Optimal execution strategies in limit order books

Antje Fruth Joint work with Aurélien Alfonsi and Alexander Schied

www.math.tu-berlin.de/~fruth

Technische Universität Berlin Deutsche Bank Quantitative Products Laboratory

IRTG Summer School, Disentis, Switzerland, July 2008

- Problem
- Limit order book model
- Optimal execution strategy
- Examples
- Sketch of the proof
- Model ramifications

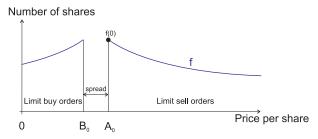
- ► Trade a big position of a single asset in fixed time ~→ Price impact!
- More precisely: Buy X ∈ N shares over [0, T] at equidistant trading times (t_n)_{n=0,...,N}
- Find optimal strategy ξ₀,...,ξ_N with ∑^N_{n=0} ξ_n = X such that expected costs are minimized → risk neutral investor

$$\min_{\xi} \mathbb{E}\Big[\sum_{n=0}^{N} \pi_{t_n}(\xi_n)\Big]$$

• We need a market model for the **transaction cost** π !

Market: Limit order book (LOB)

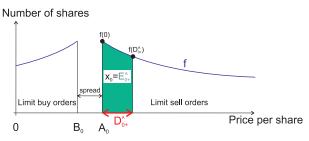
Snapshot of a LOB in t = 0:



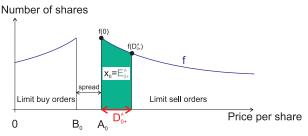
▶ LOB form: $f : \mathbb{R} \rightarrow]0, \infty[$ continuous

▶ Unaffected best ask A_t is a martingale and the best bid satisfies $B_t \leq A_t$

Price impact of a market buy order x₀



Resilience of the LOB



 \blacktriangleright Exponential resilience with resilience speed ρ

Model E	Model D
$E_{t_1} = e^{-\rho\tau} E_{t_0+}$	$D_{t_1} = e^{- ho au} D_{t_0+}$

Our model is a generalization of Obizhaeva, Wang (2005)

Model

Cost of transaction of size x_t at time t

$$\pi_t(x_t) := \left\{ egin{array}{c} A_t x_t + \int_{D_t^A}^{D_{t+}^A} xf(x) dx & ext{buy order} \ B_t x_t + \int_{D_t^B}^{D_{t+}^B} xf(x) dx & ext{sell order} \end{array}
ight.$$

Stochastic optimization problem (risk neutral investor)

$$\min_{\xi} \mathbb{E}\Big[\sum_{n=0}^{N} \pi_{t_n}(\xi_n)\Big]$$

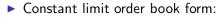
for all adapted strategies $\xi = (\xi_0, ..., \xi_N)$ such that ξ_n is bounded from below and $\sum_{n=0}^{N} \xi_n = X$

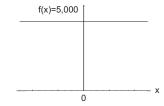
Theorem

Under some technical assumptions, there exists a unique optimal strategy ξ in both models. It is deterministic, consists only of buy orders and is determined by:

		Model D
ξ0	$\widetilde{h}_E(\xi_0) = 0$	$egin{aligned} &\widetilde{h}_D(\xi_0) = 0 \ &\xi_0 - F(e^{- ho au}F^{-1}(\xi_0)) \end{aligned}$
$\xi_1 = = \xi_{N-1}$	$\xi_0(1-e^{- ho au})$	$\xi_0 - F(e^{- ho au}F^{-1}(\xi_0))$
ξN	$X-\dot{\xi}_0-(N-1)\xi_1$	

► Interpretation: E_{t1} = ... = E_{tN} ~→ "Optimal level of E", trade-off between price impact and attracting new limit sell orders



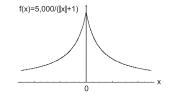


Same optimal strategy for Model E and D: $\xi_0 = \xi_N = \frac{X}{(N-1)(1-e^{-\rho\tau})+2}$

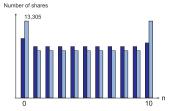
Antje Fruth (TU Berlin)

Example 2

Limit order book form:



Optimal strategy for Model E and D:



Antje Fruth (TU Berlin)

Proof for Model E !

$$\pi_t(x_t) := \left\{ \begin{array}{ll} A_t x_t + \int_{D_t^A}^{D_{t+}^A} xf(x) dx & \text{buy order} \\ B_t x_t + \int_{D_t^B}^{D_{t+}^B} xf(x) dx & \text{sell order} \end{array} \right\}$$
$$\min_{\xi} \mathbb{E} \left[\sum_{n=0}^N \pi_{t_n}(\xi_n) \right]$$

- 1. Reduction to deterministic strategies
- 2. Lagrange method to determine optimal strategy
- 3. Uniqueness and positivity of the strategy

- W.I.o.g consider only buy orders
- ► Martingale property of *A* and integrating by parts yields:

$$\mathbb{E}\Big[\sum_{n=0}^{N}\pi_{t_n}(\xi_n)\Big] = XA_0 + \mathbb{E}\Big[\underbrace{\sum_{n=0}^{N}\int_{D_{t_n}^A}^{D_{t_n}^A}xf(x)dx}_{=:C(\xi_0,\dots,\xi_N)}\Big]$$

▶ Show C has unique minimum in $\{(x_0, ..., x_N) \in \mathbb{R}_{>0}^{N+1} | \sum_{n=0}^N x_n = X\}$

Proof: 2. Lagrange method

Show C(x) → ∞ to guarantee the existence of a Lagrange multiplier ν ∈ ℝ with

$$\nu = \frac{\partial}{\partial x_n} C(x_0^*, ..., x_N^*)$$

= $a \Big[\frac{\partial}{\partial x_{n+1}} C - F^{-1} (a(a^n x_0^* + ... + x_n^*)) \Big] + F^{-1} (a^n x_0^* + ... + x_n^*)$

with resilience coefficient $a := e^{-\rho\tau}$

► This leads to the system h_E(aⁿx₀^{*} + ... + x_n^{*}) = ν(1 - a) for n = 0, ..., N - 1 which is explicitly solved by

$$\begin{array}{rcl} x_0^* &=& h_E^{-1}(\nu(1-a)) \\ x_n^* &=& x_0^*(1-a) \ \text{for} \ n=1,...,N-1 \\ x_N^* &=& X-x_0^*-(N-1)x_n^* \end{array}$$

Find $x_0^* : C(x_0^*, ..., x_N^*) = \overline{C}(x_0^*)$ with $\frac{\partial}{\partial x}\overline{C}(x) = \widetilde{h}_E(x)$

Ramifications

► Inhomogeneous trading times (t_n)_{n=0,...,N} and time varying resilience (ρ_t)_{t∈[0,T]}

$$a_n := e^{-\int_{t_{n-1}}^{t_n} \rho_t dt}$$

▶ If $f(x) \equiv \text{const.}$, then the optimization can be reduced to a quadratic form $\min_x \frac{1}{2} \langle x, Mx \rangle$ with

$$M := \begin{bmatrix} 1 & a_1 & a_1a_2 & \cdots & a_1 \dots a_N \\ a_1 & 1 & a_2 & & \vdots \\ a_1a_2 & a_2 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & a_N \\ a_1 \dots a_N & \cdots & \cdots & a_N & 1 \end{bmatrix} \in]0, 1]^{N+1, N+1}$$

Antje Fruth (TU Berlin)

Ramifications

Optimal strategy without constraints

There is a unique, deterministic, positive optimal strategy:

$$\xi_0 = \frac{c}{1+a_1}, \ \xi_n = c \Big(\frac{1}{1+a_n} - \frac{a_{n+1}}{1+a_{n+1}} \Big) \ \text{for} \ n = 1, ..., N-1, \ \xi_N = \frac{c}{1+a_N}$$

Optimal strategy with constraints

Linear constraints $\left\{x \in \mathbb{R}^{N+1} \middle| \sum_{n=0}^{N} x_n = X, \langle v^j, x \rangle \ge 0 \right\}$ Then the optimal strategy is

$$x = cM^{-1}\mathbf{1} + \sum_j c_j M^{-1} v^j$$

for constants c, c_j uniquely determined by a system of linear equations.

- Market microstructure model for LOB
- Improvements compared to Obizhaeva, Wang:
 - ▶ LOB form not necessarily constant ~→ nonlinear price impact
 - ▶ Explicit optimal strategies with similar qualities ("Optimal level of E")
 - More general unaffected best ask, bid

Thank you for your attention!

- [1] Alfonsi, A., Fruth, A., Schied, A. Optimal execution strategies in limit order books with general shape functions. Preprint, TU Berlin (2007)
- [2] Alfonsi, A., Fruth, A., Schied, A. Constrained portfolio liquidation in a limit order book model. Preprint, forthcoming in Banach Center Publications, TU Berlin (2007)
- [3] Obizhaeva, A., Wang, J. Optimal trading strategy and supply/demand dynamics. Preprint, forthcoming in Journal of Financial Markets