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Introduction

Notation

I X1, . . . ,Xn i.i.d. with cdf F

I Maximum X(n) := max1≤i≤n Xi

I xF = supx∈R{F (x) < 1} right endpoint of F

Question
Under which conditions on F do there exist an, bn ∈ R, an > 0,
and a non-degenerate df F ∗ such that

lim
n→∞

P

(
X(n) − bn

an
≤ x

)
= F ∗(x),

i.e. such that F is in the maximum domain of attraction of F ∗,
F ∈ MDA(F ∗)?



Answer
F has to satisfy (Leadbetter et al., 1983)

lim
x→xF

1− F (x)

1− F (x−)
= 1 (1)

Fisher-Tippett Theorem
If (1) is fulfilled, there exist only 3 possible limit laws for the
normalized maximum (X(n) − an)/bn:

I Fréchet: Φα(x) =

{
0 , x ≤ 0
exp{−x−α} , x > 0

, α > 0

I Weibull: Ψα(x) =

{
exp{−(−x)−α} , x ≤ 0
1 , x > 0

, α > 0

I Gumbel: Λ(x) = exp{−e−x}, x ∈ R.

(the extreme-value distributions F ∗)



Univariate discrete random variables

Problem
(1) is not satisfied for discrete distributions such as the Binomial,
Poisson, Geometric, Negative Binomial ⇒ no limit law for maxima!

Remedy
Let a distribution parameter vary with the sample size n at a
suitable rate. Then

I Poisson in MDA(Gumbel) (Anderson et al., 1997)

I Binomial, Geometric, Negative Binomial in MDA(Gumbel)
(Nadarajah and Mitov, 2002)
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Example: Geometric

I X1, . . . ,Xn i.i.d. ∼ Geo(p), 0 < p < 1, q=1-p

I W (x) :=
∑n

i=1 1{Xi≥x} = # exceedances of level x

I
{
W (x) = 0

}
= {max1≤i≤n Xi < bxc}

Approximate W (x) by a Poi(nqbxc) distribution:∣∣∣∣P ( max
1≤i≤n

Xi < bxc
)
− e−nqbxc

∣∣∣∣ ≤ qbxc (Stein-Chen method)

Choose p = pn
n→∞−→ 0 and an = 1/pn, bn = log n/pn. Then∣∣∣∣P ( max

1≤i≤n
Xi ≤ anx + bn

)
− exp{−e−x}

∣∣∣∣ ≤ qanx+bn
n = O

(
1

n

)
.



But, there exist discrete distributions such that (1) holds!

Example Let

I X ≥ 0 absolutely continuous rv

I xF =∞
I hazard rate f (x)/(1− F (x))→ 0 as x →∞.

I e.g. Pareto distribution

I dxe := min{n ∈ N : n ≥ x}

Then we discretize X to obtain dX e with df

dF e(x) = P (dX e ≤ x) = P (dX e ≤ bxc) = P (X ≤ bxc) = F (bxc)

→ Can show that (1) holds for dX e and

dF e ∈ MDA(F ∗)⇔ F ∈ MDA(F ∗)



In higher dimensions?

Notation (d=2)

I (X1,Y1), . . . , (Xn,Yn) i.i.d. with joint df H and margins F , G

I componentwise maxima X(n), Y(n)

Question
When do there exist an, bn, cn and dn ∈ R, bn, dn > 0, and a
non-degenerate df H∗ such that

lim
n→∞

P

(
X(n) − an

bn
≤ x ,

Y(n) − cn

dn
≤ y

)
= H∗(x , y),

i.e. when is H ∈ MDA(H∗)?

Answer for continuous margins
Galambos’ Thm (1978). Uses copulas for modelling joint dfs.
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What is a copula?

Definition
A bivariate copula C : [0, 1]2 → [0, 1] is a joint distribution
function with standard uniform margins.

Idea

H(x , y) = P (X ≤ x ,Y ≤ y)

= P [F (X ) ≤ F (x),G (Y ) ≤ G (y)]

= P [U ≤ F (x),V ≤ G (y)] , with U,V ∼ U [0, 1]

= C (F (x),G (y))

( for F , G continuous)
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Sklar’s Theorem
(i) If H is a joint df with margins F and G , then ∃ a copula C s.t.

H(x , y) = C (F (x),G (y)) ∀x , y ∈ [−∞,∞] (2)

If F , G are continuous, then C is unique. If F , G are discrete, then
C is uniquely determined on Ran(F )× Ran(G ).

(ii) If C is a copula and F and G are dfs, then H defined by (2) is
a joint df with margins F and G .

If (2) holds, say C ∈ C(H), the class of copulas compatible with H.
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Galambos’ Theorem

For continuous margins
Let H and H∗ be joint dfs such that H(x , y) = C (F (x),G (y))
with F and G continuous, and H∗(x , y) = C ∗(F ∗(x),G ∗(y)).
Then, with u, v ∈ [0, 1],

H ∈ MDA(H∗) ⇔
{

(i) F ∈ MDA(F ∗) and G ∈ MDA(G ∗)

(ii) limt→∞ C t
(
u1/t , v1/t

)
= C ∗(u, v)

,

i.e. the extremal behaviour of H is determined by the extremal
behaviour of its margins and its underlying copula.



What if the margins are discrete?

Problem
C is not unique, |C(H)| =∞ (Genest and Nešlehová, 2007).

→ Can apply the following weak convergence result to prove
Galambos’ theorem for the discrete case.



What if the margins are discrete?

Problem
C is not unique, |C(H)| =∞ (Genest and Nešlehová, 2007).
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Proposition 1
Let (X1,Y1), (X2,Y2), . . . be mutually independent random pairs
such that (Xn,Yn) has joint df Hn and margins Fn,Gn.
Let (X ,Y ) be a random pair with joint df H and margins F ,G .
Then, the following are equivalent:

(a) (Xn,Yn)
w→ (X ,Y ), as n→∞.

(b) Xn
w→ X and Yn

w→ Y , as n→∞,
and ∃ C ∈ C(H) and ∃ a sequence (Cn) with Cn ∈ C(Hn)
such that Cn → C on Ran(F )× Ran(G ).

(c) Xn
w→ X and Yn

w→ Y as n→∞,
and ∀ Cn ∈ C(Hn) and ∀ C ∈ C(H),
we have Cn → C uniformly on Ran(F )× Ran(G ).

Proof: use triangle inequality, Lipschitz-property of copulas, Continuous Mapping thm,

Arzelá-Ascoli thm
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General Galambos (for i.i.d. pairs)

Apply Proposition 1 to normalized maxima:

Proposition 2
Let (X 1,Y 1), (X 2,Y 2), . . . be mutually independent random
pairs with common joint df H and margins F ,G .
Let H∗ be a joint df with margins F ∗,G ∗ and copula C ∗.
Then, the following are equivalent:

(a) H ∈ MDA(H∗)

(b) F ∈ MDA(F ∗) and G ∈ MDA(G ∗) and ∃ C ∈ C(H )
such that limt→∞ C t

(
u1/t , v1/t

)
= C ∗(u, v) for all (u, v) ∈ [0, 1]2.

(c) F ∈ MDA(F ∗) and G ∈ MDA(G ∗) and ∀ C ∈ C(H ),
limt→∞ C t

(
u1/t , v1/t

)
= C ∗(u, v) holds uniformly on [0, 1]2.



General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, . . .⇒ let parameter vary with n
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General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, . . .⇒ let parameter vary with n

Proposition 2’
Let (Xn1,Yn1), (Xn2,Yn2), . . . be mutually independent random
pairs with common joint df Hn and margins Fn,Gn.
Let H∗ be a joint df with margins F ∗,G ∗ and copula C ∗.
Then, the following are equivalent:

(a) (Hn) ∈ MDA(H∗)

(b) (Fn) ∈ MDA(F ∗) and (Gn) ∈ MDA(G ∗) and ∃ (Cn) ∈ C(Hn)
such that limn→∞ Cn

n

(
u1/n, v1/n

)
= C ∗(u, v) for all

(u, v) ∈ [0, 1]2.

(c) (Fn) ∈ MDA(F ∗) and (Gn) ∈ MDA(G ∗) and ∀ (Cn) ∈ C(Hn),
limn→∞ Cn

n

(
u1/n, v1/n

)
= C ∗(u, v) holds uniformly on [0, 1]2.



Idea why Prop. 1 ⇒ Prop. 2, 2’

I H̃n(x , y) := P
(
X(n) ≤ anx + bn,Y(n) ≤ cny + dn

)
I F̃n(x) := P

(
X(n) ≤ anx + bn

)
= F n

n (anx + bn)

I G̃n(y) := P
(
Y(n) ≤ cny + dn

)
= Gn

n (cny + dn)

H̃n(x , y) = Hn
n (anx + bn, cny + dn)

= Cn
n (Fn(anx + bn),Gn(cny + dn)), for Cn ∈ C(Hn)

= Cn
n (F̃

1/n
n (x), G̃

1/n
n (y))

= Dn(F̃n(x), G̃n(y)),

where Dn(u, v) := Cn
n

(
u1/n, v1/n

)
is a copula ⇒ Dn ∈ C(H̃n).

Therefore,

Cn
n (u1/n, v1/n)→ C ∗(u, v) ⇐⇒ Dn → C ∗



Examples

Proposition 2 (i.i.d. pairs)

I Pareto distribution of the first kind (Kotz et al., 2000) with
discretized margins

I Marshall-Olkin exponential distribution (Nelsen, 2006) with
discretized margins

Proposition 2’ (triangular arrays)

I Marshall-Olkin geometric distribution (Marshall and Olkin, 1985)

I Poisson (Coles and Pauli, 2001), copula not tractable?



Thanks for listening

Enjoy dinner


