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Introduction

Main Question: Given a large matrix with random entries,
what can be said about the distribution of its eigenvalues?

In particular: What can be said about the distribution of the
largest eigenvalue?

Started with Physicists in the 50’s.

Model to understand statistical behavior of slow neutron
resonances (Wigner).

70’s: Applications to number theory (Montgomery).
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Gaussian Unitary Ensemble (GUE) I

Definition

A random N × N Hermitian matrix belongs to the GUE, if the
diagonal elements xjj and the upper triangular elements
xjk = ujk + ivjk (j < k) are independently chosen with normal
densities of the form:

1√
π

e−x2
jj ∼ N (0,

1

2
) (diagonal),

2

π
e−2(u2

jk+v2
jk ) ∼ N (0,

1

4
) + iN (0,

1

4
) (upper triangular)

Joint p.d.f:

p(X ) =
N∏

j=1

1√
π

e−x2
jj

∏
1≤j<k≤N

2

π
e−2|xjk |2 =

1

ZN
exp{−Tr(X 2)}.
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Gaussian Unitary Ensemble (GUE) II

Eigenvalue distribution? (Eigenvalues: (x1, . . . , xN) ⊂ RN)

Apply basis transformation and integrate out elements
independent of the eigenvalues:

Eigenvalue measure on RN : If x1 < . . . < xN ,

uN(x1, . . . , xN) =
1

ZN

∏
1≤j<k≤N

|xj − xk |2 exp

−
N∑

j=1

x2
j


=

1

ZN

(
det(pj−1(xi )e(−x2

i )/2)1≤i ,j≤N

)2

= det(KN(xi , xj))N
i ,j=1,
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Gaussian Unitary Ensemble (GUE) III

where

KN(x , y) =
N−1∑
j=0

pH
j (x)pH

j (y)e−
x2+y2

2

=const · e−(x2+y2)/2 pH
N (x)pH

N−1(y)− pH
N (y)pH

N−1(x)

x − y
.

pH
i is the i-th normalized Hermite polynomial of degree i .

The eigenvalue distribution can be viewed as a point process on R
via the application (x1, . . . , xN) 7→

∑N
i=1 δxi . Point processes with

a measure of this determinantal form are called determinantal
point processes.
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Gaussian Unitary Ensemble (GUE) IV

Definition

We define the n-th correlation function ρn by:

ρn(x1, . . . , xn) = det(KN(xi , xj))n
i ,j=1, for n ≤ N.

The correlation function can be viewed as a particle density.
Namely, if [xi , xi + ∆xi ], 1 ≤ i ≤ n, are all disjoint,

ρn(x1, . . . , xn) =

lim
∆xi→0

P[there is exactly one particle in [xi , xi + ∆xi ], 1 ≤ i ≤ n]

∆x1 . . .∆xn
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Scaling Results and Painlevé

Gap Probabilities and Distribution of Largest Eigenvalue I

Question: P[ there is no eigenvalue in (a, b) = 0] =?, a < b ∈ R.

Lemma

Let φ be a bounded and measurable function with bounded
support B. Then

E [
∏
j

(1 + φ(xj))] =
∞∑

n=0

1

n!

∫
Rn

n∏
j=1

φ(xj)ρn(x1, . . . , xn)dx1 . . . dxn.

Thus,

P[xmax ≤ t] =
∞∑

n=0

(−1)n

n!

∫
(t,∞)n

ρn(x1, . . . , xn)dnx .
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Scaling Results and Painlevé

Gap Probabilities and Distribution of Largest Eigenvalue II

The correlation kernel KN(x , y) can be viewed as the kernel of an
integral operator K on L2(R): If f ∈ L2(R),

Kf (x) =

∫
R

KN(x , y)f (y)dy .

One can define the Fredholm determinant of the operator K as:

det(Id − K ) = 1 +
∞∑

n=1

(−1)n

n!

∫
det(KN(xi , xj))n

i ,j=1dnx .

If ρn(x1, . . . , xn) = det(KN(xi , xj))1≤i ,j≤n, we thus have:

P[xmax ≤ t] = det(Id − K )|L2(t,∞).
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Scaling Results and Painlevé

Scaling Results and Painlevé I

If one scales around the largest eigenvalue, say xmax(N), of the
GUE, one obtains for N →∞:

P

[
xmax(N) ≤

√
2N +

s√
2N1/6

]
−→ FTW (s) = det(Id−KAiry )|L2(s,∞)

FTW (s) = exp

(
−
∫ ∞

s
(x − s)q2(x)dx

)
,

q being the solution of a Painlevé-II equation q′′ = sq + 2q3 with
boundary condition q(s) ∼ Ai(s) for s →∞.
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Results
Further Steps

Matrix Ensembles with Generalized Cauchy Weights I

(Joint work with Joseph Najnudel and Ashkan Nikeghbali)

Consider the Unitary group U(N) with the Haar measure µN .
The eigenvalue distribution function here is:

const ·
∏

1≤j<k≤N

|e iθj − e iθk |2
N∏

j=1

dθj ,

where e iθj , j = 1, . . . ,N, are the eigenvalues of U ∈ U(N)
with θj ∈ [−π, π].
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Matrix Ensembles with Generalized Cauchy Weights II

Generalize this eigenvalue distribution: Introduce a complex
parameter s, <s ≥ −1

2 , and write:

const ·
∏

1≤j<k≤N

|e iθj − e iθk |2
N∏

j=1

wU(θj)dθj ,

where wU(θj) = (1 + e iθj )s(1 + e−iθj )s .

U(N) is linked to H(N) (Hermitian matrices) via the Cayley
transform

X ∈ H(N) 7→ i − X

i + X
∈ U(N).
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Matrix Ensembles with Generalized Cauchy Weights III

The Cayley transform sends the generalized Haar measure to
the following Cauchy type measure on H(N):

const ·
∏

1≤j<k≤N

(xj − xk)2
N∏

j=1

wH(xj)dxj ,

where wH(xj) = (1 + ixj)
−s−N(1− ixj)

−s−N .

The correlation kernel for this eigenvalue process is:

KN(x , y) =
φ(x)ψ(y)− φ(y)ψ(x)

x − y
,

with φ(x) =
√

CwH(x)pN(x), and ψ(x) =
√

CwH(x)pN−1(x).
(Borodin, Olshanski, 2001).
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Results: An ODE related to the Painlevé-VI equation I

Consider

d

dt
log det(Id−KN)|L2(t,∞) =

d

dt
log P[no eigenvalue inside (t,∞)].

It is known that this is equal to R(t, t), where
R(x , y)

.
= KN(1− KN)−1 is the resolvent kernel of KN .

Using a general method given by Tracy, Widom (1994), we prove a
differential equation for the above quantity. All one needs to find
are the following recurrence equations for φ and ψ:

m(x)φ′(x) =A(x)φ(x) + B(x)ψ(x)

m(x)ψ′(x) =− C (x)φ(x)− A(x)ψ(x),

where A, B and m are polynomials in x .
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Results: An ODE related to the Painlevé-VI equation II

We find:

Theorem

Let σ(t) = (1 + t2)R(t, t) = (1 + t2) d
dt log det(Id − KN)|L2(t,∞).

Then,

(1 + t2)2(σ′′)2 + 4(1 + t2)(σ′)3 − 8t(σ′)2σ

+ 4σ2(σ′ − (<s)2) + 8<s(<s t − α0)σσ′

+ 4

[
2α0<s t − α2

0 − (<s)2t2 +
|s|2

(<s)2
N(2<s + N)

]
(σ′)2 = 0,

where α0 = =s(1 + N
<s ).

(A similar result for s ∈ R has been established by Witte, Forrester
(2000))
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Results: An ODE related to the Painlevé-VI equation III

The solution of this equation can be expressed in terms of the
solution of the Painlevé-VI equation via a Bäcklund transformation
and the change of variable

x =
t + i

2i
, η(x) =

σ(t)− (<s)2t − α0<s

2i
.
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Further Steps: Scaling results for N →∞ I

Theorem

If t = N/τ and σ(N/τ) = −θN(τ)(τ/N + N/τ) in the ODE, we
get an ODE for θN(τ) of the form:∑

k≥0

fk(τ, θN(τ), θ′N(τ), θ′′N(τ))N−k = 0,

where the sum is finite and f is rational in all variables. Moreover,
f0 corresponds to the Painlevé-V equation. Thus, θN satisfies a
differential equation which tends to the Painlevé-V equation if
N →∞.
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Further Steps: Scaling results for N →∞ II

Further steps:

Does the solution θN converge to the solution of the
Painlevé-V equation? Ie. does det(Id − KN)|L2(Nτ−1,∞)

converge to det(Id − K )|L2(τ−1,∞), where
K (x , y) = limN→∞ KN(x , y)?

How do the ODE and its solution behave, if one also scales
the parameter s?
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