Institut für Mathematik


Modul:   MAT760  Ergodic Theory and Dynamical Systems Seminar

The Structure of the Spectrum of a Dynamically Defined Schrödinger Operator

Vortrag von Prof. Dr. David Damanik

Sprecher eingeladen von: Prof. Dr. Artur Avila

Datum: 28.03.22  Zeit: 14.05 - 15.05  Raum: ETH HG G 43

We consider Schrödinger operators whose potentials are defined by sampling the orbits of a homeomorphism of a compact metric space with a continuous function. Motivated by the phenomenon of spectral pseudo-randomness we discuss mechanisms that allow one to show that the gap structure of such a spectrum is very simple under suitable assumptions. Specific instances include applications of Johnson's approach to the gap labelling theorem and the effects of small random perturbations of a given background.