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Abstract

We study the existence and the regularity of the solutions of some nonlinear par-
tial differential system arising in the study of free convection in a two-dimensional
bounded domain, modelizing a porous medium saturated with a fluid. By introduc-
ing an iterative method, the closeness of such solutions by solution of linear elliptic
problems is given with an exponential rate of convergence.
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1 Introduction

The governing steady problem for the free convection in a two-dimensional bounded do-
main Ω filled with a fluid saturated porous medium, is given by

∂2
xΨ + ∂2

yΨ = k∂yT (1)

λ
(
∂2
xT + ∂2

yT
)

= ∂xT∂yΨ− ∂yT∂xΨ (2)

coupled with some mixed boundary conditions, where (x, y) is the rectangular Cartesian
coordinates system. The constants k and λ depend on the density, the viscosity and
the thermal expansion coefficient of the fluid, and on the permeability and the thermal
diffusivity of the saturated porous medium. This model, written in terms of the stream
function Ψ and the temperature T , consists in two strongly coupled partial differential
equations (see [1]). More details about the physical background can be found in [5, 6, 7,
8, 11, 13].

The first approach to study this problem allows to introduce similarity variables to re-
duce the whole system of partial differential equations into one single ordinary differential
equation of the third order with appropriate boundary values. This two points boundary
value problem can be studied using a shooting method or an auxiliary dynamical system
either in the case of prescribed temperature or in the case of prescribed heat flux along a
part of the boundary of the domain. For mathematical results about this boundary value
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problem and the connections with (1)-(2), we refer the reader to [2, 4] and the references
therein.

The second natural way, which is the framework of this paper, directly deals with the
coupled partial differential equations. Some existence and uniqueness results are given in
[1]. The existence result has been proved under very constraining hypothesis and is not
satisfactory. In a short note [3], existence of a weak solution has been obtained, under
the assumptions used in [1] to get uniqueness. The method consists in defining a suitable
contraction (see Remark 4.1 below).

On the one hand, the aim of this paper is to show the existence of weak solutions in
a more general case, where we do not consider any smallness hypothesis on the data, as
in [1] (and in [3] to a lesser extent). On the other hand, the iterative method that we
will introduce allows us to approach such solutions by solutions of linear elliptic problems
with an exponential rate of convergence.

The paper is organized as follows: In the second section we give a meaning of the
solutions of the problem (1)-(2) in more general case, using a variational formulation.
The third section is devoted to the existence result, and in the fourth one, some iterative
method is presented to show that we can find a sequence of solutions of linear elliptic
problem converging to the solution of this nonlinear partial differential system with an
exponential rate of convergence. In the last section we use the regularity results of the
linear elliptic problem to study those of our problem.

Let us introduce now the problem we are interesting in. Let Ω be a bounded domain
of R2 with sufficiently smooth boundary Γ, Γ1 and Γ2 be two parts of Γ, such that
meas(Γ1) 6= 0 and

Γ1 ∪ Γ2 = Γ, Γ1 ∩ Γ2 = ∅. (3)

In Ω we consider the boundary value systems defined by

−∆Ψ +K.∇H = F (4)

−λ∆H +∇H. (∇Ψ)⊥ +∇Θ. (∇Ψ)⊥ = 0, (5)

with mixed boundary conditions for Ψ

Ψ = 0 on Γ1 and
∂Ψ

∂ν
= 0 on Γ2, (6)

and for H
H = 0 on Γ, (7)

where −→ν is the unit outward normal vector on Γ and (∇Ψ)⊥ = (∂yΨ,−∂xΨ) . We suppose
that

F ∈ L2(Ω) (8)

and that the function Θ is the unique solution in H2 (Ω) of the boundary problem

∆Θ = 0 in Ω, Θ = h on Γ, (9)

for h ∈ H 3
2 (Γ). For the coefficients K = (k1, k2), it is assumed that

K ∈ L∞(Ω)2 and divK ∈ L∞(Ω). (10)
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Remark 1.1 By setting T = H+ Θ, k1 = 0 and F = K.∇Θ, we recover problem (1)-(2).

In the following, we will denote by (·, ·) the L2(Ω)-scalar product, and by ‖·‖ (resp.
|·|2 , |·|∞) the norm of H1(Ω) (resp. L2(Ω), L∞(Ω)).

2 Weak formulation

In order to define a variational formulation of the previous problem, let us assume that Ψ
and H are classical solutions of (4) and (5) in Ω, such that the boundary conditions (6)
and (7) hold. Multiplying (4) and (5) by test functions u ∈ H1

0 (Ω,Γ1) and v ∈ H1
0 (Ω)

respectively, and integrating on Ω, we get∫
Ω

∇Ψ.∇u dx+

∫
Ω

uK.∇Hdx =

∫
Ω

Fu dx (11)

and

λ

∫
Ω

∇H.∇v dx+

∫
Ω

v∇H. (∇Ψ)⊥ dx+

∫
Ω

v∇Θ. (∇Ψ)⊥ dx = 0. (12)

(Note that H1
0 (Ω,Γ1) denotes the subspace of H1 (Ω) of functions vanishing on Γ1). If

now, we only assume that Ψ ∈ H1
0 (Ω,Γ1) and H ∈ H1

0 (Ω), the third integral in the latter
equality is still well defined (this is due to the fact that Θ ∈ H2(Ω)), whereas, a priori, it
is not anymore the case for the second one.

Let us clarify this point. To this end, for u, v, w ∈ H1(Ω) such that u∇v.(∇w)⊥ ∈
L1(Ω), let us set

a (u, v, w) =

∫
Ω

u∇v. (∇w)⊥ dx =
(
u∇v, (∇w)⊥

)
(13)

and let us show the following results.

Lemma 2.1 Let u, v ∈ H1(Ω) ∩ L∞(Ω) such that one of them vanishes on the boundary
of Ω. For w ∈ H1(Ω) we have

a (u, v, w) = −a (v, u, w) . (14)

In particular, for every u ∈ H1
0 (Ω)∩L∞(Ω) and every w ∈ H1(Ω) we have : a(u, u, w) = 0.

Proof. For u, v ∈ H1 (Ω) ∩ L∞(Ω) and w ∈ H1(Ω) the quantities a (u, v, w) and
a (v, u, w) are well defined. Since, moreover, uv ∈ H1

0 (Ω), we have :

a (u, v, w) + a (v, u, w) =
(
u∇v + v∇u, (∇w)⊥

)
=
(
∇(uv), (∇w)⊥

)
= −

(
div
(

(∇w)⊥
)
, uv
)
H−1(Ω),H1

0 (Ω)
= 0

because div
(

(∇w)⊥
)

= 0.
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Lemma 2.2 Let u, v ∈ H1
0 (Ω). For w ∈ H2(Ω) we have

a (u, v, w) = −a (v, u, w) . (15)

In particular, for every u ∈ H1
0 (Ω) and every w ∈ H2(Ω) we have : a(u, u, w) = 0.

Proof. First, because H1(Ω) ↪→ L4(Ω), the quantities a (u, v, w) and a (v, u, w) are well
defined for all u, v ∈ H1

0 (Ω) and w ∈ H2(Ω). On the other hand, by Lemma 2.1, for all
ϕ, ψ ∈ D(Ω) and all w ∈ H2(Ω), we have : a(ϕ, ψ,w) = −a(ψ, ϕ, w) ; the conclusion then
follows from the density of D(Ω) in H1(Ω).

Taking into account Lemma 2.1, we can replace the second integral in (12) by

−
∫

Ω

H∇v. (∇Ψ)⊥ dx

which is well defined, if H ∈ L∞(Ω). Having that in mind, we will say that a couple
(Ψ, H) such that Ψ ∈ H1

0 (Ω,Γ1) and H ∈ L∞(Ω) ∩ H1
0 (Ω) is a weak solution of the

problem (4)-(7) if the integral identities

(∇Ψ,∇u) + (K.∇H, u) = (F, u) (16)

λ (∇H,∇v)− a (H, v,Ψ) + a (v,Θ,Ψ) = 0 (17)

hold for any u ∈ H1
0 (Ω,Γ1) and for any v ∈ H1

0 (Ω).

3 Existence of weak solutions

The proof of the existence theorem is given in two steps. In the first one we use Schauder
fixed point theorem to study a slightly modified partial differential system. Next some
asymptotic technique is employed to show the existence of the solution of our system.

3.1 Fixed point theorem for a smoothing system

Let ρ be a smooth function with compact support, for instance we assume that ρ ∈
D ( R2) , E : L2 (Ω) → L2 (R2) be a continuous extension operator, such that the restric-
tion E : H1 (Ω)→ H1 (R2) is also continuous (according to the H1-norm, see for instance
Theorem 1 p. 254 in [9] and [12]). Let us consider the following system{

(∇Ψ,∇u) = − (K.∇H, u) + (F, u) ∀u ∈ H1
0 (Ω,Γ1)

λ (∇H,∇v)− a (H, v, ρ ∗ EΨ) = −a (v,Θ, ρ ∗ EΨ) ∀v ∈ H1
0 (Ω).

(18)

where ∗ denotes the convolution product. Our goal in this section is to prove, by using a
fixed point argument for a suitable map, that (18) has a solution (Ψ, H) = (Ψρ, Hρ).
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The definition of the mapping Φ Let Ψ ∈ L2(Ω) and consider the following linear
problem

λ (∇H,∇v)− a (H, v, ρ ∗ EΨ) = −a (v,Θ, ρ ∗ EΨ) , ∀v ∈ H1
0 (Ω). (19)

Let us show that this problem has a unique solution H ∈ H1
0 (Ω). The bilinear form

a (·, ·, ρ ∗ EΨ) is well defined and is continuous in H1
0 (Ω), since we have

| a (H, v, ρ ∗ EΨ)| ≤ |∇ (ρ ∗ EΨ)|∞ ‖H‖ ‖v‖ .

The bilinear form λ (∇·,∇·) − a (·, ·, ρ ∗ EΨ) is coercive, since by using Lemma 2.2, we
have a (v, v, ρ ∗ EΨ) = 0 for any v ∈ H1

0 (Ω) and hence

λ (∇v,∇v)− a (v, v, ρ ∗ EΨ) = λ|∇v|22, ∀v ∈ H1
0 (Ω).

In the right hand side of (19), the linear form v 7→ −a(v,Θ, ρ ∗ EΨ) is continuous, since
∇Θ.∇(ρ ∗ EΨ)⊥ ∈ L2(Ω). Applying the Lax-Milgram Lemma, we obtain that there
exists one and only one H ∈ H1

0 (Ω) satisfying (19). In this way, we have defined a map
Φ1 : L2(Ω)→ H1

0 (Ω) such that Φ1(Ψ) = H.
Next, let Ψ′ ∈ H1

0 (Ω,Γ1) be the solution of the problem

(∇Ψ′,∇u) = − (K.∇H, u) + (F, u) , ∀u ∈ H1
0 (Ω,Γ1) . (20)

Obviously, according to the Lax-Milgram lemma, the previous problem admits a unique
solution Ψ′ ∈ H1

0 (Ω,Γ1). Thus, we have defined a map Φ2 : H1
0 (Ω) → L2(Ω) such that

Φ2(H) = Ψ′.
Finally, we set Φ = Φ2 ◦Φ1. The mapping Φ is defined from L2(Ω)→ L2(Ω), and if Ψ

is a fixed point of Φ, then (Ψ, H) := (Ψ,Φ1(Ψ)) is a solution of (18).

A priory estimates In order to study the continuity of Φ, we will need some lemmas.

Lemma 3.1 Let Ψ ∈ H2(Ω). If H ∈ H1
0 (Ω) satisfies

λ(∇H,∇v)− a(H, v,Ψ) = −a(v,Θ,Ψ), ∀v ∈ H1
0 (Ω), (21)

then
inf
Γ
h ≤ H + Θ ≤ sup

Γ
h (22)

and
inf
Γ
h− sup

Ω
Θ ≤ H ≤ sup

Γ
h− inf

Ω
Θ. (23)

In particular, we have H ∈ L∞(Ω) and |H|∞ is bounded independently of Ψ.
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Proof. The ingredients of the proof are in [1, Proposition 3.2] ; for convenience, and
because the hypotheses are slightly different, we write it here. Let us set l = supΓ h and
H+ = sup{H + Θ− l ; 0}. Since H+ ∈ H1

0 (Ω), then (21) and the fact that ∆Θ = 0 imply

λ(∇H+,∇H+) = λ(∇H,∇H+) + λ(∇Θ,∇H+) = λ(∇H,∇H+)

= a(H,H+,Ψ)− a(H+,Θ,Ψ)

= a(H,H+,Ψ) + a(Θ, H+,Ψ)

= a(H + Θ, H+,Ψ) = a(H+, H+,Ψ) = 0.

It follows that |∇H+|2 = 0 and hence H+ = 0. This gives the second inequality of (22).
To obtain the other one, we set l′ = infΓ h and H− = inf{H + Θ− l′ ; 0} and proceed in
the same way.

Lemma 3.2 There exists a constant M > 0 independent of the choice of Ψ ∈ L2 (Ω) ,
such that

‖Φ (Ψ)‖ ≤M. (24)

Moreover, for every constant C > 0, there exists a constant M ′ > 0, such that for all
Ψ ∈ L2 (Ω) satisfying

|Ψ|2 ≤ C, (25)

we have
‖H‖ ≤M ′. (26)

Proof. We take Ψ′ = Φ (Ψ) as a test function in (20), we obtain

|∇Ψ′|22 = − (K.∇H,Ψ′) + (F,Ψ′) ,

whence
|∇Ψ′|22 = (HdivK,Ψ′)− (div (HK) ,Ψ′) + (F,Ψ′) .

Applying Green formula and taking into account that H vanishes on the boundary Γ, we
get

|∇Ψ′|22 = (H divK,Ψ′) + (HK,∇Ψ′) + (F,Ψ′) .

Using the Cauchy-Schwarz inequality and the assumptions (10), it comes

|∇Ψ′|22 ≤ |divK|∞ |H|2 |Ψ
′|2 + |K|∞ |H|2 |∇Ψ′|2 + |F |2 |Ψ

′|2 ,

≤ (|divK|∞ |H|2 + |K|∞ |H|2 + |F |2) ‖Ψ′‖ . (27)

By Poincaré’s inequality and (23), we deduce the first estimate in Lemma 3.2. For the
last estimate, we replace v by H in (19), it comes

λ |∇H|22 + a (H,H, ρ ∗ EΨ) = −a (H,Θ, ρ ∗ EΨ) .
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But according to Lemma 2.2, we have a (H,H, ρ ∗ EΨ) = 0, whence if we use the Cauchy-
Schwarz inequality and (23), we get

λ |∇H|22 ≤ |H|∞ |∇Θ|2 |∇ρ ∗ EΨ|2 .

Thanks to Young’s lemma and the continuity of E from L2 (Ω) into L2 (R2), it follows
that

λ |∇H|22 ≤ meas (Ω) |H|∞ |∇Θ|2 |∇ρ|R2,2 |EΨ|R2,2 (28)

≤ c |H|∞ |∇Θ|2 |∇ρ|R2,2 |Ψ|2 .

where c is a constant dependent only on E (|·|R2,2 denotes the norm of L2 (R2)). The
Poincaré inequality, (23) and (25) give the last estimate.

The continuity of Φ Let Ψn be a converging sequence in L2(Ω) i.e.

Ψn → Ψ in L2(Ω).

According to the definition of E, we also have

EΨn → EΨ in L2(R2). (29)

Let us denote by Ψ′n = Φ (Ψn) and Hn the solution of (20) when we replace Ψ by Ψn i.e.
we have

(∇Ψ′n,∇u) = − (K.∇Hn, u) + (F, u) , ∀u ∈ H1
0 (Ω,Γ1) , (30)

and

λ (∇Hn,∇v)− a (Hn, v, ρ ∗ EΨn) = −a (v,Θ, ρ ∗ EΨn) , ∀v ∈ H1
0 (Ω). (31)

From (24), (26) and the compact embedding of H1 (Ω) into L2(Ω), there exist Ψ′ ∈
H1

0 (Ω,Γ1), H ∈ H1
0 (Ω) and subsequences Ψ′n′ , Hn′ such that :

Ψ′n′ ⇀ Ψ′ in H1
0 (Ω,Γ1) , (32)

Hn′ ⇀ H in H1
0 (Ω) , (33)

Hn′ → H in L2 (Ω) , (34)

Hn′ → H a.e. in Ω. (35)

(The last convergence is ensured by Lebesgue Theorem). Thanks to (32) and (33), we
can take the limit in (30) as n′ →∞. Then, we obtain

(∇Ψ′,∇u) + (K.∇H, u) = (F, u) , ∀u ∈ H1
0 (Ω,Γ1) .

For (31), on the one hand, we use (33) to get

λ(∇Hn′ ,∇v)→ λ(∇H,∇v), ∀v ∈ H1
0 (Ω).
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On the other hand, as a consequence of (29), using Lebesgue theorem, we get

∇ (ρ ∗ EΨn′) = ∇ρ ∗ EΨn′ → ∇ρ ∗ EΨ = ∇ (ρ ∗ EΨ) in L2
(
R2
)
. (36)

This implies
a (v,Θ, ρ ∗ EΨn′)→ a (v,Θ, ρ ∗ EΨ) , ∀v ∈ H1

0 (Ω).

Then for the second term of the left hand side of (19), we write

a (Hn′ , v, ρ ∗ EΨn′) = a (Hn′ −H, v, ρ ∗ EΨn′) + a (H, v, ρ ∗ EΨn′) .

From (23) and (35) it follows that H ∈ L∞(Ω), thus a (H, v,Ψ) is well defined, and using
(24), (29) and (34), we deduce

a (Hn′ −H, v, ρ ∗ EΨn′) → 0

a (H, v, ρ ∗ EΨn′) → a (H, v, ρ ∗ EΨ)

and hence,

λ (∇H,∇v)− a (H, v, ρ ∗ EΨ) = −a (v,Θ, ρ ∗ EΨ) , ∀v ∈ H1
0 (Ω).

Finally, we deduce that Φ(Ψ) = Ψ′. Thus by the uniqueness of the solution of problems
(19) and (20) we can easily show that the whole sequence Ψ′n = Φ(Ψn) converge to
Ψ′ = Φ(Ψ) strongly in L2 (Ω) which ensure the continuity of Φ.

We have the following result.

Proposition 1 Under the assumptions (8)-(10), the smoothing system (18) has at least
a solution.

Proof. Let us set B = {Ψ ∈ H1
0 (Ω,Γ1) ; ‖Ψ‖ ≤M}, where M is the constant obtained

in Lemma 3.2, and let B̄ denote the closure of B in L2(Ω).
The function Φ maps B̄ into itself, which is compact in L2(Ω). Applying the Schauder

fixed point theorem, we get that there is Ψ ∈ B̄ such that Φ(Ψ) = Ψ. If we set H = Φ1(Ψ),
then (Ψ, H) is a solution of (18).

3.2 Asymptotic method

In the following we take ρ = ρn where (ρn)n is a smoothing sequence. Let (Ψn, Hn) denote
a weak solution of (18) i.e.{

(∇Ψn,∇u) = − (K.∇Hn, u) + (F, u) ,
λ (∇Hn,∇v)− a (Hn, v, ρn ∗ EΨn) = −a (v,Θ, ρn ∗ EΨn) .

(37)

Testing the first identity by Ψn, the second one by Hn and arguing as in the proof of
Lemma 3.2 to get the boundedness of the sequence (Ψn)n in H1 (Ω) and

λ |∇Hn|22 ≤ meas (Ω) |Hn|∞ |∇Θ|2 |ρn|R2,2 |∇ (EΨn)|R2,2

≤ c |Hn|∞ |∇Θ|2 ‖Ψn‖ ,
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(since E : H1 (Ω)→ H1 (R2) is continuous) which shows the boundedness of the sequence
(Ψn)n in H1 (Ω) by using Poincaré’s inequality. From this and the compact embedding
of H1 (Ω) into L2(Ω), there exist Ψ ∈ H1

0 (Ω,Γ1), H ∈ H1
0 (Ω) and subsequences Ψn′ , Hn′

such that :

Ψn′ ⇀ Ψ in H1
0 (Ω,Γ1) , (38)

Hn′ ⇀ H in H1
0 (Ω) , (39)

Ψn′ → Ψ in L2 (Ω) , (40)

Hn′ → H in L2 (Ω) . (41)

Passing to limit in (37) and using the same argument as above to show that

∀u ∈ H1
0 (Ω,Γ1) , (∇Ψ,∇u) + (K.∇H, u) = (F, u) .

For the second identity of (37), we have

ρn′ ∗ EΨn′ → EΨ in L2
(
R2
)
, (42)

ρn′ ∗ EΨn′ ⇀ EΨ in H1
(
R2
)
. (43)

Indeed, according to the continuity of E and (34), it follows that

EΨn′ → EΨ in L2
(
R2
)
. (44)

In the identity
ρn′ ∗ EΨn′ = ρn′ ∗ (EΨn′ − EΨ) + ρn′ ∗ EΨ,

the last term converges to EΨ strongly in H1 (R2) since ρn′ is a smoothing sequence i.e.

ρn′ ∗ EΨ→ EΨ in H1
(
R2
)
. (45)

By (44) and Young’s lemma we have

|ρn′ ∗ (EΨn′ − EΨ) (x)|R2,2 ≤ |ρn′|R2,1 |EΨn′ − EΨ|R2,2

= |EΨn′ − EΨ|R2,2 → 0.

i.e.
ρn′ ∗ (EΨn′ − EΨ)→ 0 in L2

(
R2
)
.

(|·|R2,1 denotes the norm of L1 (R2)). Combining this with (45) to obtain (42). To show

(43) it suffices to note that ρn′ ∗EΨn′ is bounded in H1 (R2) and one use the uniqueness of
the limit in L2 (R2). Next, noting that the scalar product in L2 (R2) of strongly converging
sequence and weakly converging sequence converges to the scalar product of their limits
and arguing as above to show that

λ (∇H,∇v)− a (H, v,Ψ) = −a (v,Θ,Ψ) , ∀v ∈ H1
0 (Ω).

Finally, the couple (Ψ, H) is a weak solution of the problem (4)-(7). To summarize, we
can state the principal theorem of the existence of solutions.

Theorem 1 Under the assumptions (8)-(10), there exists a weak solution of the problem
(4)-(7).
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4 Iterative approximation method

In this section, we introduce an iterative method to approximate the solution of the system
(16), (17), based on the idea of solving a sequence of the corresponding linear elliptic
problems, so that the solutions of these linear problems converge toward the solution of
our system at an exponential rate. To this end, let us assume that

C |K|∞ |h|∞,Γ < λ, (46)

where C is Poincaré’s constant of Ω. Under this hypothesis, we know from [1] that the
problem (4)-(7) has at most one weak solution, and hence by Theorem 1 exactly one weak
solution. Next, we start by describing the iterative method.

4.1 The construction of the sequences

Let (αn) be a sequence of positive numbers, converging to 0.

First step Let Ψ1 = Ψ1 ∈ D
(

Ω,Γ1

)
the space of functions of class C∞ on Ω vanishing

on Γ1 and let us consider the following linear problem

λ (∇H1,∇v)− a
(
H1, v,Ψ1

)
= −a

(
v,Θ,Ψ1

)
, ∀v ∈ H1

0 (Ω). (47)

Since the bilinear form λ (∇·,∇·)−a
(
·, ·,Ψ1

)
is well defined, continuous and coercive in

H1
0 (Ω) and in the right hand side of (47), the linear form v 7→ −a(v,Θ,Ψ1) is continuous,

there exists one and only one H1 ∈ H1
0 (Ω) satisfying (47).

Second step If we replace in (16) H by H1, then let Ψ2 ∈ H1
0 (Ω,Γ1) be the solution

of the problem

(∇Ψ2,∇u) = − (K.∇H1, u) + (F, u) , ∀u ∈ H1
0 (Ω,Γ1) .

Obviously, according to the Lax-Milgram lemma, the previous problem admits a unique
solution Ψ2 ∈ H1

0 (Ω,Γ1) .

By the density of D
(
Ω,Γ1

)
in H1

0 (Ω,Γ1) , there exists Ψ2 ∈ D
(
Ω,Γ1

)
such that∥∥Ψ2 −Ψ2

∥∥ ≤ α2.

Third step The same way as previously allows us to construct by induction, three
sequences of functions Ψn ∈ H1

0 (Ω,Γ1) , Ψn ∈ D
(
Ω,Γ1

)
and Hn ∈ H1

0 (Ω) such that

(∇Ψn,∇u) = − (K.∇Hn−1, u) + (F, u) , ∀u ∈ H1
0 (Ω,Γ1) , (48)

λ (∇Hn,∇v)− a
(
Hn, v,Ψn

)
= −a

(
v,Θ,Ψn

)
, ∀v ∈ H1

0 (Ω) . (49)

and ∥∥Ψn −Ψn

∥∥ ≤ αn. (50)

Then, we have

10



Lemma 4.1 There exists a constant M > 0 independent of n, such that

‖Ψn‖ ,
∥∥Ψn

∥∥ , ‖Hn‖ ≤M (51)

for all n ≥ 1.

Proof. We take Ψn as a test function in (48), we obtain

|∇Ψn|22 = (Hn−1divK,Ψn)− (div (Hn−1K) ,Ψn) + (F,Ψn) .

Since Hn−1 vanishes on the boundary Γ, we deduce

|∇Ψn|22 = (Hn−1divK,Ψn) + (Hn−1K,∇Ψn) + (F,Ψn) .

Using Poincaré’s and Cauchy-Schwarz inequalities (10) and (23), it comes

|∇Ψn|22 ≤ |divK|∞ |Hn−1|2 |Ψn|2 + |K|∞ |Hn−1|2 |∇Ψn|2 + |F |2 |Ψn|2 ,

≤ (|divK|∞ |Hn−1|2 + |K|∞ |Hn−1|2 + |F |2) ‖Ψn‖ . (52)

This shows the first estimate in (51). The second estimate is obtained by (50). For the
last estimate, we replace v by Hn in (49), it comes

λ |∇Hn|22 + a
(
Hn, Hn,Ψn

)
= −a

(
Hn,Θ,Ψn

)
.

But according to Lemma 2.2, we have a
(
Hn, Hn,Ψn

)
= 0, whence if we use the Cauchy-

Schwarz inequality and (23), we get

λ |∇Hn|22 ≤ |Hn|∞ |∇Θ|2
∣∣∇Ψn

∣∣
2
. (53)

The Poincaré inequality, (23) and the second estimate in (51) give the last estimate.

4.2 The Convergence result

The following theorem shows that the sequences (Ψn) and (Hn) converge to Ψ and H in
H1(Ω) respectively, and give the rate of convergence.

Theorem 2 Under the assumptions (8)-(10), and if the condition (46) holds, then there
exists a positive constant A independent of n, such that

|∇ (Ψn −Ψ)|2 + |∇ (Hn −H)|2 ≤ Aβn (54)

where β =
C |K|∞ |h|∞,Γ

λ
< 1.
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Proof. Let m and n be positive integers. We derive from (48) and (49) that

(∇(Ψn+m −Ψn),∇u) = −(K.∇(Hn+m−1 −Hn−1), u), ∀u ∈ H1
0 (Ω,Γ1)

and

λ(∇(Hn+m −Hn),∇v)− a(Hn+m, v,Ψn+m)

+ a(Hn, v,Ψn) = −a(v,Θ,Ψn+m −Ψn), ∀v ∈ H1
0 (Ω).

Let us choose u = Ψn+m−Ψn and v = Hn+m−Hn. Thanks to Lemma 2.1 or 2.2, we can
write

a(Hn+m, Hn+m −Hn,Ψn+m) = a(Hn+m −Hn, Hn+m −Hn,Ψn+m)

+ a(Hn, Hn+m −Hn,Ψn+m)

= a(Hn, Hn+m −Hm,Ψn+m),

and hence

λ |∇(Hn+m −Hn)|22 − a(Hn + Θ, Hn+m −Hn,Ψn+m −Ψn) = 0. (55)

We also have

|∇(Ψn+m −Ψn)|22 = −(K.∇(Hn+m−1 −Hn−1),Ψn+m −Ψn). (56)

In (56), by using the Cauchy-Schwarz inequality, the Poincaré inequality and (10), we
obtain

|∇ (Ψn+m −Ψn)|22 ≤ |K|∞ |∇ (Hn+m−1 −Hn−1)|2 |Ψn+m −Ψn|2
≤ C |K|∞ |∇ (Hn+m−1 −Hn−1)|2 |∇ (Ψn+m −Ψn)|2

whence
|∇ (Ψn+m −Ψn)|2 ≤ C |K|∞ |∇ (Hn+m−1 −Hn−1)|2 . (57)

For (55), the Cauchy-Schwarz inequality gives

λ |∇(Hn+m −Hn)|22 = a
(
Hn + Θ, Hn+m −Hn,Ψn+m −Ψn

)
≤ |Hn + Θ|∞ |∇ (Hn+m −Hn)|2

∣∣∇ (Ψn+m −Ψn

)∣∣
2
.

Thanks to (22), we obtain

λ |∇(Hn+m −Hn)|2 ≤ |h|∞,Γ
∣∣∇ (Ψn+m −Ψn

)∣∣
2
. (58)
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If we use (50), then (58) becomes

λ|∇ (Hn+m −Hn) |2 ≤ |h|∞,Γ
{
|∇(Ψn+m −Ψn+m)|2 + |∇(Ψn+m −Ψn)|2

+ |∇(Ψn −Ψm)|2
}

≤ |h|∞,Γ
{
αn+m + αn + |∇(Ψn+m −Ψn)|2

}
.

This and (57) imply

|∇(Hn+m −Hn)|2 ≤
1

λ
|h|∞,Γ

{
αn+m + αn + C |K|∞ |∇(Hn+m−1 −Hn−1)|2

}
=

(
1

λ
|h|∞,Γ

)
(αn+m + αn) + β |∇(Hn+m−1 −Hn−1)|2.

By induction it follows

|∇(Hn+m −Hn)|2 ≤ βn

{
|∇(Hm −H0)|2 +

(
1

λ
|h|∞,Γ

) n∑
j=1

αj+m + αj
βj

}

If the sequence (αn) is chosen such that αn =
(
β
2

)n
then we obtain

|∇(Hn+m −Hn)|2 ≤
(

2M +
2

λ
|h|∞,Γ

)
βn (59)

where M is the constant from (51). Now, (57) gives

|∇(Ψn+m −Ψn)|2 ≤ C|K|∞
(

2M +
2

λ
|h|∞,Γ

)
βn−1 (60)

and it follows that (Hn) and (Ψn) are Cauchy’s sequences in H1(Ω) ; therefore they
converge and their limits necessarily are H and Ψ. Finally taking the limit as m→ +∞
in the inequalities (59) and (60), we obtain (54).

Remark 4.1 As we said in the introduction, under the hypothesis (46), it is possible to
prove by a fix point argument that problem (4)-(7) has exactly one weak solution. This is
done in [3]. Let us give a brief idea of the proof. Let W = H1

0 (Ω,Γ1) × H1
0 (Ω). On W

we define the norm ‖ ‖W by

‖(Ψ, H)‖W = κ|∇Ψ|2 + |∇H|2

where κ > 0 is a suitable constant.
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Let D = D(Ω,Γ1) × D(Ω) and let F : D → W be the application defined in the
following way. If (Ψ, H) ∈ D, then F(Ψ, H) = (Ψ̃, H̃) where Ψ̃ and H̃ are the solutions
of the linear problems

(∇Ψ̃,∇u) = −(K.∇H, u) + (F, u), ∀u ∈ H1
0 (Ω,Γ1), (61)

λ(∇H̃,∇v)− a(H̃, v,Ψ) = −a(v,Θ,Ψ), ∀v ∈ H1
0 (Ω). (62)

If we choose κ =
√

|h|∞,Γ

λC|K|∞ , then F : D →W is Lipschitz continuous, with the Lipschitz

constant

β =

√
C|K|∞|h|∞,Γ

λ
.

Since D is dense in the Banach space W, the map F can be extended to F : W → W
which is still Lipschitz continuous, with the same Lipschitz constant β.

From (46), we have β < 1, and hence F is a contraction and has a unique fixed point,
which is the unique weak solution of the problem (4)-(7).

5 Regularity of the solutions

We shall study in this section, under appropriate smooth condition on the boundary Γ,
the existence of higher order weak derivatives of solutions (Ψ, H) of the elliptic problem.
To simplify, we consider the Dirichlet problem, i.e.

Γ = Γ1 (63)

We start by the regularity of the couple (Ψ, H) in the framework of Theorem 2 i.e. if (46)
is held.

Theorem 3 In addition to the hypotheses of Theorem 2, if we assume that (63) holds
and Γ is of class C2, then

(i) the elements of the approximative sequence (Ψn, Hn) satisfy

Ψn, Hn ∈ H2(Ω),

(ii) the first component of the weak solution (Ψ, H) ∈ H1
0 (Ω)×H1

0 (Ω) to problem (4)-(7)
is smooth, i.e.

Ψ ∈ H2(Ω).

(iii) Ψn converges towards Ψ at an exponential rate in H2(Ω), i.e.

‖Ψn −Ψ‖H2(Ω) ≤ Cβn

where C is a positive constant independent of n and β is defined in Theorem 2.
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Proof. Since (48) is equivalent to

−∆Ψn = F −K.∇Hn−1, (64)

and F − K.∇Hn−1 ∈ L2(Ω), we deduce from the regularity theorem of elliptic problem
that Ψn ∈ H2 (Ω) (see for instance [10]). For the regularity of Hn, we can write (49) as

−λ∆Hn +∇Hn.
(
∇Ψn

)⊥
= −∇Θ.

(
∇Ψn

)⊥
, (65)

with ∇Ψn ∈ [C∞(Ω)]n and −∇Θ.
(
∇Ψn

)⊥ ∈ L2 (Ω). Again, applying the regularity
theorem of elliptic problem, we deduce that Hn ∈ H2(Ω).

For the second and the third points, let m and n be positive integers. We derive from
(48) that {

−∆ (Ψn+m −Ψn) = −K.∇ (Hn+m−1 −Hn−1) in Ω
Ψn+m −Ψn = 0 on Γ.

This means that (Ψn+m −Ψn) is a solution of an homogenous Dirichlet problem of an
elliptic equation. Since −K.∇ (Hn+m−1 −Hn−1) ∈ L2(Ω), we deduce from the regularity
theorem of elliptic problem that

‖Ψn+m −Ψn‖H2(Ω) ≤ C (|Ψn+m −Ψn|2 + |K.∇ (Hn+m−1 −Hn−1)|2)

≤ C (|Ψn+m −Ψn|2 + |K|∞ |∇ (Hn+m−1 −Hn−1)|2) .

The proof is complete according to (54).

The weakness of regularity of ∇Ψn influenced the regularity of H and prevented the
use of the regularity theorem of elliptic problem. If there exists a subsequence of Hn,
which is bounded in the norm of H2(Ω), the problem (4)-(7) admits a solution (Ψ, H) ∈
H2(Ω)×H2(Ω).

We shall now answer the following question in the theorem below: what about the
regularity of all the solutions of (4)-(7) in the general case?

Theorem 4 In addition to the assumptions (8)-(10), let us assume that (63) holds and
that Γ is of class C2. If (Ψ, H) ∈ H1

0 (Ω)×H1
0 (Ω) is a weak solution of the problem (4)-(7),

then Ψ ∈ H2(Ω). Moreover if
c2

0Cλ ‖Ψ‖H2(Ω) < 1, (66)

where the constants c0 and Cλ are some constants given below, then we have (Ψ, H) ∈
H2(Ω)×H2 (Ω) .

Proof. Let (H,Ψ) ∈ [H1
0 (Ω)]

2
be a weak solution to problem (4)-(7). According to the

regularity theorem of elliptic problem and since we have

−∆Ψ = F −K.∇H, (67)
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and F −K.∇H ∈ L2(Ω), we deduce that Ψ ∈ H2(Ω). For the regularity of H, we cannot
directly apply the regularity theorem of elliptic problem. However, if we choose a sequence
Ψ′n ∈ D

(
Ω
)

satisfying
‖Ψ′n −Ψ‖H2(Ω) ≤ αn, (68)

then, the elliptic boundary value problem

−λ∆Ξ = −∇Ξ. (∇Ψ′n)
⊥ −∇Θ. (∇Ψ′n)

⊥

Ξ = 0 on Γ,

admits a unique solution H ′n ∈ H2(Ω) ∩H1
0 (Ω) satisfying

‖H ′n‖H2(Ω) ≤ Cλ

(
|H ′n|2 +

∣∣∇Θ. (∇Ψ′n)
⊥ ∣∣

2
+
∣∣∇H ′n. (∇Ψ′n)

⊥ ∣∣
2

)
≤ Cλ

(
|H ′n|2 +

∣∣∇Ψn

∣∣
L4(Ω)

|∇Θ|L4(Ω) + |∇Ψ′n|L4(Ω) |∇Hn|L4(Ω)

)
,

where Cλ is the best constant of the operator−λ∆ given in Theorem 8.12 in [10] dependent
only on Γ and λ. It follows, from the imbedding H1 (Ω) ↪→ L4(Ω) (c0 is the norm of this
injection), that

‖H ′n‖H2(Ω) ≤ Cλ
(
|H ′n|2 + c2

0 ‖∇Ψ′n‖ ‖∇Θ‖+ c2
0 ‖∇Ψ′n‖ ‖∇H ′n‖

)
≤ Cλ

(
|H ′n|2 + c2

0 ‖Ψ′n‖H2(Ω) ‖Θ‖H2(Ω) + c2
0 ‖Ψ′n‖H2(Ω) ‖H

′
n‖H2(Ω)

)
.

Using (68) to get

‖H ′n‖H2(Ω) ≤ Cλ

(
|H ′n|2 + c2

0 ‖Ψ′n‖H2(Ω) ‖Θ‖H2(Ω) + c2
0

(
‖Ψ‖H2(Ω) + αn

)
‖H ′n‖H2(Ω)

)
.

Since c2
0Cλ ‖Ψ‖H2(Ω) < 1, all the terms of αn, except maybe a finite number of them,

satisfying for some µ: c2
0Cλ ‖Ψ‖H2(Ω) + c2

0Cλαn < µ < 1, then it follows that

(1− µ) ‖H ′n‖H2(Ω) ≤ Cλ

(
|H ′n|2 + c2

0

(
‖Ψ‖H2(Ω) + αn

)
‖Θ‖H2(Ω)

)
.

We have therefore, from the boundedness of |H ′n|2 (we can verify that Hn satisfy (23)),
the boundedness of ‖H ′n‖H2(Ω) . Then there exists a subsequence H ′n′ converging weakly in

H2 (Ω) strongly in H1(Ω) to H ′ ∈ H2(Ω). We can verify that H ′ ∈ H1
0 (Ω) is a solution of

(5). Since the elliptic problem (5) coupled with the boundary condition (7) has a unique
solution, we deduce that H ′ = H and

H ′n ⇀ H in H2(Ω),

H ′n → H in H1(Ω).

This completes the proof.

Remark 5.1 If we use estimates like (23), (52) and (53), we can replace (66) by another
hypothesis only depending on the data.
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