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Introduction

Notation
> Xi,..., Xy i.id. with cdf F
» Maximum X(n) = maxi<i<n X;
> XxF = sup,er{F(x) < 1} right endpoint of F

Question
Under which conditions on F do there exist a,, b, € R, a, > 0,
and a non-degenerate df F* such that

Xy — by
lim P <() < x> = F*(x),

n—oo an

i.e. such that F is in the maximum domain of attraction of F*,
F € MDA(F*)?



Answer
F has to satisfy (Leadbetter et al., 1983)

. 1-F(x)

lim —— 7 —1 1
A1 Flxo) (1)
Fisher-Tippett Theorem

If (1) is fulfilled, there exist only 3 possible limit laws for the
normalized maximum (X — an)/bn:

, ) 0 ,x<0
» Fréchet: D, (x) = { exp{—x—} x>0 ,a>0
—(—x)@ <
> Weibull:  Wo(x) :{ ep{=(=)™ L x=0 g
1 , x>0
> Gumbel: A(x) = exp{—e™}, x € R.

(the extreme-value distributions F*)
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Remedy
Let a distribution parameter vary with the sample size n at a
suitable rate. Then

» Poisson in I\/IDA(GumbeI) (Anderson et al., 1997)

» Binomial, Geometric, Negative Binomial in MDA(Gumbel)
(Nadarajah and Mitov, 2002)



Example: Geometric
> X1,..., X, iid. ~Geo(p), 0 < p<1, qg=1lp
» W) .= Py Lix;>x) = # exceedances of level x
> {W) =0} = {maxi<i<n Xi < |x]}

Approximate W) by a Poi(ngl*!) distribution:

‘P < max X; < LXJ) — e_nqLXJ < qLXJ (Stein-Chen method)

1<i<n

Choose p = p, —> 0 and a, = 1/p,, b, = logn/p,. Then

< gt =0 <1> .

n

‘P < max X; < apx + bn> —exp{—e ¥}

1<i<n




But, there exist discrete distributions such that (1) holds!

Example Let
» X > 0 absolutely continuous rv
> XF =00
» hazard rate f(x)/(1 — F(x)) — 0 as x — oo.
» e.g. Pareto distribution
» [x] :==min{fneN:n>x}
Then we discretize X to obtain [ X with df
[FI(x) = P([X] <x)=P([X] < |x]) = P(X < [x]) = F(x])

— Can show that (1) holds for [ X and

[F] € MDA(F*) & F € MDA(F*)



In higher dimensions?

Notation (d=2)

> (X1, Y1),...,(Xn, Yn) iid. with joint df H and margins F, G

> componentwise maxima X(), Y(n)

Question
When do there exist a,, b,, ¢, and d, € R, b,,d, > 0, and a
non-degenerate df H* such that

(X(n) —an _ Y~

lim P b, < x, T < y> = H*(x,y),

n—oo

i.e. when is H € MDA(H*)?



In higher dimensions?

Notation (d=2)
> (X1, Y1),...,(Xn, Yn) iid. with joint df H and margins F, G

> componentwise maxima X(), Y(n)

Question
When do there exist a,, b,, ¢, and d, € R, b,,d, > 0, and a
non-degenerate df H* such that

X_n Yn_n
((n) Y~ €

lim P
im b, < x, a

Jim, <) =H ()
i.e. when is H € MDA(H*)?

Answer for continuous margins
Galambos’ Thm (1978). Uses copulas for modelling joint dfs.
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What is a copula?

Definition
A bivariate copula C : [0,1]?> — [0,1] is a joint distribution
function with standard uniform margins.

Idea
H(x,y) = P(X<x,Y<y)
= P[F(X) < F(x),G(Y) < G(y)]
= P[U<F(x),V<G(y)], with U,V ~ U]0,1]
= C(F(x),G(y))

( for F, G continuous)



Sklar's Theorem
(i) If H is a joint df with margins F and G, then 3 a copula C s.t.

H(x,y) = C(F(x), G(y)) Vx,y € [-00, 0] (2)

If F, G are continuous, then C is unique. If F, G are discrete, then
C is uniquely determined on Ran(F) x Ran(G).
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Sklar's Theorem
(i) If H is a joint df with margins F and G, then 3 a copula C s.t.

H(x,y) = C(F(x), G(y)) Vx,y € [-00, 0] (2)

If F, G are continuous, then C is unique. If F, G are discrete, then
C is uniquely determined on Ran(F) x Ran(G).

(ii) If Cis a copula and F and G are dfs, then H defined by (2) is
a joint df with margins F and G.

If (2) holds, say C € C(H), the class of copulas compatible with H.



Galambos' Theorem

For continuous margins
Let H and H* be joint dfs such that H(x,y) = C(F(x), G(y))
with F and G continuous, and H*(x, y) = C*(F*(x), G*(y)).
Then, with u, v € [0, 1],

. (i) F € MDA(F*) and G € MDA(G*)
H E MDA(H ) = { (“) ||mt—>oo Ct (Ul/t, Vl/t) — C*(U7 V) Y
i.e. the extremal behaviour of H is determined by the extremal
behaviour of its margins and its underlying copula.



What if the margins are discrete?

Problem
C is not unique, |C( )l = (Genest and Neslehovd, 2007).



What if the margins are discrete?

Problem
C is not unique, |C( )‘ = 00O (Genest and Neslehovd, 2007).

— Can apply the following weak convergence result to prove
Galambos’ theorem for the discrete case.



Proposition 1

Let (X1, Y1), (X2, Y2),... be mutually independent random pairs
such that (X, Y,) has joint df H, and margins F,, G,.

Let (X, Y) be a random pair with joint df H and margins F, G.
Then, the following are equivalent:

(@) (X, Yn) = (X, Y), as n — oo.
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Proposition 1

Let (X1, Y1), (X2, Y2),... be mutually independent random pairs
such that (X, Y,) has joint df H, and margins F,, G,.

Let (X, Y) be a random pair with joint df H and margins F, G.
Then, the following are equivalent:

(@) (X, Yn) = (X, Y), as n — oo.

(b) X, % X and Y, % Y, as n — oo,
and 3 C € C(H) and 3 a sequence (C,) with C, € C(H,)
such that C, — C on Ran(F) x Ran(G).

(c) X, % X and Y, % Y as n — oo,
and ¥V C, € C(H,) and ¥V C € C(H),
we have C, — C uniformly on Ran(F) x Ran(G).

Proof: use triangle inequality, Lipschitz-property of copulas, Continuous Mapping thm,

Arzela-Ascoli thm



General Galambos (for i.i.d. pairs)

Apply Proposition 1 to normalized maxima:

Proposition 2

Let (X 1,Y 1), (X 2,Y 2),... be mutually independent random
pairs with common joint df H and margins F , G .

Let H* be a joint df with margins F*, G* and copula C*.

Then, the following are equivalent:

(a) H € MDA(HY)

(b) F € MDA(F*)and G € MDA(G*)andd C €C(H)
such that lim,_... C* (v, v1/t) = C*(u,v) for all (u,v) € [0,1]%

(c) F €MDA(F*)and G &MDA(G*)and¥ C eC(H),
lim¢—oo Ct (6t v1/t) = C*(u, v) holds uniformly on [0, 1]2.



General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, ...=- let parameter vary with n
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General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, ...= let parameter vary with n

Proposition 2’

Let (Xh1, Yo1), (Xn2, Yi2), ... be mutually independent random
pairs with common joint df H,, and margins F,, G,.

Let H* be a joint df with margins F*, G* and copula C*.

Then, the following are equivalent:

(a) (Hy) € MDA(H*)

(b) (F,) € MDA(F*) and (G,) € MD ( *) and 3 (C,) € C(H,)
such that lim, .o C/ (ul/” 1n) = ,v) for all

(u,v) €[0,1]2.

(c) (Fn) € MDA(F*) and (G,) € MDA(G*) and V (C,,) € C(H,),
limp oo C (u2/",v}/") = C*(u, v) holds uniformly on [0, 1].



Idea why Prop. 1 = Prop. 2, 2’

> Fln(x,y) =P (X(n) < apx + by, Y(n) < cpy + d )
Fo(x):=P (X (n) < anx + bn) = Fl'(anx + bn)
Goly) := P (Y(n) < oy + dn) = G (cay + dn)

Hno(x,y) = H](anx + bp, cny + dp)
= () (Fn(anx + bp), Gpy(cny + dp)), for C, € C(Hp)
= C(FR"(x). G/ (v))
= Da(Fa(x), Ga(y)),
where Dj(u,v) := C] (ul/”, vl/”) is a copula = D, € C(lt/n).
Therefore,

Cr(u*" vy = C*(u,v) <= D, — C*



Examples

Proposition 2 (i.i.d. pairs)
» Pareto distribution of the first kind (Kotz et al., 2000) with
discretized margins

» Marshall-Olkin exponential distribution (Nelsen, 2006) with
discretized margins

Proposition 2" (triangular arrays)
» Marshall-Olkin geometric distribution (Marshall and Olkin, 1985)

» Poisson (Coles and Pauli, 2001), copula not tractable?



Thanks for listening

Enjoy dinner



