Differentiability of reflected BSDEs with quadratic growth

joint work with S. Ankirchner and P. Imkeller

IRTG Stochastic Models of Complex Processes

Disentis, July 2008

Outline

BSDEs

Definition Application in Finance

Reflected BSDEs

Definition Utility maximization

Differentiability of Reflected BSDEs

Setting Tools Results

What is a BSDE?

Parameters:

▶ ξ r.v. \mathcal{F}_T -measurable

• $f: \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ predictable mapping

A BSDE with *terminal condition* ξ and *generator/driver* f is an equation of the type

$$\mathbf{Y}_{t} = \xi - \int_{t}^{T} \mathbf{Z}_{s} dW_{s} + \int_{t}^{T} f(s, \mathbf{Y}_{s}, \mathbf{Z}_{s}) ds.$$
(1)

Definition

Application in Finance

A solution is a *pair* of adapted processes (Y, Z) such that (1) makes sense.

Definition Application in Finance

Utility maximization

▶ incomplete financial market, i.e. *d* < *m* stocks

$$dS_t^i = S_t^i (b_t^i dt + \sigma_t^i dW_t), \ i = 1, \dots d,$$

where $b \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d,m}$.

▶ small investor: wealth process $(p_s := \pi_s \sigma_s, \theta_s := \sigma_s^{-1} b_s)$

$$V_t^p = v + \int_0^t \pi_s \frac{dS_s}{S_s} = v + \int_0^t p_s(dW_s + \theta_s ds)$$

utility function

$$U(x) = -\exp^{-\alpha x} (\alpha > 0 \text{ risk aversion})$$

Optimization problem under constraint C

$$Val(v) = \sup_{p \in C} E\left[U(V_T^p)\right]$$

Definition Application in Finance

Utility maximization

• incomplete financial market, i.e. d < m stocks

$$dS_t^i = S_t^i (b_t^i dt + \sigma_t^i dW_t), \ i = 1, \dots d,$$

where $b \in \mathbb{R}^d$ and $\sigma \in \mathbb{R}^{d,m}$.

small investor: wealth process

$$V_t^p = v + \int_0^t \pi_s \frac{dS_s}{S_s} = v + \int_0^t p_s(dW_s + \theta_s ds)$$

utility function

$$U(x) = -\exp^{-\alpha x} (\alpha > 0 \text{ risk aversion})$$

- ξ European Option
- Optimization problem under constraint C

$$Val(v) = \sup_{p \in C} E\left[U(V_T^p + \xi)\right]$$

Definition Application in Finance

Utility maximization

Optimization problem:
$$Val(v) = \sup_{p \in C} E\left[U(V_T^p + \xi)\right]$$

Idea: Find a process Y with terminal condition $Y_T = \xi$ such that

- $U(V_t^p + Y_t)$ is a supermartingale for all p
- $U(V_t^{p^{opt}} + Y_t)$ is a martingale for one p^{opt}
- \rightarrow BSDE with terminal condition ξ

$$Y_t = \xi - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds.$$

Definition Application in Finance

Utility maximization

Optimization problem:
$$Val(v) = \sup_{p \in C} E\left[U(V_T^p + \xi)\right]$$

Theorem (Hu, Imkeller, Müller 2005)

 $Val(v) = U(v + Y_0)$

where (Y, Z) is the unique solution of

$$Y_t = \xi - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds$$

and $f(\cdot, z) = -\frac{\alpha}{2} dist^2 (\frac{1}{\alpha}\theta - z, C) - z\theta + \frac{1}{2\alpha} |\theta|^2$.

!f grows quadratically in z!

Definition Utility maximization

What is a RBSDE?

Parameters:

- $(\xi_t)_{t \in [0,T]}$ continuous on [0, T[and $\lim_{t \to T} \xi_t \leq \xi_T$
- $f: \Omega \times [0, T] \times \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ predictable mapping A RBSDE with *barrier* ξ and *generator/driver* f is an equation of the type

$$\mathbf{Y}_{t} = \xi_{T} - \int_{t}^{T} \mathbf{Z}_{s} dW_{s} + \int_{t}^{T} f(s, \mathbf{Y}_{s}, \mathbf{Z}_{s}) ds + \mathbf{K}_{T} - \mathbf{K}_{t}, \quad (2)$$
$$\mathbf{Y}_{t} \ge \xi_{t}, \quad \int_{0}^{T} (\mathbf{Y}_{t} - \xi_{t}) d\mathbf{K}_{t} = 0,$$

where K is a continuous nondecreasing process. A solution is a *triple* of adapted processes (Y, Z, K) such that (2) makes sense.

Utility maximization

Same setting as before:

- wealth process $V_t^p = v + \int_0^t p_s(dW_s + \theta_s ds)$
- utility function $U(x) = -e^{-\alpha x}$ ($\alpha > 0$ risk aversion)

Question: What happens if the investor holds an American option with payoff function $(\xi_t)_{t \in [0,T]}$?

Optimization problem:

$$Val(v) = \sup_{
u,p} E\left[U(V^p_T + \xi_
u)
ight]$$

Definition Utility maximization

Utility maximization

Optimization problem: $Val(v) = \sup_{\nu,p} E[U(V_T^p + \xi_{\nu})]$ Theorem (A.R.)

$$Val(v) = U(v + Y_0)$$

where (Y, Z, K) is the unique solution of

$$Y_t = \xi_T - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds + K_T - K_t,$$

 $Y_t \geq \xi_t, \ \int_0^T (Y_t - \xi_t) dK_t,$ with K continuous, nondecreasing and

$$f(\cdot, z) = -\frac{lpha}{2} dist^2(\frac{1}{lpha}\theta - z, C) - z\theta + \frac{1}{2lpha}|\theta|^2.$$

!f grows quadratically in z!

Setting Tools Results

Parameterized RBSDE

Parameter dependence on $x \in \mathbb{R}$

$$\begin{aligned} Y_t^x &= \xi_T(x) - \int_t^T Z_s^x dW_s + \int_t^T f(s, Z_s^x) ds + K_T^x - K_t^x. \\ Y_t^x &\geq \xi_t(x), \quad \int_0^T (Y_t^x - \xi_t(x)) dK_t^x = 0, \end{aligned}$$

Question: Are the solution processes Y^x , Z^x and K^x continuous or even differentiable with respect to x?

Setting Tools Results

Our setting: Quadratic RBSDEs

Consider RBSDE

$$Y_t = \xi_T - \int_t^T Z_s dW_s + \int_t^T f(s, Z_s) ds + K_T - K_t,$$

$$Y_t \ge \xi_t, \quad \int_0^T (Y_t - \xi_t) dK_t = 0,$$

with

- ► ξ bounded adapted process, continuous on [0, T[and $\lim_{t\to T} \xi_t \leq \xi_T$
- ▶ f s.t. $\forall (t,z)$: $|f(t,z)| \le M(1+|z|^2)$, and continuous in z
- ▶ Kobylanski (02) proved solution processes are $\sup_t |Y_t| < \infty$ and $E[\int Z_s^2 ds] < \infty$

Setting Tools Results

BMO Martingales

Definition (BMO)

Uniformly integrable martingales M with $M_0 = 0$ and

$$\parallel M \parallel_{BMO} = \sup_{\tau} \parallel E[\langle M \rangle_{T} - \langle M \rangle_{\tau} | \mathcal{F}_{\tau}]^{\frac{1}{2}} \parallel_{\infty} < \infty$$

 $\mathcal{E}(M) := exp\{M - \frac{1}{2}\langle M \rangle\}$ Theorem (Kazamaki 1994)

- $M BMO \Longrightarrow dQ = \mathcal{E}(M)_T dP$ is a probability measure
- $M BMO \Longrightarrow \exists p > 1 \text{ such that } \mathcal{E}(M) \in L^p$

Theorem (A.R.) (Y, Z, K) solution of the above RBSDE $\implies \int ZdW$ is BMO

Setting Tools Results

Moment estimates

Using Itô formula, the BMO property of $\int ZdW$ and inequalities of Hölder, BDG, Doob, Young, for p > 1:

Theorem (A.R.)

$$E^{P}\left[\sup_{t\in[0,T]}|\mathbf{Y}_{t}|^{2p}\right]+E^{P}\left[\left(\int_{0}^{T}|\mathbf{Z}_{s}|^{2}ds\right)^{p}\right]+E^{P}\left[\mathbf{K}_{T}^{2p}\right]$$
$$\leq CE^{P}\left[\xi_{T}^{2pq^{2}}+\sup_{t\in[0,T]}|\xi_{t}|^{2pq^{2}}+\left(\int_{0}^{T}f(s,0)ds\right)^{2pq^{2}}\right]^{\frac{1}{q^{2}}}$$

With similar methods we can estimate the variation in the solution induced by a variation in the data!

BSDEs Setting Reflected BSDEs Tools Differentiability of Reflected BSDEs Results

Results

Theorem (A.R.)

Let ξ be differentiable in x, lipschitz in norm, f be differentiable in z, $\nabla_z f$ of linear growth in z, Then for p > 1 and |x - x'| < 1

$$E\left[\sup_{t\in[0,T]}|Y_t^x-Y_t^{x'}|^{2p}\right] \le C|x-x'|^p$$
$$E\left[\left(\int_0^T|Z_t^x-Z_t^{x'}|^2ds\right)^p\right] \le C|x-x'|^p$$
$$E\left[\sup_{t\in[0,T]}|K_t^x-K_t^{x'}|^{2p}\right] \le C|x-x'|^p.$$

Spaces:

• S^p space of predictable processes X such that

$$\|X\|_{\mathcal{S}^p} = E\left[\sup_t |X_t|^p\right]^{\frac{1}{p}} < \infty$$

• \mathcal{H}^p space of predictable processes X such that

$$\parallel X \parallel_{\mathcal{H}^p} = E\left[\left(\int_0^T |X_t|^2 dt\right)^{\frac{p}{2}}\right]^{\frac{1}{p}} < \infty$$

Corollary (A.R.)

• (Y_t^x) and (K_t^x) are continuous in t and x.

•
$$\mathbb{R} \to \mathcal{H}^{2p} : x \mapsto Z^x$$
 is Hölder continuous with $\alpha = \frac{1}{2}$

•
$$\mathbb{R} \to S^{2p} : x \mapsto Y^x$$
 is Hölder continuous with $\alpha = \frac{1}{2}$

Differentiability

BUT:

We can't prove Differentiability of Y^{\times} in x in the classical sense Reason:

$$E\left[\sup_{t\in[0,T]}|Y_t^x-Y_t^{x'}|^{2p}\right]\leq C|x-x'|^p$$

We would like to prove:

Theorem

There exists a version of (Y_t^x, Z_t^x, K_t^x) such that a.s.

- ► Y^x continuously differentiable in a weak sense
- Z[×] is differentiable in a weak sense

BSDEs	Setting
Reflected BSDEs	Tools
Differentiability of Reflected BSDEs	Results

Thank you!