# Differentiability of reflected BSDEs with quadratic growth 

joint work with S. Ankirchner and P. Imkeller<br>IRTG Stochastic Models of Complex Processes

Disentis, July 2008

## Outline

## BSDEs

Definition
Application in Finance
Reflected BSDEs
Definition
Utility maximization
Differentiability of Reflected BSDEs
Setting
Tools
Results

## What is a BSDE?

Parameters:

- $\xi$ r.v. $\mathcal{F}_{T}$-measurable
- $f: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ predictable mapping

A BSDE with terminal condition $\xi$ and generator/driver $f$ is an equation of the type

$$
\begin{equation*}
Y_{t}=\xi-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s \tag{1}
\end{equation*}
$$

A solution is a pair of adapted processes $(Y, Z)$ such that (1) makes sense.

## Utility maximization

- incomplete financial market, i.e. $d<m$ stocks

$$
d S_{t}^{i}=S_{t}^{i}\left(b_{t}^{i} d t+\sigma_{t}^{i} d W_{t}\right), i=1, \ldots d
$$

where $b \in \mathbb{R}^{d}$ and $\sigma \in \mathbb{R}^{d, m}$.

- small investor: wealth process ( $p_{s}:=\pi_{s} \sigma_{s}, \theta_{s}:=\sigma_{s}^{-1} b_{s}$ )

$$
V_{t}^{p}=v+\int_{0}^{t} \pi_{s} \frac{d S_{s}}{S_{s}}=v+\int_{0}^{t} p_{s}\left(d W_{s}+\theta_{s} d s\right)
$$

- utility function

$$
U(x)=-\exp ^{-\alpha x}(\alpha>0 \text { risk aversion })
$$

- Optimization problem under constraint $C$

$$
\operatorname{Val}(v)=\sup _{p \in C} E\left[U\left(V_{T}^{p}\right)\right]
$$

## Utility maximization

- incomplete financial market, i.e. $d<m$ stocks

$$
d S_{t}^{i}=S_{t}^{i}\left(b_{t}^{i} d t+\sigma_{t}^{i} d W_{t}\right), \quad i=1, \ldots d
$$

where $b \in \mathbb{R}^{d}$ and $\sigma \in \mathbb{R}^{d, m}$.

- small investor: wealth process

$$
V_{t}^{p}=v+\int_{0}^{t} \pi_{s} \frac{d S_{s}}{S_{s}}=v+\int_{0}^{t} p_{s}\left(d W_{s}+\theta_{s} d s\right)
$$

- utility function

$$
U(x)=-\exp ^{-\alpha x}(\alpha>0 \text { risk aversion })
$$

- $\xi$ European Option
- Optimization problem under constraint C

$$
\operatorname{Val}(v)=\sup _{p \in C} E\left[U\left(V_{T}^{p}+\xi\right)\right]
$$

## Utility maximization

Optimization problem: $V a l(v)=\sup _{p \in C} E\left[U\left(V_{T}^{p}+\xi\right)\right]$

Idea: Find a process $Y$ with terminal condition $Y_{T}=\xi$ such that

- $U\left(V_{t}^{p}+Y_{t}\right)$ is a supermartingale for all $p$
- $U\left(V_{t}^{p^{o p t}}+Y_{t}\right)$ is a martingale for one $p^{o p t}$
$\rightarrow$ BSDE with terminal condition $\xi$

$$
Y_{t}=\xi-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Z_{s}\right) d s
$$

## Utility maximization

Optimization problem: $\operatorname{Val}(v)=\sup _{p \in C} E\left[U\left(V_{T}^{p}+\xi\right)\right]$

Theorem (Hu, Imkeller, Müller 2005)

$$
\operatorname{Val}(v)=U\left(v+Y_{0}\right)
$$

where $(Y, Z)$ is the unique solution of

$$
\begin{gathered}
Y_{t}=\xi-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Z_{s}\right) d s \\
\text { and } f(\cdot, z)=-\frac{\alpha}{2} \operatorname{dist}^{2}\left(\frac{1}{\alpha} \theta-z, C\right)-z \theta+\frac{1}{2 \alpha}|\theta|^{2} .
\end{gathered}
$$

!f grows quadratically in $z$ !

## What is a RBSDE?

## Parameters:

- $\left(\xi_{t}\right)_{t \in[0, T]}$ continuous on $\left[0, T\right.$ and $\lim _{t \rightarrow T} \xi_{t} \leq \xi_{T}$
- $f: \Omega \times[0, T] \times \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ predictable mapping

A RBSDE with barrier $\xi$ and generator/driver $f$ is an equation of the type

$$
\begin{aligned}
& Y_{t}=\xi_{T}-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Y_{s}, Z_{s}\right) d s+K_{T}-K_{t} \\
& Y_{t} \geq \xi_{t}, \quad \int_{0}^{T}\left(Y_{t}-\xi_{t}\right) d K_{t}=0
\end{aligned}
$$

where K is a continuous nondecreasing process.
A solution is a triple of adapted processes $(Y, Z, K)$ such that (2) makes sense.

## Utility maximization

Same setting as before:

- wealth process $V_{t}^{p}=v+\int_{0}^{t} p_{s}\left(d W_{s}+\theta_{s} d s\right)$
- utility function $U(x)=-e^{-\alpha x}(\alpha>0$ risk aversion $)$

Question: What happens if the investor holds an American option with payoff function $\left(\xi_{t}\right)_{t \in[0, T]}$ ?

Optimization problem:

$$
V a l(v)=\sup _{\nu, p} E\left[U\left(V_{T}^{p}+\xi_{\nu}\right)\right]
$$

## Utility maximization

Optimization problem: $\operatorname{Val}(v)=\sup _{\nu, p} E\left[U\left(V_{T}^{p}+\xi_{\nu}\right)\right]$
Theorem (A.R.)

$$
V a l(v)=U\left(v+Y_{0}\right)
$$

where $(Y, Z, K)$ is the unique solution of

$$
Y_{t}=\xi_{T}-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Z_{s}\right) d s+K_{T}-K_{t}
$$

$Y_{t} \geq \xi_{t}, \int_{0}^{T}\left(Y_{t}-\xi_{t}\right) d K_{t}$, with $K$ continuous, nondecreasing and

$$
f(\cdot, z)=-\frac{\alpha}{2} \operatorname{dist}^{2}\left(\frac{1}{\alpha} \theta-z, C\right)-z \theta+\frac{1}{2 \alpha}|\theta|^{2} .
$$

!f grows quadratically in $z$ !

## Parameterized RBSDE

Parameter dependence on $x \in \mathbb{R}$

$$
\begin{aligned}
& Y_{t}^{x}=\xi_{T}(x)-\int_{t}^{T} Z_{s}^{x} d W_{s}+\int_{t}^{T} f\left(s, Z_{s}^{x}\right) d s+K_{T}^{x}-K_{t}^{x} \\
& Y_{t}^{x} \geq \xi_{t}(x), \quad \int_{0}^{T}\left(Y_{t}^{x}-\xi_{t}(x)\right) d K_{t}^{x}=0
\end{aligned}
$$

Question: Are the solution processes $Y^{x}, Z^{x}$ and $K^{x}$ continuous or even differentiable with respect to $x$ ?

## Our setting: Quadratic RBSDEs

## - Consider RBSDE

$$
\begin{aligned}
& Y_{t}=\xi_{T}-\int_{t}^{T} Z_{s} d W_{s}+\int_{t}^{T} f\left(s, Z_{s}\right) d s+K_{T}-K_{t} \\
& Y_{t} \geq \xi_{t}, \quad \int_{0}^{T}\left(Y_{t}-\xi_{t}\right) d K_{t}=0
\end{aligned}
$$

with

- $\xi$ bounded adapted process, continuous on $[0, T$ [ and $\lim _{t \rightarrow T} \xi_{t} \leq \xi_{T}$
- $f$ s.t. $\forall(t, z):|f(t, z)| \leq M\left(1+|z|^{2}\right)$, and continuous in $z$
- Kobylanski (02) proved solution processes are $\sup _{t}\left|Y_{t}\right|<\infty$ and $E\left[\int Z_{s}^{2} d s\right]<\infty$


## BMO Martingales

## Definition (BMO)

Uniformly integrable martingales M with $M_{0}=0$ and

$$
\|M\|_{B M O}=\sup _{\tau}\left\|E\left[\langle M\rangle_{T}-\langle M\rangle_{\tau} \mid \mathcal{F}_{\tau}\right]^{\frac{1}{2}}\right\|_{\infty}<\infty
$$

$\mathcal{E}(M):=\exp \left\{M-\frac{1}{2}\langle M\rangle\right\}$
Theorem (Kazamaki 1994)

- $M B M O \Longrightarrow d Q=\mathcal{E}(M)_{T} d P$ is a probability measure
- $M B M O \Longrightarrow \exists p>1$ such that $\mathcal{E}(M) \in L^{p}$

Theorem (A.R.)
$(Y, Z, K)$ solution of the above $R B S D E \Longrightarrow \int Z d W$ is $B M O$

## Moment estimates

Using Itô formula, the BMO property of $\int Z d W$ and inequalities of Hölder, BDG, Doob,Young, for $p>1$ :
Theorem (A.R.)

$$
\begin{aligned}
& E^{P}\left[\sup _{t \in[0, T]}\left|Y_{t}\right|^{2 p}\right]+E^{P}\left[\left(\int_{0}^{T}\left|Z_{s}\right|^{2} d s\right)^{p}\right]+E^{P}\left[K_{T}^{2 p}\right] \\
& \quad \leq C E^{P}\left[\xi_{T}^{2 p q^{2}}+\sup _{t \in[0, T]}\left|\xi_{t}\right|^{2 p q^{2}}+\left(\int_{0}^{T} f(s, 0) d s\right)^{2 p q^{2}}\right]^{\frac{1}{q^{2}}}
\end{aligned}
$$

With similar methods we can estimate the variation in the solution induced by a variation in the data!

## Results

## Theorem (A.R.)

Let $\xi$ be differentiable in $x$, lipschitz in norm, $f$ be differentiable in $z, \nabla_{z} f$ of linear growth in $z$,
Then for $p>1$ and $\left|x-x^{\prime}\right|<1$

$$
\begin{aligned}
& E\left[\sup _{t \in[0, T]}\left|Y_{t}^{x}-Y_{t}^{x^{\prime}}\right|^{2 p}\right] \leq C\left|x-x^{\prime}\right|^{p} \\
& E\left[\left(\int_{0}^{T}\left|Z_{t}^{x}-Z_{t}^{x^{\prime}}\right|^{2} d s\right)^{p}\right] \leq C\left|x-x^{\prime}\right|^{p} \\
& E\left[\sup _{t \in[0, T]}\left|K_{t}^{x}-K_{t}^{x^{\prime}}\right|^{2 p}\right] \leq C\left|x-x^{\prime}\right|^{p} .
\end{aligned}
$$

Spaces:

- $\mathcal{S}^{p}$ space of predictable processes $X$ such that

$$
\|X\|_{\mathcal{S}^{p}}=E\left[\sup _{t}\left|X_{t}\right|^{p}\right]^{\frac{1}{p}}<\infty
$$

- $\mathcal{H}^{p}$ space of predictable processes $X$ such that

$$
\|X\|_{\mathcal{H}^{p}}=E\left[\left(\int_{0}^{T}\left|X_{t}\right|^{2} d t\right)^{\frac{p}{2}}\right]^{\frac{1}{p}}<\infty
$$

Corollary (A.R.)

- $\left(Y_{t}^{x}\right)$ and $\left(K_{t}^{x}\right)$ are continuous in $t$ and $x$.
- $\mathbb{R} \rightarrow \mathcal{H}^{2 p}: x \mapsto Z^{x}$ is Hölder continuous with $\alpha=\frac{1}{2}$.
- $\mathbb{R} \rightarrow \mathcal{S}^{2 p}: x \mapsto Y^{x}$ is Hölder continuous with $\alpha=\frac{1}{2}$.


## Differentiability

## BUT:

We can't prove Differentiability of $Y^{x}$ in $x$ in the classical sense Reason:

$$
E\left[\sup _{t \in[0, T]}\left|Y_{t}^{x}-Y_{t}^{x^{\prime}}\right|^{2 p}\right] \leq C\left|x-x^{\prime}\right|^{p}
$$

We would like to prove:
Theorem
There exists a version of $\left(Y_{t}^{x}, Z_{t}^{x}, K_{t}^{x}\right)$ such that a.s.

- $Y^{\times}$continuously differentiable in a weak sense
- $Z^{\times}$is differentiable in a weak sense

Thank you!

