}(\beta^{(2)}_{*})_{\xi_{j,2}} | \cdots | V_{kj}(\beta^{(\ell)}_{*})_{\xi_{j,\ell}} \right) = N_{kj}(c_{j,1}) \cdot G_j.
$$

- Since $N_{kj}(c_{j,1})$ has full rank, $N_{kj}(c_{j,1}) \cdot G_j$ and G_j have the same row space for all $j = 1, \ldots, s$. Hence,

$$
\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]
$$
Locator-Homogeneous ILRS Codes

- Let $c_j = (c_{j,1}, \ldots, c_{j,\ell}) \in \mathbb{F}_q^{\ell m}$ contain only nonzero entries and define the conjugate vectors $\xi_{c_j}^j = (\xi_{c_j,1}^j, \ldots, \xi_{c_j,\ell}^j) \in \mathbb{F}_q^{\ell m}$ for all $j = 1, \ldots, s$ and $\xi^c = (\xi_1^c | \cdots | \xi_s^c) \in \mathbb{F}_q^{s \ell m}$.

- Then there exists a generator matrix for the j-th component code of ILRS $[\theta, \beta, \xi^c, \ell, s; n, k]$ of the form

$$
\begin{pmatrix}
N_{kj}(c_{j,1}) \cdot V_{kj}(\beta^{(1)}_*)^j_{\xi_{j,1}} & N_{kj}(c_{j,2}) \cdot V_{kj}(\beta^{(2)}_*^j)^{j,j}_{\xi_{j,2}} & \cdots & N_{kj}(c_{j,\ell}) \cdot V_{kj}(\beta^{(\ell)}_*^j)^{j,j}_{\xi_{j,\ell}}
\end{pmatrix}
$$

(2)

- If $c_{j,1} = c_{j,2} = \cdots = c_{j,\ell}$ or $c_j \in \mathbb{F}_q^\ell$, then we can write (2) as

$$
N_{kj}(c_{j,1}) \cdot \left(V_{kj}(\beta^{(1)}_*)^j_{\xi_{j,1}} | V_{kj}(\beta^{(2)}_*^j)^{j,j}_{\xi_{j,2}} | \cdots | V_{kj}(\beta^{(\ell)}_*^j)^{j,j}_{\xi_{j,\ell}} \right) = N_{kj}(c_{j,1}) \cdot G_j.
$$

- Since $N_{kj}(c_{j,1})$ has full rank, $N_{kj}(c_{j,1}) \cdot G_j$ and G_j have the same row space for all $j = 1, \ldots, s$. Hence,

$$
\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]
$$
Locator-Homogeneous ILRS Codes

- Let $c_j = (c_{j,1}, \ldots, c_{j,\ell}) \in \mathbb{F}_q^\ell$ contain only nonzero entries and define the conjugate vectors $\xi^j = (\xi^j_{c_1}, \ldots, \xi^j_{c_{\ell}}) \in \mathbb{F}_q^\ell$ for all $j = 1, \ldots, s$ and $\xi^c = (\xi^c_1 | \cdots | \xi^c_s) \in \mathbb{F}_q^s$.

- Then there exists a generator matrix for the j-th component code of ILRS $[\theta, \beta, \xi^c, \ell, s; n, k]$ of the form

$$
\begin{pmatrix}
N_{k_j}(c_{j,1}) \cdot V_{k_j}(\beta_{1j}^{(1)})\xi_{j,1} & N_{k_j}(c_{j,2}) \cdot V_{k_j}(\beta_{1j}^{(2)})\xi_{j,2} & \cdots & N_{k_j}(c_{j,\ell}) \cdot V_{k_j}(\beta_{1j}^{(\ell)})\xi_{j,\ell}
\end{pmatrix}
$$

(2)

- If $c_{j,1} = c_{j,2} = \cdots = c_{j,\ell}$ or $c_j \in \mathbb{F}_q^\ell$, then we can write (2) as

$$
N_{k_j}(c_{j,1}) \cdot \begin{pmatrix}
V_{k_j}(\beta_{1j}^{(1)})\xi_{j,1} & V_{k_j}(\beta_{1j}^{(2)})\xi_{j,2} & \cdots & V_{k_j}(\beta_{1j}^{(\ell)})\xi_{j,\ell}
\end{pmatrix} = N_{k_j}(c_{j,1}) \cdot G_j.
$$

- Since $N_{k_j}(c_{j,1})$ has full rank, $N_{k_j}(c_{j,1}) \cdot G_j$ and G_j have the same row space for all $j = 1, \ldots, s$.

Hence,

$$
\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]
$$
Locator-Homogeneous ILRS Codes

- Let $\mathbf{c}_j = (c_{j,1}, \ldots, c_{j,\ell}) \in \mathbb{F}_q^{\ell m}$ contain only nonzero entries and define the conjugate vectors $\xi_{c}^j = (\xi_{c}^{j,1}, \ldots, \xi_{c}^{j,\ell}) \in \mathbb{F}_q^{\ell m}$ for all $j = 1, \ldots, s$ and $\xi^c = (\xi_1^c | \cdots | \xi_s^c) \in \mathbb{F}_q^{s \ell m}$.

- Then there exists a generator matrix for the j-th component code of ILRS $[\theta, \beta, \xi^c, \ell, s; n, k]$ of the form

$$
\begin{pmatrix}
N_{kj}(c_{j,1}) \cdot V_{kj}(\beta_{j,1}^{(1)}) \xi_{j,1} & N_{kj}(c_{j,2}) \cdot V_{kj}(\beta_{j,2}^{(2)}) \xi_{j,2} & \cdots & N_{kj}(c_{j,\ell}) \cdot V_{kj}(\beta_{j,\ell}^{(\ell)}) \xi_{j,\ell}
\end{pmatrix}
$$

(2)

- If $c_{j,1} = c_{j,2} = \cdots = c_{j,\ell}$ or $c_j \in \mathbb{F}_q^\ell$, then we can write (2) as

$$
N_{kj}(c_{j,1}) \cdot \begin{pmatrix}
V_{kj}(\beta_{j,1}^{(1)}) \xi_{j,1} & V_{kj}(\beta_{j,2}^{(2)}) \xi_{j,2} & \cdots & V_{kj}(\beta_{j,\ell}^{(\ell)}) \xi_{j,\ell}
\end{pmatrix} = N_{kj}(c_{j,1}) \cdot \mathbf{G}_j.
$$

- Since $N_{kj}(c_{j,1})$ has full rank, $N_{kj}(c_{j,1}) \cdot \mathbf{G}_j$ and \mathbf{G}_j have the same row space for all $j = 1, \ldots, s$.

Hence,

$$
\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k]
$$
Decoding of Locator-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_\Sigma(e) = t
\]

where either

- \(c_{j,1} = c_{j,2} = \cdots = c_{j,\ell} \) or
- \(c_j \in \mathbb{F}_q^\ell \) for all \(j = 1, \ldots, s \).

Universal Decoding procedure:

- Since \(\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) we can apply a decoder \(D \) to \(y \):
 - Interpolation-based: recovers message polynomials \(f_1, \ldots, f_s \) directly (transformation required to account for different encoding)
 - Syndrome-based: Returns \(c = y - e \) (no transformation required)

Decoding scheme has the same performance since the error \(e \) is not changed.
Decoding of Locator-Homogeneous ILRS Codes

Consider the transmission of $c \in \text{ILRS}[heta, \beta, \xi^c, \ell, s; n, k]$ over a sum-rank channel

$$y = c + e \quad \text{with} \quad \text{wt}_{\Sigma_R}(e) = t$$

where either
- $c_{j,1} = c_{j,2} = \cdots = c_{j,\ell}$ or
- $c_j \in \mathbb{F}_q^\ell$ for all $j = 1, \ldots, s$.

Universal Decoding procedure:
- Since $\text{ILRS}[heta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[heta, \beta, \xi, \ell, s; n, k]$ we can apply a decoder D to y:
 - Interpolation-based: recovers message polynomials f_1, \ldots, f_s directly (transformation required to account for different encoding)
 - Syndrome-based: Returns $c = y - e$ (no transformation required)

Decoding scheme has the same performance since the error e is not changed
Decoding of Locator-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_{\Sigma_R}(e) = t
\]

where either
- \(c_{j,1} = c_{j,2} = \cdots = c_{j,\ell} \) or
- \(c_j \in \mathbb{F}_q^\ell \) for all \(j = 1, \ldots, s \).

Universal Decoding procedure:
- Since \(\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) we can apply a decoder \(\mathcal{D} \) to \(y \):
 - **Interpolation-based**: recovers message polynomials \(f_1, \ldots, f_s \) directly (transformation required to account for different encoding)
 - **Syndrome-based**: Returns \(c = y - e \) (no transformation required)

Decoding scheme has the same performance since the error \(e \) is not changed.
Decoding of Locator-Homogeneous ILRS Codes

Consider the transmission of \(c \in \text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] \) over a sum-rank channel

\[
y = c + e \quad \text{with} \quad \text{wt}_{\Sigma R}(e) = t
\]

where either

- \(c_{j,1} = c_{j,2} = \cdots = c_{j,\ell} \) or
- \(c_j \in \mathbb{F}_q^\ell \) for all \(j = 1, \ldots, s \).

Universal Decoding procedure:

- Since \(\text{ILRS}[\theta, \beta, \xi^c, \ell, s; n, k] = \text{ILRS}[\theta, \beta, \xi, \ell, s; n, k] \) we can apply a decoder \(D \) to \(y \):
 - **Interpolation-based**: recovers message polynomials \(f_1, \ldots, f_s \) directly (transformation required to account for different encoding)
 - **Syndrome-based**: Returns \(c = y - e \) (no transformation required)

- Decoding scheme has the same performance since the error \(e \) is not changed
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric
✓ We proposed a *decoding framework* for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space
✓ We derived a *decoding framework* for a class of *locator-homogeneous ILRS codes*
✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:

- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric

✓ We proposed a *decoding framework* for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space

✓ We derived a *decoding framework* for a class of *locator-homogeneous ILRS codes*

✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:
- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric

✓ We proposed a **decoding framework** for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space

✓ We derived a **decoding framework** for a class of *locator-homogeneous ILRS codes*

✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:
- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of interleaved linearized Reed–Solomon (ILRS) codes with different component codes in the sum-rank metric
✓ We proposed a decoding framework for a class of evaluation-homogeneous ILRS codes where the code locators for each block span the same \mathbb{F}_q-linear space
✓ We derived a decoding framework for a class of locator-homogeneous ILRS codes
✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:
- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric

✓ We proposed a *decoding framework* for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space

✓ We derived a *decoding framework* for a class of *locator-homogeneous ILRS codes*

✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:
- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric
✓ We proposed a *decoding framework* for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space
✓ We derived a *decoding framework* for a class of *locator-homogeneous ILRS codes*
✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:
- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
Summary & Outlook

✓ We considered decoding of *interleaved linearized Reed–Solomon (ILRS)* codes with different component codes in the sum-rank metric

✓ We proposed a *decoding framework* for a class of *evaluation-homogeneous ILRS codes* where the code locators for each block span the same \mathbb{F}_q-linear space

✓ We derived a *decoding framework* for a class of *locator-homogeneous ILRS codes*

✓ Any decoder for ILRS codes can be used in the proposed universal decoding framework

Further work:

- Decoding of further locator- and evaluation-homogeneous ILRS code classes
- Generalization to skew polynomial rings with derivations
- Consider implications for interleaved skew Reed–Solomon (ISRS) codes in the skew metric
References

