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Motivating Example

Consider the following stochastic differential equation

d

(
Xt

Yt

)
= A

(
Xt

Yt

)
dt +

(
17 0
0 42

)
d

(
W

(1)
t

W
(2)
t

)

Xs = x , Ys = y , A is a real matrix.

The Solution to this equation is of course:(
Xt

Yt

)
= e(t−s)A

(
x
y

)
+ e(t−s)A

∫ t

0
e−(u−s)A

(
17
42

)
dWu
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The flow property

Consider the solution as a function of the initial value.

Φs,t :

(
x
y

)
7→ e(t−s)A

(
x
y

)
+e(t−s)A

∫ t

0
e−(u−s)A

(
17
42

)
dWu

The function Φ = Φs,t(·, ω) satisfies:

it is a diffeomorphism for any ω, s, t

Φt,t(·, ω) is the identity for all ω and t

Φs,t(·, ω) = Φu,t(·, ω) ◦ Φs,u(·, ω)

These properties state that Φ is a stochstic flow of
diffeomorphisms.
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Kunita-Type SDEs

Let is write

M(t,

(
x
y

)
) = A

(
x
y

)
t +

(
17 0
0 42

)
Wt

Then the SDE becomes

d

(
Xt

Yt

)
= M(dt,

(
Xt

Yt

)
),Xs = x ,Ys = y
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Semimartingale Fields

M(t,

(
x
y

)
) = A

(
x
y

)
t +

(
17 0
0 42

)
Wt

M = M(t,

(
x
y

)
)) satisfies:

it is a semimartingale for fixed x , y

it has smooth covariations in x , y for fixed t

the part of finite variaton is smooth

This states that is a semimartingale field
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Stochstic Flows And SDEs

φs,t(x) = x +

∫ t

s
M(du, φs,u(x))

The solution of an SDE driven by a sufficiently smooth
semimartingale field generates a stochastic flow.

For a sufficiently smooth stochastic flow there is a
semimartingale field that generates it via an SDE.
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Isotropic Brownian Flows
Isotropic Ornstein-Uhlenbeck Flows

Isotropic Covariance Tensors, Isotropic Brownian Fields

Definition

A function b : Rd → Rd×d is an isotropic covariance tensor if:
1 x 7→ b(x) is smooth enough and the derivatives are bounded.

2 b(0) = Ed (the d-dimensional identity)

3 x 7→ b(x) is not constant.

4 b(x) = O∗b(Ox)O for any x ∈ Rd and O ∈ O(d)

Definition

Let b be as above.
{
M(t, x) : t ≥ 0, x ∈ Rd

}
is an isotropic

Brownian field if:
1 (t, x) 7→ M(t, x) is a centered Gaussian process.

2 cov(M(s, x),M(t, y)) = (s ∧ t)b(x − y)

3 (t, x) 7→ M(t, x) is continuous for almost all ω.

Holger van Bargen Isotropic Ornstein-Uhlenbeck Flows 24th July 2008 8



Stochastic Flows And Stochastic Differential Equations
IBFs and IOUFs

Spatial Regularity

Isotropic Brownian Flows
Isotropic Ornstein-Uhlenbeck Flows

Isotropic Covariance Tensors, Isotropic Brownian Fields

Definition

A function b : Rd → Rd×d is an isotropic covariance tensor if:
1 x 7→ b(x) is smooth enough and the derivatives are bounded.

2 b(0) = Ed (the d-dimensional identity)

3 x 7→ b(x) is not constant.

4 b(x) = O∗b(Ox)O for any x ∈ Rd and O ∈ O(d)

Definition

Let b be as above.
{
M(t, x) : t ≥ 0, x ∈ Rd

}
is an isotropic

Brownian field if:
1 (t, x) 7→ M(t, x) is a centered Gaussian process.

2 cov(M(s, x),M(t, y)) = (s ∧ t)b(x − y)

3 (t, x) 7→ M(t, x) is continuous for almost all ω.

Holger van Bargen Isotropic Ornstein-Uhlenbeck Flows 24th July 2008 8



Stochastic Flows And Stochastic Differential Equations
IBFs and IOUFs

Spatial Regularity

Isotropic Brownian Flows
Isotropic Ornstein-Uhlenbeck Flows

Isotropic Brownian Flows (IBFs)

Properties

translation invariance

rotation invariance

one-point motion is a d-dimensional standard Brownian
Motion

SDEs for two-point-distance,. . .

Lyapunov-Exponents are known, deterministic and constant

Lebesgue measure is invariant

No straightforward entropy definition
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Spatial Regularity

Isotropic Brownian Flows
Isotropic Ornstein-Uhlenbeck Flows

Isotropic Ornstein-Uhlenbeck Flows (IOUFs)

Introduce a drift into the SDE

φs,t(x) = x +

∫ t

s
M(du, φs,u(x))− c

∫ t

s
φs,u(x)du (1)

NO translation invariance

rotation invariance

one-point motion is a d-dimensional std. OU-process

SDEs for two-point-distance,. . .

Lyapunov-Exponents can be computed, are deterministic and
constant

a normal distribution is invariant

standard definition of entropy applicable
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Stochastic Flows And Stochastic Differential Equations
IBFs and IOUFs

Spatial Regularity

Statement Of The Result
Sketch Of Proof

Spatial Regularity Lemma

Lemma

Let φ = φ0,1 : Rd → Rd be as in (1) (with s = 0 and t = 1). Then
we have a.s.

1

lim
R→∞

sup
||x ||≥R

||φ(x)− e−cx ||
||x ||

= 0 (2)

2

lim
R→∞

sup
||x ||≥R

||φ(x)||
||x ||

= e−c (3)
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Stochastic Flows And Stochastic Differential Equations
IBFs and IOUFs

Spatial Regularity

Statement Of The Result
Sketch Of Proof

Reformulation To Compact State Space

It is sufficient to show

lim
R→∞

sup
R≤||x ||≤R+1

||φ(x)− e−cx ||
||x ||

= 0

x 7→ ||φ(x)−e−cx ||
||x || is continuous

X := {x ∈ Rd : R ≤ ||x || ≤ R + 1} is compact
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The Chaining Lemma

(X, d) compact metric space, φ : X → R+ be a.s. cont. func.,

(δi )i≥0 positive real numbers with
∞∑
i=0

δi < ∞,

(χi )
∞
i=0 δi -dense in X with χ0 = {x0}, with d(x , x0) ≤ δ0∀x ∈ X.

Lemma (Cranston, Scheutzow and Steinsaltz ’00)

For arbitrary positive ε, z ≥ 0 and an arbitrary sequence of positive

reals (εi )i≥0 such that ε +
∞∑
i=0

εi = 1 we have

P
(
sup
x∈X

φ(x) > z
)

≤ P
(
φ(x0) > εz

)
+

∞∑
i=0

|χi+1| sup
d(x ,y)≤δi

P
(
|φ(x)− φ(y)| > εiz

)
.
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Estimates

P
[
||φ(x0)− e−cx0|| >

ε̃R

2

]
≤ c4e

− ε̃2

8d2 R2

P
[
|||φ(x)− e−cx || − ||φ(y)− e−cy ||| > 2−j−2ε̃R

]
≤ P

[
|||φ(x)− e−cx || − ||φ(y)− e−cy ||| > 2−j−2ε̃R3j |x − y |

]
≤ P

[
|||φ(x)− φ(y)||| > 2−j−3ε̃R3j |x − y |

]
(4)

≤ P
[
B∗1 ≥

log(2−3−j ε̃R3j)− λ

σ

]
≤ c5(2

−j−3ε̃R3j)−
log(2−3−j ε̃R3j )−2λ

2σ2
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