Institut für Mathematik


Modul:   STA671  Kolloquium über anwendungsorientierte Statisik

l_1-​spectral clustering algorithm: a spectral clustering method using l_1-​regularization

Vortrag von Prof. Dr. Magali Champion

Datum: 04.03.22  Zeit: 15.15 - 16.15  Raum: ETH HG G 19.1

Detecting cluster structure is a fundamental task to understand and visualize functional characteristics of a graph. Among the different clustering methods available, spectral clustering is one of the most widely used due to its speed and simplicity, while still being sensitive to high perturbations imposed on the graph. In this work, we present a variant of the spectral clustering, called l_1-​spectral clustering, based on Lasso regularization and adapted to perturbed graph models. By promoting sparse eigenbases solutions of specific l_1-​minimization problems, it detects the hidden natural cluster structure of the graph. The effectiveness and robustness to noise perturbations is confirmed through a collection of simulated and real biological data. Joint work with C. Champion, M. Blazère, R. Burcelin and JM. Loubes.