Institut für MathematikHome > Academic programme > Seminars & Colloquia > Oberseminar: Algebraische Geometrie > Equidistribution of Weierstrass points on curves over non-Archimedean fields

  Deutsch  |  Contact  |  Print  |  Search  

FÜR SCHÜLERiNNEN
INSTITUTE
ACADEMIC PROGRAMME
COLLOQUIA/SEMINARS
STUDENT SEMINARS
LECTURE COURSES
MODULES
CONFERENCES/EVENTS
VORKURSE
FOR STUDENTS
FOR PhD STUDENTS



Modul:   MAT770  Oberseminar: Algebraische Geometrie


Equidistribution of Weierstrass points on curves over non-Archimedean fields

Dr. Omid Amini's talk

Date: 30.03.15   Time: 13.15 - 14.45   Room: Y27H25

I will present the following non-Archimedean version of a theorem of Mumford and Neeman on equidistribution of Weierstrass points on Riemann surfaces: let X be a smooth proper curve over a non-Archimedean field of equicharacteristic zero, and L an ample line bundle on X. The Weierstrass points of powers of L are equidistributed according to the Zhang-Arakelov measure. The main tool in the proof is a framework of limit linear series which generalises the work of Eisenbud and Harris in the eighties to any semistable curve. Time permitting, I will report on applications in arithmetic geometry.