Random Integer Partitions and the Bose Gas

Mathias Rafler ${ }^{1}$ supervised by Sylvie Rœlly ${ }^{1}$ and Hans Zessin ${ }^{2}$
${ }^{1}$ Universität Potsdam
${ }^{2}$ Universität Bielefeld

Disentis Summer School 2008

Outline

Classical Mechanics Free Particles in \mathbb{R}^{d}

Quantum Mechanics
Differences and the Bose Gas

Partition Problem
Extract from Bose Gas

Quantum Mechanics Interpretation

Classical Mechanics

Free Particles in \mathbb{R}^{d}

- given region G, place N point in G without interaction
- given bigger region G^{\prime}, repeat with N^{\prime} points
- is there a limit for $G \rightarrow \mathbb{R}^{d}$, $\frac{N}{|G|} \rightarrow u>0$?

Classical Mechanics

Free Particles in \mathbb{R}^{d}

Answer: Yes, Poisson process on \mathbb{R}^{d} ! (Nguyen, Zessin, 1976)

- \#particles in $G \sim \mathbf{P}_{u|G|}$
- \#particles in disjoint regions is independent

Quantum Mechanics

Differences and the Bose Gas

Basic Objects: Loops

- $x:[0, \beta] \rightarrow \mathbb{R}^{d}, x(0)=x(\beta)$
- Brownian bridge of length β

Quantum Mechanics

Differences and the Bose Gas

Indistinguishable particles

- loops may concatenate

Composite loops

- $x:[0, j \beta] \rightarrow \mathbb{R}^{d}, x(0)=x(j \beta)$
- Brownian bridge of length $j \beta$
(Ginibre)

Quantum Mechanics

Differences and the Bose Gas

Indistinguishable particles

- loops may concatenate

Composite loops

- $x:[0, j \beta] \rightarrow \mathbb{R}^{d}, x(0)=x(j \beta)$
- Brownian bridge of length $j \beta$
(Ginibre)

Quantum Mechanics

Differences and the Bose Gas

Ginibre Gas

- \#j-loops in $G \sim \mathbf{P}_{c j-(1+d / 2)|G|}$
- \#loops of different lengths and in disjoint regions is independent
Consequence
- expected \#loops

$$
c|G| \sum_{j \geq 1} j^{-(1+d / 2)}
$$

- expected \#particles $\mathrm{c}|G| \sum_{j \geq 1} j^{-d / 2}$

Limit as $\frac{N}{|G|} \rightarrow u>0$?

Quantum Mechanics

Differences and the Bose Gas

Theorem (Ginibre)

Partition function of a system of free particles obeying Bose Statistics at inverse temperature β and fugacity z

$$
Z_{G}=\exp \left[\sum_{j \geq 1} \frac{z^{j}}{j} \int \alpha_{G}(\omega) \mathbb{P}_{x x}^{j \beta}(\mathrm{~d} \omega) \mathrm{d} x\right]
$$

[Ginibre J: Some Applications of functional Integration in Statistical Mechanics. Statist. Mech. and Quantum Field Theory, Les Houches Summer School Theoret. Phys, (Gordon and Breach), 1971, 327-427]

Partition Problem

Extract from Bose Gas

Suppose for $\alpha>1$ fixed, $j=1,2, \ldots$,

$$
X_{j} \sim \mathbf{P}_{t j-(1+\alpha)}
$$

independent. Put

$$
\begin{aligned}
X & =\left(X_{1}, X_{2}, \ldots\right) \\
N(X) & =\sum_{j \geq 1} j X_{j}
\end{aligned}
$$

Consider

$$
\mathbb{P}_{t, N_{t}}=\operatorname{Law}\left(X \mid N(X)=N_{t}\right)
$$

Partition problem: How does $\frac{X}{N_{t}}$ behave as $t \rightarrow \infty, \frac{N_{t}}{t} \rightarrow u>0$?

Partition Problem

Extract from Bose Gas

By construction,

$$
\frac{1}{N_{t}} N(X)=\frac{1}{N_{t}} \sum_{j \geq 1} j X_{j}=1 \quad \mathbb{P}_{t, N_{t}} \text {-a.s. }
$$

Let

$$
Y:=\lim _{t \rightarrow \infty} \frac{X}{N_{t}}
$$

by Fatou's lemma

$$
N(Y)=\sum_{j \geq 1} j Y_{j} \leq 1
$$

Is equality preserved in the Limit?

Partition Problem

Extract from Bose Gas

By construction,

$$
\frac{1}{N_{t}} N(X)=\frac{1}{N_{t}} \sum_{j \geq 1} j X_{j}=1 \quad \mathbb{P}_{t, N_{t}} \text {-a.s. }
$$

Let

$$
Y:=\lim _{t \rightarrow \infty} \frac{X}{N_{t}}
$$

by Fatou's lemma

$$
N(Y)=\sum_{j \geq 1} j Y_{j} \leq 1
$$

Sometimes.

Partition Problem

Extract from Bose Gas

By construction,

$$
\frac{1}{N_{t}} N(X)=\frac{1}{N_{t}} \sum_{j \geq 1} j X_{j}=1 \quad \mathbb{P}_{t, N_{t}} \text {-a.s. }
$$

Let

$$
Y:=\lim _{t \rightarrow \infty} \frac{X}{N_{t}}
$$

by Fatou's lemma

$$
N(Y)=\sum_{j \geq 1} j Y_{j} \leq 1
$$

But not always!

Partition Problem

Extract from Bose Gas

Theorem
Subject to given conditions

$$
u j Y_{j}= \begin{cases}\frac{z^{j}}{j^{\alpha}} & \text { if } u \leq u^{*} \\ \frac{1}{j^{\alpha}} & \text { if } u>u^{*}\end{cases}
$$

where $z=z(u)$ is the solution of

$$
u \wedge u^{*}=\sum_{j \geq 1} \frac{z^{j}}{j^{\alpha}}
$$

Partition Problem

Extract from Bose Gas

Theorem
Subject to given conditions

$$
u N(Y)= \begin{cases}u & \text { if } u \leq u^{*} \\ u^{*} & \text { if } u>u^{*}\end{cases}
$$

where $z=z(u)$ is the solution of

$$
u \wedge u^{*}=\sum_{j \geq 1} \frac{z^{j}}{j^{\alpha}}
$$

Partition Problem

Extract from Bose Gas

Theorem
Subject to given conditions

$$
N(Y)= \begin{cases}1 & \text { if } u \leq u^{*} \\ \frac{u^{*}}{u}<1 & \text { if } u>u^{*}\end{cases}
$$

where $z=z(u)$ is the solution of

$$
u \wedge u^{*}=\sum_{j \geq 1} \frac{z^{j}}{j^{\alpha}}
$$

Partition Problem

Extract from Bose Gas

Theorem
Subject to given conditions

$$
N(Y)= \begin{cases}1 & \text { if } u \leq u^{*} \\ \frac{u^{*}}{u}<1 & \text { if } u>u^{*}\end{cases}
$$

Elements of proof

- show LDP for $\frac{X}{N_{t}}$ to get convergence and to obtain variational problem;
- problems: poor continuity properties, small sets, minimisation problem with constraints

Quantum Mechanics

Interpretation

Competition: density vs. Brownian bridges

- low density. interparticle distance too large to build large composite loops
- high density. interparticle distance small; even possibility to build infinitely long loops (Bose-Einstein Condensation)

Ginibre J：Some Applications of functional Integration in Statistical Mechanics．Statist．Mech．and Quantum Field Theory，Les Houches Summer School Theoret．Phys，（Gordon and Breach），1971，327－427

國 Nguyen X X，Zessin H：Martin－Dynkin boundary of mixed Poisson processes，Z．Wahrscheinlichkeitstheorie verw．Gebiete 37 （1976／77），no．3，191－200

围 Kingman，J F C：The representation of partition structures，J． London Math．Soc．（2） 18 （1978），no．2，374－380

國 Föllmer H：Phase transition and Martin Boundary，Seminaire de probabilites（Strasbourg） 9 （1975），305－17

囯 R：Martin－Dynkin boundaries of the Bose Gas，Preprint

