Speeding up Error-Erasure Decoding of Linearized Reed–Solomon Codes in the Sum-Rank Metric

Felicitas Hörmann¹, Hannes Bartz¹, and Sven Puchinger²
{felicitas.hoermann, hannes.bartz}@dlr.de, sven.puchinger@tum.de

¹ Institute of Communications and Navigation
German Aerospace Center (DLR), Germany

² Hensoldt Sensors GmbH, Germany
Outline

1. Skew Polynomials and Their Basic Properties
2. Error-Erasure Decoding of Linearized Reed–Solomon Codes
3. Root Finding Using the Skew Skachek–Roth Algorithm
4. Conclusion
Skew Polynomials

Consider an \mathbb{F}_q-linear automorphism θ of \mathbb{F}_{q^m}.

Definition [Ore, 1933]

The **skew polynomial ring** $\mathbb{F}_{q^m}[x; \theta]$ is defined as the ordinary polynomial ring $\mathbb{F}_{q^m}[x]$ but with multiplication defined by $xa := \theta(a)x$ for all $a \in \mathbb{F}_{q^m}$.

For $a, b \in \mathbb{F}_{q^m}[x; \theta]$ with $\deg(b) \leq \deg(a)$, there are unique representations

$$a = b \cdot q_L + r_L$$

and

$$a = q_R \cdot b + r_R$$

for $q_L, q_R, r_L, r_R \in \mathbb{F}_{q^m}[x; \theta]$ with $\deg(r_L) \leq \deg(b)$ and $\deg(r_R) \leq \deg(b)$.

Definition

If $r_L = 0$, we call b a **left divisor** of a and if $r_R = 0$, b is a **right divisor** of a.
Minimal Polynomials

Definition

The minimal (skew) polynomial that vanishes on the set \(\{ b_1^{(i)}, \ldots, b_{n_i}^{(i)} \} \subseteq \mathbb{F}_{q^m} \) with respect to generalized operator evaluation with parameter \(a_i \in \mathbb{F}_{q^m} \) for all \(i = 1, \ldots, \ell \) is defined as the monic polynomial satisfying

\[
\text{mpol}_{\{ a_i \}_{i=1}^{\ell}} \left\{ b_1^{(i)}, \ldots, b_{n_i}^{(i)} \right\}_{\kappa=1}^{n_i} (b_\kappa^{(i)}) a_i = 0 \quad \text{for all} \quad 1 \leq \kappa \leq n_i \quad 1 \leq i \leq \ell .
\]
Generalized Operator Evaluation

Consider the operator $D_a(b) := \theta(b)a$ for all $a, b \in \mathbb{F}_{q^m}$.

Definition

The **generalized operator evaluation** of a skew polynomial $f = \sum_i f_i x^i \in \mathbb{F}_{q^m}[x; \theta]$ at an element $b \in \mathbb{F}_{q^m}$ with respect to $a \in \mathbb{F}_{q^m}$ is defined as

$$f(b)_a = \sum_i f_i D_a^i(b).$$

We obtain $D_a^i(b) = \theta^i(b)\mathcal{N}_i(a)$ for all $a, b \in \mathbb{F}_{q^m}$ and $i \geq 0$ if we write

$$\mathcal{N}_i(a) = \prod_{j=0}^{i-1} \theta^j(a) = \theta^{i-1}(a) \cdots \theta(a) \cdot a.$$
Root Space of Skew Polynomials

Lemma
For a fixed evaluation parameter \(a \in \mathbb{F}_{q^m} \) the generalized operator evaluation is an \(\mathbb{F}_q \)-linear map.

\[\Rightarrow \] The zeros of a polynomial with respect to generalized operator evaluation with fixed parameter \(a \in \mathbb{F}_{q^m} \) form an \(\mathbb{F}_q \)-linear vector subspace of \(\mathbb{F}_{q^m} \).

Definition
The conjugacy class of \(a \in \mathbb{F}_{q^m} \) is \(\mathcal{C}(a) := \{ \theta(c)ac^{-1} : c \in \mathbb{F}_{q^m}^* \} \).
Root Space of Skew Polynomials

Lemma [Caruso, 2019]
Consider $a_1, \ldots, a_\ell \in F_{q^m}^*$ from distinct conjugacy classes of F_{q^m}. Choose for each $i = 1, \ldots, \ell$ a basis $B_i \subseteq F_{q^m}$ of the F_q-linear root space of $p \in F_{q^m}[x; \theta]$ with respect to generalized operator evaluation with parameter a_i. Then

$$
\sum_{i=1}^{\ell} \dim \langle B_i \rangle_{F_q} \leq \deg(p)
$$

is satisfied.

Equality holds if and only if p divides $\prod_{i=1}^{\ell} (x^m - N_m(a_i))$.
Linearized Reed–Solomon Codes

Definition [Martínez-Peñas, 2018]

Consider \(\mathbb{F}_q \)-linearly independent code locators \(\beta_1^{(i)}, \ldots, \beta_{n_i}^{(i)} \) for each \(i = 1, \ldots, \ell \) and evaluation parameters \(a := (a_1, \ldots, a_\ell) \in \mathbb{F}_q^\ell \) from different nontrivial conjugacy classes of \(\mathbb{F}_{q^m} \).

The **linearized Reed–Solomon code** \(\text{LRS}[\theta, \beta, a, \ell; n, k] \) is the row space of the matrix

\[
G = \left(G^{(1)} \mid \cdots \mid G^{(\ell)} \right)
\]

with

\[
G^{(i)} = \begin{pmatrix}
\beta_1^{(i)} & \cdots & \beta_{n_i}^{(i)} \\
\mathcal{D}_{a_i}(\beta_1^{(i)}) & \cdots & \mathcal{D}_{a_i}(\beta_{n_i}^{(i)}) \\
\vdots & \ddots & \vdots \\
\mathcal{D}_{a_i}^{k-1}(\beta_1^{(i)}) & \cdots & \mathcal{D}_{a_i}^{k-1}(\beta_{n_i}^{(i)})
\end{pmatrix}
\]

\(\in \mathbb{F}_{q^m}^{k \times n_i} \) for all \(1 \leq i \leq \ell \).
Channel and Error Model

The codeword c is transmitted through the channel and is received as $y = c + e$ with error e of sum-rank weight τ.

Definition

Consider a vector $x = \left(x^{(1)} \mid \cdots \mid x^{(\ell)} \right) \in \mathbb{F}_{q^m}^n$ that is divided into ℓ blocks $x^{(i)} \in \mathbb{F}_{q^m}^n$ for $i = 1, \ldots, \ell$.

The **sum-rank weight** of x is defined as $\text{wt}_{\Sigma R}(x) := \sum_{i=1}^{\ell} \text{rk}_{\mathbb{F}_q}(x^{(i)})$.

Error Decomposition in the Sum-Rank Metric

\[e = e_F + e_R + e_C = a_F \cdot B_F + a_R \cdot B_R + a_C \cdot B_C \]

- \(e_F \) and \(e_C \) are matrices of rank \(t_F \) and \(t_C \) respectively.
- \(e_R \) is a matrix of rank \(t_R \).

- \(a_F \) and \(a_C \) are vectors of length \(m \).
- \(B_F \) and \(B_C \) are matrices of dimensions \(t_F \times n \) and \(t_C \times n \) respectively.

\(e_F \) contains \(t_F \) full errors, \(e_R \) contains \(t_R \) row erasures, and \(e_C \) contains \(t_C \) column erasures.
Error-Erasure Decoding of Linearized Reed–Solomon Codes

Theorem [Hörmann, Bartz, and Puchinger, 2022]

Consider a linearized Reed–Solomon code $\text{LRS}[\theta, \beta, \xi, \ell; n, k]$. If the number of full errors t_F, of row erasures t_R and of column erasures t_C satisfies $2t_F + t_R + t_C \leq n - k$, then the proposed decoder can recover the transmitted codeword requiring at most $O(n^2)$ operations in \mathbb{F}_{q^m}.
Decoding Steps for the ESP Variant

precompute

\[s = yH^\top \quad \text{and} \quad s(x) = \sum_{i=1}^{n-k} s_i x_i^{l-1} \]

\[x_C = B_C \alpha^\top \]

\[\lambda_C \text{ and } \sigma_R \]

compute

\[s_{RC}(x) = \sigma_R(x) \cdot s(x) \cdot \overline{\lambda_C}(x) \]

solve the ESP key equation to recover \(\sigma_F \)

recover \(\sigma_C \) and compute \(\sigma = \sigma_C \cdot \sigma_F \cdot \sigma_R \)

recover \(\sigma_C \) and \(\sigma_F \) by solving \(Ax^\top = \tilde{s}^\top \)

return \(c = y - e \)

compute \(e = a_F \cdot B_F + a_R \cdot B_R + a_C \cdot B_C \)

return \(c = y - e \)
Problem Statement

Root-Finding Problem for Skew Polynomials

Input:
- \(p \in \mathbb{F}_{q^m}[x; \theta] \)
- \(a_1, \ldots, a_\ell \in \mathbb{F}_{q^m}^\ast \) belonging to distinct conjugacy classes of \(\mathbb{F}_{q^m} \)

Task:
For all \(i = 1, \ldots, \ell \), find an \(\mathbb{F}_q \)-basis \(B_i \subseteq \mathbb{F}_{q^m} \) of the root space of \(p \) with respect to generalized operator evaluation with parameter \(a_i \), i.e. such that
\[
p(b)_{a_i} = 0 \quad \text{for all} \quad b \in \langle B_i \rangle_{\mathbb{F}_q}.
\]
Conventional Approach

Given $p \in \mathbb{F}_{q^m}[x; \theta]$ and $a_1, \ldots, a_\ell \in \mathbb{F}_{q^m}^*$ belonging to distinct conjugacy classes of \mathbb{F}_{q^m}.

Algorithm (see [Berlekamp, 2015])

For each $i = 1, \ldots, \ell$:

1. Compute for the transformation matrix $P_i \in \mathbb{F}_{q^m}^{m \times m}$ corresponding to the \mathbb{F}_q-linear map $p(\cdot)_a : \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}$, $b \mapsto p(b)_a$ by expanding the vector $(p(b_1)_a, \ldots, p(b_m)_a)$ over \mathbb{F}_q.

2. Obtain B_i as basis of the right kernel of P_i.

\implies This approach has complexity at least ℓm^ω operations in \mathbb{F}_q where $\omega < 2.37286$ is the matrix multiplication coefficient (see [Le Gall, 2014]).
Minimal Polynomials with the Same Root Space

Lemma
Fix $a \in \mathbb{F}_{q^m}^*$. Then, $x^m - \mathcal{N}_m(a) \in \mathbb{F}_{q^m}[x; \theta]$ is the minimal polynomial that vanishes on all elements of \mathbb{F}_{q^m} with respect to generalized operator evaluation with parameter a.

Proof Sketch: $(x^m - \mathcal{N}_m(a))(b)_a = \mathcal{N}_m(a)(\theta^m(b) - b) = 0$

Proposition
Let $p \in \mathbb{F}_{q^m}[x; \theta]$ be a skew polynomial with root-space $\mathcal{V} \subseteq \mathbb{F}_{q^m}$ with respect to generalized operator evaluation with parameter $a \in \mathbb{F}_{q^m}^*$. Then

$$h(x) := \gcd(x^m - \mathcal{N}_m(a), p(x))$$

is a minimal polynomial of degree $\deg(h) = \dim(\mathcal{V})$ that vanishes on \mathcal{V} with respect to generalized operator evaluation with parameter a.
Root Space and Image

Theorem
Consider a d-dimensional \mathbb{F}_q-linear subspace $\mathcal{V} \subseteq \mathbb{F}_q^m$ of \mathbb{F}_q^m. Let $h(x) \in \mathbb{F}_q^m[x; \theta]$ be the minimal polynomial with root space \mathcal{V} with respect to generalized operator evaluation with parameter $a \in \mathbb{F}_q^*$. Then:

1.
 \[g(x) := \text{ldiv} \left(x^m - N_m(a), \ h(x) \right) \in \mathbb{F}_q^m[x; \theta] \]
 is the minimal polynomial of degree $m - d$ whose \mathbb{F}_q-linear image with respect to the generalized operator evaluation with parameter a is \mathcal{V}.

2.
 \[x^m - N_m(a) = h(x)g(x) = g(x)h(x). \]
Skew Skachek–Roth Algorithm

Input:
- $p(x) \in \mathbb{F}_q[x; \theta]$
- $a_1, \ldots, a_\ell \in \mathbb{F}_q^*$ from distinct conjugacy classes

Output:
\mathbb{F}_q-bases $B_1, \ldots, B_\ell \subseteq \mathbb{F}_q^m$ such that for all $i = 1, \ldots, \ell$:

$$p(b)_{a_i} = 0 \quad \text{for all } b \in B_i$$

- Reduce to minimal polynomial:
 $$h_i(x) := \gcd(x^m - N_m(a_i), p(x))$$

- For each $i = 1, \ldots, \ell$
 - Find “dual” polynomial:
 $$g_i(x) := \text{ldiv}(x^m - N_m(a_i), h_i(x))$$
 - Compute \mathbb{F}_q-basis B_i of the image space of $g_i(x)$ probabilistically

- Draw $b \in \mathbb{F}_q^*$ uniformly at random

- While $|B_i| < \deg(g_i)$
 - Add b to B_i if $b \notin \langle B_i \rangle_{\mathbb{F}_q}$
Complexity

Skew Skachek–Roth Algorithm
\(\mathcal{O}(\ell m \deg(p)) \)

Conventional Approach
\(\mathcal{O}(\ell m^\omega) \) with \(\omega < 2.38 \)

Execution time is averaged over 100 randomly chosen
\(p \in \mathbb{F}_{q^m}[x; \theta] \) with \(\deg(p) < (q - 1)m \).
Conclusion

Input:
- \(p \in \mathbb{F}_{q^m}[x; \theta] \)
- \(a_1, \ldots, a_\ell \in \mathbb{F}_{q^m}^{\ast} \) belonging to distinct conjugacy classes of \(\mathbb{F}_{q^m} \)

Task:
For all \(i = 1, \ldots, \ell \), find an \(\mathbb{F}_q \)-basis \(B_i \subseteq \mathbb{F}_{q^m} \) of the root space of \(p \) with respect to generalized operator evaluation with parameter \(a_i \).

Our work . . .
- extends the Skachek–Roth algorithm from [Skachek and Roth, 2008] to skew polynomials with multiple evaluation parameters,
- speeds up the root finding of skew polynomials in practice, and
- can be used e.g. in our error-erasure decoder for linearized Reed–Solomon codes.
References

Algebraic Coding Theory (revised edition).
World Scientific.

Residues of Skew Rational Functions and Linearized Goppa Codes.

Error-Erasure Decoding of Linearized Reed-Solomon Codes in the Sum-Rank Metric.
In IEEE International Symposium on Information Theory (ISIT).
References

 Powers of Tensors and Fast Matrix Multiplication.
 In *Proceedings of the 39th international symposium on symbolic and algebraic computation*, pages 296–303.

 Skew and Linearized Reed–Solomon Codes and Maximum Sum Rank Distance Codes over any Division Ring.

 Theory of Non-Commutative Polynomials.

 Probabilistic Algorithm for Finding Roots of Linearized Polynomials.