Asymptotics of Joint Maxima of Discrete Random Variables

Anne Feidt
University of Zurich
with Christian Genest and Johanna Nešlehová

Disentis, 21st July 2008

Introduction

Notation

- X_{1}, \ldots, X_{n} i.i.d. with cdf F
- Maximum $X_{(n)}:=\max _{1 \leq i \leq n} X_{i}$
- $x_{F}=\sup _{x \in \mathbb{R}}\{F(x)<1\}$ right endpoint of F

Question

Under which conditions on F do there exist $a_{n}, b_{n} \in \mathbb{R}, a_{n}>0$, and a non-degenerate $\mathrm{df} F^{*}$ such that

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{(n)}-b_{n}}{a_{n}} \leq x\right)=F^{*}(x)
$$

i.e. such that F is in the maximum domain of attraction of F^{*}, $F \in \operatorname{MDA}\left(F^{*}\right)$?

Answer

F has to satisfy (Leadbetter et al., 1983)

$$
\begin{equation*}
\lim _{x \rightarrow x_{F}} \frac{1-F(x)}{1-F(x-)}=1 \tag{1}
\end{equation*}
$$

Fisher-Tippett Theorem
If (1) is fulfilled, there exist only 3 possible limit laws for the normalized maximum $\left(X_{(n)}-a_{n}\right) / b_{n}$:

- Fréchet: $\quad \Phi_{\alpha}(x)=\left\{\begin{array}{ll}0 & , x \leq 0 \\ \exp \left\{-x^{-\alpha}\right\} & , x>0\end{array}, \alpha>0\right.$
- Weibull: $\quad \Psi_{\alpha}(x)=\left\{\begin{array}{ll}\exp \left\{-(-x)^{-\alpha}\right\} & , x \leq 0 \\ 1 & , x>0\end{array}, \alpha>0\right.$
- Gumbel:

$$
\Lambda(x)=\exp \left\{-e^{-x}\right\}, x \in \mathbb{R}
$$

(the extreme-value distributions F^{*})

Univariate discrete random variables

Problem
(1) is not satisfied for discrete distributions such as the Binomial, Poisson, Geometric, Negative Binomial \Rightarrow no limit law for maxima!

Univariate discrete random variables

Problem
(1) is not satisfied for discrete distributions such as the Binomial, Poisson, Geometric, Negative Binomial \Rightarrow no limit law for maxima!

Remedy
Let a distribution parameter vary with the sample size n at a suitable rate. Then

- Poisson in MDA(Gumbel) (Anderson et al., 1997)
- Binomial, Geometric, Negative Binomial in MDA(Gumbel) (Nadarajah and Mitov, 2002)

Example: Geometric

- X_{1}, \ldots, X_{n} i.i.d. $\sim \operatorname{Geo}(p), 0<p<1, \mathrm{q}=1$ - p
- $W^{(x)}:=\sum_{i=1}^{n} \mathbb{1}_{\left\{x_{i} \geq x\right\}}=\#$ exceedances of level x
- $\left\{W^{(x)}=0\right\}=\left\{\max _{1 \leq i \leq n} X_{i}<\lfloor x\rfloor\right\}$

Approximate $W^{(x)}$ by a $\operatorname{Poi}\left(n q^{\lfloor x\rfloor}\right)$ distribution:

$$
\left|P\left(\max _{1 \leq i \leq n} X_{i}<\lfloor x\rfloor\right)-e^{-n q^{\lfloor x\rfloor}}\right| \leq q^{\lfloor x\rfloor} \quad \text { (Stein-Chen method) }
$$

Choose $p=p_{n} \xrightarrow{n \rightarrow \infty} 0$ and $a_{n}=1 / p_{n}, b_{n}=\log n / p_{n}$. Then

$$
\left|P\left(\max _{1 \leq i \leq n} X_{i} \leq a_{n} x+b_{n}\right)-\exp \left\{-e^{-x}\right\}\right| \leq q_{n}^{a_{n} x+b_{n}}=O\left(\frac{1}{n}\right) .
$$

But, there exist discrete distributions such that (1) holds!
Example Let

- $X \geq 0$ absolutely continuous $r v$
- $x_{F}=\infty$
- hazard rate $f(x) /(1-F(x)) \rightarrow 0$ as $x \rightarrow \infty$.
- e.g. Pareto distribution
- $\lceil x\rceil:=\min \{n \in \mathbb{N}: n \geq x\}$

Then we discretize X to obtain $\lceil X\rceil$ with df
$\lceil F\rceil(x)=P(\lceil X\rceil \leq x)=P(\lceil X\rceil \leq\lfloor x\rfloor)=P(X \leq\lfloor x\rfloor)=F(\lfloor x\rfloor)$
\rightarrow Can show that (1) holds for $\lceil X\rceil$ and

$$
\lceil F\rceil \in \operatorname{MDA}\left(F^{*}\right) \Leftrightarrow F \in \operatorname{MDA}\left(F^{*}\right)
$$

In higher dimensions?

Notation ($\mathrm{d}=2$)

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with joint df H and margins F, G
- componentwise maxima $X_{(n)}, Y_{(n)}$

Question
When do there exist a_{n}, b_{n}, c_{n} and $d_{n} \in \mathbb{R}, b_{n}, d_{n}>0$, and a non-degenerate df H^{*} such that

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{(n)}-a_{n}}{b_{n}} \leq x, \frac{Y_{(n)}-c_{n}}{d_{n}} \leq y\right)=H^{*}(x, y)
$$

i.e. when is $H \in \operatorname{MDA}\left(H^{*}\right)$?

In higher dimensions?

Notation ($\mathrm{d}=2$)

- $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ i.i.d. with joint df H and margins F, G
- componentwise maxima $X_{(n)}, Y_{(n)}$

Question
When do there exist a_{n}, b_{n}, c_{n} and $d_{n} \in \mathbb{R}, b_{n}, d_{n}>0$, and a non-degenerate df H^{*} such that

$$
\lim _{n \rightarrow \infty} P\left(\frac{X_{(n)}-a_{n}}{b_{n}} \leq x, \frac{Y_{(n)}-c_{n}}{d_{n}} \leq y\right)=H^{*}(x, y)
$$

i.e. when is $H \in \operatorname{MDA}\left(H^{*}\right)$?

Answer for continuous margins
Galambos' Thm (1978). Uses copulas for modelling joint dfs.

What is a copula?

What is a copula?

Definition
A bivariate copula $C:[0,1]^{2} \rightarrow[0,1]$ is a joint distribution function with standard uniform margins.

What is a copula?

Definition
A bivariate copula $C:[0,1]^{2} \rightarrow[0,1]$ is a joint distribution function with standard uniform margins.

Idea

$$
\begin{aligned}
H(x, y) & =P(X \leq x, Y \leq y) \\
& =P[F(X) \leq F(x), G(Y) \leq G(y)] \\
& =P[U \leq F(x), V \leq G(y)], \text { with } U, V \sim \mathcal{U}[0,1] \\
& =C(F(x), G(y))
\end{aligned}
$$

(for F, G continuous)

Sklar's Theorem
(i) If H is a joint df with margins F and G, then \exists a copula C s.t.

$$
\begin{equation*}
H(x, y)=C(F(x), G(y)) \quad \forall x, y \in[-\infty, \infty] \tag{2}
\end{equation*}
$$

If F, G are continuous, then C is unique. If F, G are discrete, then C is uniquely determined on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.

Sklar's Theorem
(i) If H is a joint df with margins F and G, then \exists a copula C s.t.

$$
\begin{equation*}
H(x, y)=C(F(x), G(y)) \quad \forall x, y \in[-\infty, \infty] \tag{2}
\end{equation*}
$$

If F, G are continuous, then C is unique. If F, G are discrete, then C is uniquely determined on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.
(ii) If C is a copula and F and G are dfs, then H defined by (2) is a joint df with margins F and G.

Sklar's Theorem
(i) If H is a joint df with margins F and G, then \exists a copula C s.t.

$$
\begin{equation*}
H(x, y)=C(F(x), G(y)) \quad \forall x, y \in[-\infty, \infty] \tag{2}
\end{equation*}
$$

If F, G are continuous, then C is unique. If F, G are discrete, then C is uniquely determined on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.
(ii) If C is a copula and F and G are dfs, then H defined by (2) is a joint df with margins F and G.

If (2) holds, say $C \in \mathcal{C}(H)$, the class of copulas compatible with H.

Galambos' Theorem

For continuous margins
Let H and H^{*} be joint dfs such that $H(x, y)=C(F(x), G(y))$ with F and G continuous, and $H^{*}(x, y)=C^{*}\left(F^{*}(x), G^{*}(y)\right)$. Then, with $u, v \in[0,1]$,

$$
H \in \operatorname{MDA}\left(H^{*}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
\text { (i) } F \in \operatorname{MDA}\left(F^{*}\right) \text { and } G \in \operatorname{MDA}\left(G^{*}\right) \\
\text { (ii) } \lim _{t \rightarrow \infty} C^{t}\left(u^{1 / t}, v^{1 / t}\right)=C^{*}(u, v)
\end{array}\right.
$$

i.e. the extremal behaviour of H is determined by the extremal behaviour of its margins and its underlying copula.

What if the margins are discrete?

Problem
C is not unique, $|\mathcal{C}(H)|=\infty$ (Genest and Nešlehová, 2007).

What if the margins are discrete?

Problem
C is not unique, $|\mathcal{C}(H)|=\infty$ (Genest and Nešlehová, 2007).
\rightarrow Can apply the following weak convergence result to prove Galambos' theorem for the discrete case.

Proposition 1

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be mutually independent random pairs such that $\left(X_{n}, Y_{n}\right)$ has joint df H_{n} and margins F_{n}, G_{n}.
Let (X, Y) be a random pair with joint df H and margins F, G.
Then, the following are equivalent:
(a) $\left(X_{n}, Y_{n}\right) \xrightarrow{\omega}(X, Y)$, as $n \rightarrow \infty$.

Proposition 1

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be mutually independent random pairs such that $\left(X_{n}, Y_{n}\right)$ has joint df H_{n} and margins F_{n}, G_{n}.
Let (X, Y) be a random pair with joint df H and margins F, G.
Then, the following are equivalent:
(a) $\left(X_{n}, Y_{n}\right) \xrightarrow{w}(X, Y)$, as $n \rightarrow \infty$.
(b) $X_{n} \xrightarrow{w} X$ and $Y_{n} \xrightarrow{w} Y$, as $n \rightarrow \infty$, and $\exists C \in \mathcal{C}(H)$ and \exists a sequence $\left(C_{n}\right)$ with $C_{n} \in \mathcal{C}\left(H_{n}\right)$ such that $C_{n} \rightarrow C$ on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.

Proposition 1

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be mutually independent random pairs such that $\left(X_{n}, Y_{n}\right)$ has joint df H_{n} and margins F_{n}, G_{n}.
Let (X, Y) be a random pair with joint df H and margins F, G.
Then, the following are equivalent:
(a) $\left(X_{n}, Y_{n}\right) \xrightarrow{w}(X, Y)$, as $n \rightarrow \infty$.
(b) $X_{n} \xrightarrow{w} X$ and $Y_{n} \xrightarrow{w} Y$, as $n \rightarrow \infty$, and $\exists C \in \mathcal{C}(H)$ and \exists a sequence $\left(C_{n}\right)$ with $C_{n} \in \mathcal{C}\left(H_{n}\right)$ such that $C_{n} \rightarrow C$ on $\operatorname{Ran}(F) \times \operatorname{Ran}(G)$.
(c) $X_{n} \xrightarrow{w} X$ and $Y_{n} \xrightarrow{w} Y$ as $n \rightarrow \infty$, and $\forall C_{n} \in \mathcal{C}\left(H_{n}\right)$ and $\forall C \in \mathcal{C}(H)$, we have $C_{n} \rightarrow C$ uniformly on $\overline{\operatorname{Ran}(F)} \times \overline{\operatorname{Ran}(G)}$.

Proof: use triangle inequality, Lipschitz-property of copulas, Continuous Mapping thm, Arzelá-Ascoli thm

General Galambos (for i.i.d. pairs)

Apply Proposition 1 to normalized maxima:

Proposition 2
Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be mutually independent random pairs with common joint df H and margins F, G.
Let H^{*} be a joint df with margins F^{*}, G^{*} and copula C^{*}. Then, the following are equivalent:
(a) $H \in \operatorname{MDA}\left(H^{*}\right)$
(b) $F \in \operatorname{MDA}\left(F^{*}\right)$ and $G \in \operatorname{MDA}\left(G^{*}\right)$ and $\exists C \in \mathcal{C}(H)$ such that $\lim _{t \rightarrow \infty} C^{t}\left(u^{1 / t}, v^{1 / t}\right)=C^{*}(u, v)$ for all $(u, v) \in[0,1]^{2}$.
(c) $F \in \operatorname{MDA}\left(F^{*}\right)$ and $G \in \operatorname{MDA}\left(G^{*}\right)$ and $\forall C \in \mathcal{C}(H)$, $\lim _{t \rightarrow \infty} C^{t}\left(u^{1 / t}, v^{1 / t}\right)=C^{*}(u, v)$ holds uniformly on $[0,1]^{2}$.

General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, $\ldots \Rightarrow$ let parameter vary with n

Proposition 2
Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots$ be mutually independent random pairs with common joint df H and margins F, G.
Let H^{*} be a joint df with margins F^{*}, G^{*} and copula C^{*}. Then, the following are equivalent:
(a) $H \in \operatorname{MDA}\left(H^{*}\right)$
(b) $F \in \operatorname{MDA}\left(F^{*}\right)$ and $G \in \operatorname{MDA}\left(G^{*}\right)$ and $\exists C \in \mathcal{C}(H)$ such that $\lim _{t \rightarrow \infty} C^{t}\left(u^{1 / t}, v^{1 / t}\right)=C^{*}(u, v)$ for all $(u, v) \in[0,1]^{2}$.
(c) $F \in \operatorname{MDA}\left(F^{*}\right)$ and $G \in \operatorname{MDA}\left(G^{*}\right)$ and $\forall C \in \mathcal{C}(H)$, $\lim _{t \rightarrow \infty} C^{t}\left(u^{1 / t}, v^{1 / t}\right)=C^{*}(u, v)$ holds uniformly on $[0,1]^{2}$.

General Galambos (for triangular arrays)

If margins are Bin, Poi, Geo, NB, $\ldots \Rightarrow$ let parameter vary with n

Proposition 2'
Let $\left(X_{n 1}, Y_{n 1}\right),\left(X_{n 2}, Y_{n 2}\right), \ldots$ be mutually independent random pairs with common joint df H_{n} and margins F_{n}, G_{n}.
Let H^{*} be a joint df with margins F^{*}, G^{*} and copula C^{*}.
Then, the following are equivalent:
(a) $\left(H_{n}\right) \in \operatorname{MDA}\left(H^{*}\right)$
(b) $\left(F_{n}\right) \in \operatorname{MDA}\left(F^{*}\right)$ and $\left(G_{n}\right) \in \operatorname{MDA}\left(G^{*}\right)$ and $\exists\left(C_{n}\right) \in \mathcal{C}\left(H_{n}\right)$ such that $\lim _{n \rightarrow \infty} C_{n}^{n}\left(u^{1 / n}, v^{1 / n}\right)=C^{*}(u, v)$ for all $(u, v) \in[0,1]^{2}$.
(c) $\left(F_{n}\right) \in \operatorname{MDA}\left(F^{*}\right)$ and $\left(G_{n}\right) \in \operatorname{MDA}\left(G^{*}\right)$ and $\forall\left(C_{n}\right) \in \mathcal{C}\left(H_{n}\right)$, $\lim _{n \rightarrow \infty} C_{n}^{n}\left(u^{1 / n}, v^{1 / n}\right)=C^{*}(u, v)$ holds uniformly on $[0,1]^{2}$.

Idea why Prop. $1 \Rightarrow$ Prop. 2, 2'

- $\tilde{H}_{n}(x, y):=P\left(X_{(n)} \leq a_{n} x+b_{n}, Y_{(n)} \leq c_{n} y+d_{n}\right)$
- $\widetilde{F}_{n}(x):=P\left(X_{(n)} \leq a_{n} x+b_{n}\right)=F_{n}^{n}\left(a_{n} x+b_{n}\right)$
- $\widetilde{G}_{n}(y):=P\left(Y_{(n)} \leq c_{n} y+d_{n}\right)=G_{n}^{n}\left(c_{n} y+d_{n}\right)$

$$
\begin{aligned}
\widetilde{H}_{n}(x, y) & =H_{n}^{n}\left(a_{n} x+b_{n}, c_{n} y+d_{n}\right) \\
& =C_{n}^{n}\left(F_{n}\left(a_{n} x+b_{n}\right), G_{n}\left(c_{n} y+d_{n}\right)\right), \text { for } C_{n} \in \mathcal{C}\left(H_{n}\right) \\
& =C_{n}^{n}\left(\widetilde{F}_{n}^{1 / n}(x), \widetilde{G}_{n}^{1 / n}(y)\right) \\
& =D_{n}\left(\widetilde{F}_{n}(x), \widetilde{G}_{n}(y)\right),
\end{aligned}
$$

where $D_{n}(u, v):=C_{n}^{n}\left(u^{1 / n}, v^{1 / n}\right)$ is a copula $\Rightarrow D_{n} \in \mathcal{C}\left(\widetilde{H}_{n}\right)$.
Therefore,

$$
C_{n}^{n}\left(u^{1 / n}, v^{1 / n}\right) \rightarrow C^{*}(u, v) \Longleftrightarrow D_{n} \rightarrow C^{*}
$$

Examples

Proposition 2 (i.i.d. pairs)

- Pareto distribution of the first kind (Kotz et al., 2000) with discretized margins
- Marshall-Olkin exponential distribution (Nelsen, 2006) with discretized margins

Proposition 2' (triangular arrays)

- Marshall-Olkin geometric distribution (Marshall and Olkin, 1985)
- Poisson (Coles and Pauli, 2001), copula not tractable?

Thanks for listening

Enjoy dinner

