Institut für MathematikHome > Academic programme > Seminars & Colloquia > Oberseminar: Algebraische Geometrie > Deformations of Galois representations and exceptional monodromy

  Deutsch  |  Contact  |  Print  |  Search  

FÜR SCHÜLERiNNEN
INSTITUTE
ACADEMIC PROGRAMME
COLLOQUIA/SEMINARS
STUDENT SEMINARS
LECTURE COURSES
MODULES
CONFERENCES/EVENTS
VORKURSE
FOR STUDENTS
FOR PhD STUDENTS



Modul:   MAT770  Oberseminar: Algebraische Geometrie


Deformations of Galois representations and exceptional monodromy

Prof. Dr. Stefan Patrikis's talk

Date: 26.05.15   Time: 10.15 - 11.45   Room: Y27H25

Serre long ago raised the question of whether there exist motives with motivic Galois group equal to any given exceptional algebraic group. I will begin by situating Serre's question in the context of a quite general inverse motivic Galois problem, and by recalling some Hodge-theoretic and l-adic variants. After summarizing progress on Serre's question due to Dettweiler-Reiter and Yun (for the groups G2, E7, and E8), I will describe recent work constructing geometric (in the sense of Fontaine-Mazur) l-adic Galois representations with any desired exceptional algebraic monodromy group.