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1. Introduction

Let Ω = (0, 1)2 be the unit square in R
2 and T > 0 be a positive constant. If a

is a positive, continuous function and f ∈ L2
(
0, T ;L2 (Ω)

)
, u0 ∈ L2 (Ω) suppose

that we are interested in solving the following integro-differential problem: find a
function u0 = u0 (t, x1, x2) such that

∂tu0 (·, x1, ·)− a
(∫

Ω
u0 (·, x) dx

)
∂2
x2
u0 (·, x1, ·) = f (·, x1, ·)

in (0, T )× (0, 1) a.e x1 ∈ (0, 1) ,

u0 (·, x1, ·) = 0 on (0, T )× {0, 1} a.e x1 ∈ (0, 1) ,

u0 (0, ·) = u0 in Ω.

(1)

Since the integral in the first equation of (1) is taken on the whole domain Ω it is
clear that this equation cannot be considered as a parabolic equation parametrized
by x1. Moreover, if starting from w ∈ L2

(
0, T ;L2 (Ω)

)
, one solves for u = Sw the

problem parametrized by x1
∂tu (·, x1, ·)− a

(∫
Ω
w (·, x) dx

)
∂2
x2
u (·, x1, ·) = f (·, x1, ·)

in (0, T )× (0, 1) a.e x1 ∈ (0, 1) ,

u (·, x1, ·) = 0 on (0, T )× {0, 1} a.e x1 ∈ (0, 1) ,

u (0, x1, ·) = u0 in (0, 1) a.e x1 ∈ (0, 1) ,
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when it comes to finding a fixed point for S some compactness for this mapping
is missing. One way to overcome this is to introduce for instance the following
anisotropic singular perturbations problem

∂tuε − a
(∫

Ω
uε (·, x) dx

)(
ε2∂2

x1
uε + ∂2

x2
uε
)

= f in (0, T )× Ω,

uε = 0 on (0, T )× ∂Ω,

uε (0) = u0 in Ω,

(2)

and to see what can be said on the behaviour of uε when ε > 0 goes to 0. This
is what we would like to do in this note. For more details about the anisotropic
singular perturbations problems from different point of view, the reader is referred
to [1, 3–6, 8, 9] (see [10] for the basic theory of singular perturbations).

2. A more general setting

Now we suppose that Ω is a bounded open subset of Rn and introduce a problem
generalizing (2). We split the components of a point x = (x1, . . . , xn) ∈ R

n into
two parts

X1 = (x1, . . . , xp) and X2 = (xp+1, . . . , xn) ,

so that x = (X1, X2) (p and n are positive integers such that p < n). Similarly
setting

∇X1
u = (∂x1

u, . . . , ∂xp
u)T , ∇X2

u = (∂xp+1
u, . . . , ∂xn

u)T ,

where T denotes the transpose operation and ∂xi
the partial derivative in the

direction xi, we have if ∇ denotes the usual gradient operator

∇u =

(
∇X1

u
∇X2

u

)
. (3)

It will be convenient to simplify the notation to set

z = (t, x) ∈ Rn+1, Q = (0, T )× Ω. (4)

Let

A = A(z, s) = (aij(z, s)) (5)

be a n × n matrix defined for (z, s) ∈ Q × R and such that A is of Carathéodory
type that is to say

z 7→ aij(z, s) is measurable ∀s ∈ R, ∀ i, j = 1, . . . , n, (6)

s 7→ aij(z, s) is continuous a.e. z ∈ Q, ∀ i, j = 1, . . . , n. (7)

Moreover we assume that there exist two positive constants λ,Λ such that

λ|ξ|2 ≤ A (z, s) ξ · ξ ≤ Λ|ξ|2 ∀ ξ ∈ Rn, a.e. z ∈ Q, ∀ s ∈ R. (8)
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In the inequality above we have denoted the scalar product by a dot and the usual
Euclidean norm by | · |. Note that (8) implies that the coefficients aij are uniformly
bounded.

We split A into four blocks in such way that

A =

(
A11 A12

A21 A22

)
, (9)

where A11, A22 are respectively p× p and (n− p)× (n− p) matrices. We then set
for ε > 0

Aε = Aε(z, s) =

(
ε2A11 εA12

εA21 A22

)
. (10)

If ξ =

(
ξ̄1

ξ̄2

)
∈ Rn where ξ̄1 = (ξ1, . . . , ξp)

T , ξ̄2 = (ξp+1, . . . , ξn)T by (8) one has

for ξε =

(
εξ̄1

ξ̄2

)

λ|ξε|2 = λ{ε2|ξ̄1|2 + |ξ̄2|2} ≤ Aξε · ξε = Aεξ · ξ ∀ξ ∈ Rn, a.e. z ∈ Q, ∀s ∈ R, (11)

λ|ξ̄2|2 ≤ A22ξ̄2 · ξ̄2 ∀ξ̄2 ∈ Rn−p, a.e. z ∈ Q, ∀ s ∈ R. (12)

We would like to consider the family of parabolic, nonlinear, nonlocal problems


∂tuε −∇ · (Aε (·, l (uε))∇uε) = f in Q,

uε = 0 on (0, T )× ∂Ω,

uε (0, ·) = u0 in Ω,

(13)

where

l (u) =

∫
Ω
h (x)u (t, x) dx (14)

for some h ∈ L2 (Ω) i.e. l is a continuous linear form on L2 (Ω). We are in particular
interested to show that uε - perhaps up to subsequence - possesses a limit when
ε→ 0. Note that for A (z, s) = a (s) Id where Id is the identity matrix in R2, h ≡ 1
one recognizes the problem (2) of the introduction and the limit of uε will provide
us with a solution to problem (1).

We suppose here that

f ∈ L2(Q), u0 ∈ L2(Ω). (15)

Then we have

Theorem 2.1 : Under the assumptions above for any ε > 0 there exists a weak
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solution uε to problem (13) that is to say a function uε = uε (t, x) such that



uε ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ C

(
[0, T ] ;L2(Ω)

)
, ∂tuε ∈ L2

(
0, T ;H−1(Ω)

)
,

〈∂tuε, v〉+

∫
Ω
Aε (t, x, l (uε))∇uε · ∇v dx = (f, v)

in D′ (0, T ) , ∀ v ∈ H1
0 (Ω),

u (0, ·) = u0.

(16)

We refer the reader to [2], [7] for the different spaces introduced above. D′ denotes
the space of distributions, 〈·, ·〉 the duality bracket between H−1(Ω) and H1

0 (Ω),
(·, ·) the usual scalar product in L2 (Ω).

Proof : The proof is a simple application of the Schauder fixed point theorem.
Indeed for w ∈ L2 (Q) one considers u = Sw the solution to

u ∈ L2
(
0, T ;H1

0 (Ω)
)
∩ C

(
[0, T ] ;L2(Ω)

)
, ∂tu ∈ L2

(
0, T ;H−1(Ω)

)
,

〈∂tu, v〉+

∫
Ω
Aε (t, x, l (w))∇u · ∇v dx = (f, v) in D′ (0, T ) , ∀ v ∈ H1

0 (Ω),

u (0, ·) = u0.

(17)
Then it is easy to show (cf. [2]) that w → Sw has a fixed point uε. This completes
the proof of the theorem. �

3. Passage to the limit

We are now going to analyse the behaviour of uε when ε→ 0. For this purpose we
introduce ΩX1

the section of Ω above X1 defined as

ΩX1
= {X2 | (X1, X2) ∈ Ω } (18)

and

QX1
= (0, T )× ΩX1

. (19)

Then - if we let ε go to 0 very formally - we see that a reasonable candidate for
the limit of uε when ε→ 0 is given by

u0 = u0 (t,X1, X2) (20)

where u0 satisfies for a.e. X1 ∈ Π1 (Ω) = {X1 | ∃X2 such that (X1, X2) ∈ Ω }
∂tu0(·, X1, ·)−∇X2

· (A22 (·, X1, ·, l (u0))∇X2
u0) (·, X1, ·)

= f(·, X1, ·) in QX1
,

u0(·, X1, ·) = 0 on (0, T )× ∂ΩX1
,

u0 (0, X1, ·) = u0 (X1, ·) in ΩX1
.

(21)

Then we have
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Theorem 3.1 : Under the assumptions above there exists u0 weak solution to
(21) in the sense that a.e. X1 ∈ Π1 (Ω)

u0(·, X1, ·) ∈ L2
(
0, T ;H1

0 (ΩX1
)
)
∩ C

(
[0, T ] ;L2(ΩX1

)
)
, u0 ∈ L2 (Q) ,

∂tu0(·, X1, ·) ∈ L2
(
0, T ;H−1(ΩX1

)
)
,

u0 (0, X1, ·) = u0 (X1, ·) on ΩX1
,

∂t (u0, v)ΩX1
+

∫
ΩX1

A22 (z, l (u0))∇X2
u0 · ∇X2

v dX2 = (f, v)ΩX1

in D′ (0, T ) , ∀ v ∈ H1
0 (ΩX1

).

(22)

(·, ·)ΩX1
denotes the usual L2(ΩX1

) scalar product.

Remark 1 : The asymptotic behaviour of the linear parabolic problems can be
considered as a particular case. Indeed it is enough to choose A independent of s,
i.e.

A (z, s) = A (z) ∀z ∈ Q.

Proof : The solution u0 is going to be obtained as a limit of uε when ε→ 0. That
is to say we are going to show the following lemma which at the same time will
complete the proof of Theorem 3.1.

Lemma 3.2: Under the assumptions above there exists u0 ∈ L2 (Q) and a “sub-
sequence” of ε still labelled ε converging toward 0 such that

uε ⇀ u0, ε∇X1
uε ⇀ 0, ∇X2

uε ⇀ ∇X2
u0 in L2(Q),

∂tuε ⇀ ∂tu0 in L2
(
0, T ;H−1 (Ω)

)
,

and u0 is solution to (22).

(In the above the convergence in L2(Ω) means for vectors the convergence of
each components).

Proof : [Proof of the lemma 3.2]
If we take v = uε in (16) -cf. [2], [7] for the technical details- we get for a.e. t

1

2

d

dt
|uε|22,Ω +

∫
Ω
Aε (t, ·, l (uε))∇uε · ∇uε dx = (f, uε) .

(|uε|2,Ω denotes the usual L2(Ω)-norm). Using (11) and the Cauchy-Schwarz in-
equality we derive

1

2

d

dt
|uε|22,Ω + λ

∫
Ω
ε2|∇X1

uε|2 + |∇X2
uε|2 dx ≤ (f, uε) ≤ |f (t, ·) |2,Ω|uε|2,Ω.

Since Ω is bounded -in particular in the directions X2- we have for some constant
C > 0 independent of ε a Poincaré inequality of the type

|v|2,Ω ≤ C| |∇X2
v| |2,Ω ∀ v ∈ H1

0 (Ω). (23)

(|∇X2
v| denotes the Euclidean norm of ∇X2

v). Thus, by the Young inequality, we



January 18, 2010 13:4 Applicable Analysis chipot-guesmia-nonlocal

6 Michel Chipot and Senoussi Guesmia

deduce

1

2

d

dt
|uε|22,Ω + λ

∫
Ω
ε2|∇X1

uε|2 + |∇X2
uε|2dx ≤ C|f |2,Ω| |∇X2

uε| |2,Ω

≤ C2

2λ
|f |22,Ω +

λ

2
| |∇X2

uε| |22,Ω

and in particular

1

2

d

dt
|uε|22,Ω +

λ

2

∫
Ω
ε2|∇X1

uε|2 + |∇X2
uε|2dx ≤

C2

2λ
|f |22,Ω. (24)

Integrating in t between 0 and T we get

1

2
|uε|22,Ω (T ) +

λ

2

∫ T

0

∫
Ω
ε2|∇X1

uε|2 + |∇X2
uε|2 dtdx ≤

1

2

∣∣u0
∣∣2
2,Ω

+
C2

2λ
|f |22,Q, (25)

and thus

uε, |ε∇X1
uε|, |∇X2

uε| are bounded in L2(Q), (26)

(this of course independently of ε). From the equation in (16) we derive for v ∈
H1

0 (Ω),

|〈∂tuε, v〉| ≤ |(f, v)|+
∣∣∣∣∫

Ω
Aε (t, ·, l (uε))∇uε · ∇v dx

∣∣∣∣
≤ |f (t, ·)|2,Ω |v|2,Ω + C (| |ε∇X1

uε| |2,Ω + | |∇X2
uε| |2,Ω) | |∇X2

v| |2,Ω

≤ C ′
(
|f (t, ·)|2,Ω + | |ε∇X1

uε| |2,Ω + | |∇X2
uε| |2,Ω

)
|v|H1(Ω) ,

where C,C ′ are constants independent of ε→ 0, |v|H1(Ω) the usual H1 (Ω)−norm.
This implies

|∂tuε|L2(0,T ;H−1(Ω)) ≤ C
′
(
|f |2,Q + | |ε∇X1

uε| |2,Q + | |∇X2
uε| |2,Q

)
.

It follows from (26) that

∂tuε is bounded in L2
(
0, T ;H−1 (Ω)

)
. (27)

Up to a subsequence we deduce from (26), (27) that there exist u0, u1, u2,∈ L2(Q)
and u3 ∈ L2

(
0, T ;H−1 (Ω)

)
- i.e. with components in L2(Q) for the vectors - such

that

uε ⇀ u0, ε∇X1
uε ⇀ u1, ∇X2

uε ⇀ u2, in L2(Q),

∂tuε ⇀ u3 in L2
(
0, T ;H−1 (Ω)

)
.

By the continuity of the derivation in D′(Q) we derive that

uε ⇀ u0, ε∇X1
uε ⇀ 0, ∇X2

uε ⇀ ∇X2
u0 in L2(Q), (28)

∂tuε ⇀ ∂tu0 in L2
(
0, T ;H−1 (Ω)

)
. (29)
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A delicate issue is now to show that

u0(t,X1, ·) ∈ H1
0 (ΩX1

) a.e. (t,X1) ∈ (0, T )×Π1 (Ω) .

For that we denote by B an open ball of Rn−p such that

ΩX1
⊂ B ∀X1 ∈ Π1 (Ω) . (30)

We suppose that uε(t, ·) is extended by 0 outside Ω. Then from (26) we derive that∫ T

0

∫
Π1(Ω)×B

|∇X2
uε|2 dtdx ≤ C, (31)

where C is a constant independent of ε. This can also be written as

|uε|L2((0,T )×Π1(Ω);H1
0 (B)) ≤ C.

Thus there exists a function ū0 ∈ L2
(
(0, T )×Π1 (Ω) ;H1

0 (B)
)
, a subsequence of

the subsequence above and still labelled ε such that

uε ⇀ ū0 in L2
(
(0, T )×Π1 (Ω) ;H1

0 (B)
)

and in particular

uε → ū0 in D′ ((0, T )×Π1 (Ω)× B) .

If u0 is also extended by 0 outside Ω one has of course also

uε → u0 in D′ ((0, T )×Π1 (Ω)× B)

and thus

u0 = ū0 ∈ L2
(
(0, T )×Π1 (Ω) ;H1

0 (B)
)
.

It follows that

u0(t,X1, ·) ∈ H1
0 (B) a.e. (t,X1) ∈ (0, T )×Π1 (Ω) ,

i.e.

u0(t,X1, ·) ∈ H1
0 (ΩX1

) a.e. (t,X1) ∈ (0, T )×Π1 (Ω) . (32)

We next show that

l (uε)→ l (u0) .

This will follow from the lemma:

Lemma 3.3: For any v ∈ H1
0 (Ω), the functions

t 7→
∫

Ω
uεvdx, t 7→

∫
Ω
u0vdx (33)
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belong to H1 (0, T ) and for the subsequence above we have

(i)

∫
Ω
uεvdx→

∫
Ω
u0vdx in L2 (0, T ) , C (0, T ) ,

(ii)

∫
Ω
uεvdx ⇀

∫
Ω
u0vdx in H1 (0, T ) ,

(iii) l (uε)→ l (u0) in L2 (0, T ) .

(C (0, T ) denotes the space of continuous functions on [0, T ] for the uniform norm).

Proof : [Proof of the lemma 3.3]
From (16) we derive for v ∈ H1

0 (Ω)

d

dt
(uε (t, ·) , v) = (f (t, ·) , v)−

∫
Ω
Aε (t, x, l (uε))∇uε (t, x) · ∇v (x) dx.

Thus we have (see (8)) for some constant C independent of ε∣∣∣∣ ddt (uε, v)

∣∣∣∣ ≤ |f |2,Ω |v|2,Ω + C (ε| |∇X1
uε| |2,Ω + | |∇X2

uε| |2,Ω) | |∇v| |2,Ω, (34)

whence

d

dt
(uε, v) ∈ L2 (0, T ) .

Similarly one has

|(uε, v)| ≤ |uε|2,Ω |v|2,Ω

and by (26), (34) we conclude that

(uε, v) ∈ H1 (0, T )

and for some constant D independent of ε it holds

|(uε, v)|H1(0,T ) ≤ D.

Thus - up to a subsequence of the above subsequence - we have

(uε, v)→ Lv in L2 (0, T ) , C (0, T ) , (35)

(uε, v) ⇀ Lv in H1 (0, T ) . (36)

Let us choose ϕ ∈ D (0, T ) then one has∫ T

0
(uε, v)ϕdt =

∫ T

0

∫
Ω
uεvϕdtdx→

∫ T

0

∫
Ω
u0vϕdtdx =

∫ T

0
(u0, v)ϕdt,

by (28). On the other hand by (35) we have∫ T

0
(uε, v)ϕdt→

∫ T

0
Lvϕdt.
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It follows that

Lv =

∫
Ω
u0vdx

and by uniqueness of the limit, the convergences in (35), (36) are not up to a
subsequence. This completes the proof of (i) , (ii) and (iii) for h ∈ H1

0 (Ω) (recall
(14)). To obtain (iii) for h ∈ L2 (Ω) it is enough to rely in the density of H1

0 (Ω)
in L2 (Ω) taking into account (26). �

End of the proof of Lemma 3.2 and Theorem 3.1
For ϕ ∈ D (0, T ), v ∈ H1

0 (Ω) we have by (16)

−
∫ T

0
(uε, v)ϕ′ dt+

∫ T

0

∫
Ω
εA11 (z, l (uε)) ε∇X1

uε · ∇X1
v ϕ dt dx

+

∫ T

0

∫
Ω
A12 (z, l (uε)) ε∇X2

uε · ∇X1
v ϕ dt dx

+

∫ T

0

∫
Ω
A21 (z, l (uε)) ε∇X1

uε · ∇X2
v ϕ dt dx

+

∫ T

0

∫
Ω
A22 (z, l (uε))∇X2

uε · ∇X2
v ϕ dt dx =

∫ T

0

∫
Ω
fvϕ dt dx.

(37)

Noting (iii) of Lemma 3.3 we have -up to a subsequence-

A (z, l (uε))→ A (z, l (u0)) a.e. z ∈ Q, (38)

i.e. we have this convergence for all coefficients of A. It follows that for v ∈ H1
0 (Ω)

aij (·, l (uε)) ∂xk
v → aij (·, l (u0)) ∂xk

v in L2(Q), ∀ i, j, k = 1, . . . , n.

Then by (28), (29) one can easily pass to the limit in (37) to get

−
∫ T

0
(u0, v)ϕ′ dt+

∫ T

0

∫
Ω
A22 (z, l (u0))∇X2

u0 · ∇X2
v ϕ dt dx =

∫ T

0

∫
Ω
fvϕ dt dx.

(39)
Using an argument as in [3] or [5] one can easily conclude that

∫ T

0
(u0, v)ΩX1

ϕ′ dt+

∫ T

0

∫
ΩX1

A22 (t,X1, X2, l (u0))∇X2
u0 · ∇X2

v ϕ dt dx

=

∫ T

0

∫
ΩX1

f (t,X1, X2) vϕ dt dx

∀ϕ ∈ D (0, T ) , ∀ v ∈ H1
0 (ΩX1

), a.e. X1 ∈ Π1(Ω), (40)

which is the last equation in (22). (We denoted by (·, ·)ΩX1
the scalar product in

L2(ΩX1
)). Clearly (40) implies that for a.e. X1 ∈ Π1 (Ω)

∂tu0 = ∇X2
(A22 (·, l (u0))∇X2

u0) + f in D′ ((0, T )× ΩX1
) (41)
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and since u0 ∈ L2
(
(0, T ) ;H1

0 (ΩX1
)
)

we derive

∂tu0 ∈ L2
(
0, T ;H−1 (ΩX1

)
)

for a.e. X1 ∈ Π1(Ω).

Since for a.e. X1 ∈ Π1(Ω)

u0 ∈ L2
(
0, T ;L2 (ΩX1

)
)

(42)

by the usual embedding theorem the two first relations of (22) follow.
For v ∈ H1

0 (Ω) we have when ε→ 0

(
u0, v

)
= (uε (0, ·) , v) =

∫
Ω
uε (0, ·) vdx→

∫
Ω
u0 (0, ·) vdx

by (i) of Lemma 3.3. Thus

(
u0, v

)
= (u0 (0, ·) , v) ∀v ∈ H1

0 (Ω) . (43)

By density of H1
0 (Ω) in L2 (Ω), (43) holds for every v ∈ L2 (Ω) and we get

u0 (0, ·) = u0.

This completes the proof of Lemma 3.2. �

Of course the proof of Theorem 3.1 is also completed.
�

4. Additional results

We now give additional properties of the solutions to (22). We have indeed

Theorem 4.1 : Let u0 be solution to (22), then

u0 ∈ V =
{
v ∈ L2 (Q) | |∇X2

v| ∈ L2 (Q) , ∂tv ∈ L2
(
0, T ;H−1 (Ω)

)}
, (44)

u0 ∈ L∞
(
0, T ;L2 (Ω)

)
. (45)

Proof : From (22) we have for a.e. X1 ∈ Π1 (Ω) , v ∈ H1
0

(
ΩΩX1

)
〈∂tu0, v〉ΩX1

+

∫
ΩX1

A22 (z, l (u0))∇X2
u0 · ∇X2

v dX2 =

∫
ΩX1

fvdX2.

(〈·, ·〉ΩX1
denotes the duality bracket between H−1(ΩX1

) and H1
0 (ΩX1

)). Choosing
v = u0 we deduce

1

2

d

dt
|u0|22,ΩX1

+

∫
ΩX1

A22 (z, l (u0))∇X2
u0 · ∇X2

u0dX2 =

∫
ΩX1

fu0 dX2.
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Integrating on (0, t0)×Π1 (Ω) we get

1

2
|u0|22,Ω (t0) +

∫ t0

0

∫
Ω
A22 (z, l (u0))∇X2

u0 · ∇X2
u0dx

=
1

2

∣∣u0
∣∣2
2,Ω

+

∫ t0

0

∫
Ω
fu0 dtdx. (46)

Choosing t0 = T and using (12) we obtain

λ| |∇X2
u0| |22,Q ≤

1

2

∣∣u0
∣∣2
2,Ω

+ |f |2,Q |u0|2,Q .

Applying the Poincaré inequality on each section ΩX1
we obtain for a constant C

|u0|22,Q ≤ C| |∇X2
u0| |22,Q

and thus by Young’s inequality

λ| |∇X2
u0| |22,Q ≤

1

2

∣∣u0
∣∣2
2,Ω

+
C2

2λ
|f |22,Q +

λ

2
| |∇X2

u0| |22,Q.

From this it follows that

| |∇X2
u0| |22,Q ≤

1

λ

∣∣u0
∣∣2
2,Ω

+
C2

λ2
|f |22,Q .

On the other hand integrating the equation in (22) on Π1(Ω) we have for v ∈ H1
0 (Ω)

〈∂tu0, v〉 =
d

dt
(u0, v) =

∫
Π1(Ω)

∂t (u0, v)B dX1 =

∫
Π1(Ω)

∂t (u0, v)ΩX1
dX1

=

∫
Ω
fv dx−

∫
Ω
A22 (·, l (u0))∇X2

u0 · ∇X2
v dx.

where B is defined by (30) and u0, v are supposed to be extended by 0 outside Ω.
Then it follows that

|〈∂tu0, v〉| ≤ |(f, v)|+
∣∣∣∣∫

Ω
A22 (·, l (u0))∇u0 · ∇v dx

∣∣∣∣
≤ C

(
|f (t,X1, ·)|2,Ω + | |∇X2

u0| |2,Ω
)
|v|H1(Ω) ,

where C is a positive constant. Then after integrating on (0, T ) we get

|∂tu0|L2(0,T ;H−1(Ω)) ≤ C
(
|f |2,Q + | |∇X2

u0| |2,Q
)
.

Thus (44) follows and (45) is then a consequence of (46). �

In the case where the solution of (22) is unique we can yet prove

Theorem 4.2 : Suppose that (22) has a unique solution then we have

uε −→ u0 in V (47)
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i.e.

uε −→ u0, ∇X2
uε −→ ∇X2

u0 in L2(Q), ∂tuε −→ ∂tu0 in L2
(
0, T ;H−1 (Ω)

)
and

ε∇X1
uε −→ 0 in L2(Q). (48)

(The convergences hold for the whole sequence).

Proof : We introduce

Iε =

∫
Q
Aε (z, l (uε))

(
∇X1

uε
∇X2

(uε − u0)

)
·
(

∇X1
uε

∇X2
(uε − u0)

)
dtdx.

In what follows we just denote by Aε the matrix Aε (z, l (uε)) and drop the measures
of integration to get

Iε =

∫
Q
Aε∇uε · ∇uε −

∫
Q
Aε∇uε ·

(
0

∇X2
u0

)
−
∫
Q
Aε

(
0

∇X2
u0

)
· ∇uε

+

∫
Q
Aε

(
0

∇X2
u0

)
·
(

0
∇X2

u0

)

=

∫
Q
fuε −

∫ T

0
〈∂tuε, uε〉 −

∫
Q
Aε∇uε ·

(
0

∇X2
u0

)
−
∫
Q
Aε

(
0

∇X2
u0

)
· ∇uε

+

∫
Q
Aε

(
0

∇X2
u0

)
·
(

0
∇X2

u0

)

:=

∫
Q
fuε −

∫ T

0
〈∂tuε, uε〉dt+ Jε. (49)

(We used (16) with v = uε). Remark now that∫
Q
Aε∇uε ·

(
0

∇X2
u0

)
=

∫
Q
A21 (z, l (uε)) ε∇X1

uε · ∇X2
u0

+

∫
Q
A22 (z, l (uε))∇X2

uε · ∇X2
u0.

Passing to the limit as we did in (37) we obtain that

lim
ε→0

∫
Q
Aε∇uε ·

(
0

∇X2
u0

)
=

∫
Q
A22 (z, l (u0))∇X2

u0 · ∇X2
u0.

Note that since the possible limit is unique this is not up to a subsequence. We
obtain similarly

lim
ε→0

∫
Q
Aε

(
0

∇X2
u0

)
· ∇uε =

∫
Q
A22 (z, l (u0))∇X2

u0 · ∇X2
u0,

lim
ε→0

∫
Q
Aε

(
0

∇X2
u0

)
· ∇
(

0
∇X2

u0

)
=

∫
Q
A22 (z, l (u0))∇X2

u0 · ∇X2
u0
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and thus combining these three passages to the limit

lim
ε→0

Jε = −
∫
Q
A22 (z, l (u0))∇X2

u0 · ∇X2
u0. (50)

We now consider the other terms in Iε -see (49)- in order to pass to the limit. Let
θk ∈ D (Ω) be a sequence of smooth functions independent of t that we will choose
later on. We have∫ T

0
〈∂tuε, uε〉dt

=

∫ T

0
〈∂t (uε − θk) , uε − θk〉dt+

∫ T

0
〈∂tθk, uε − θk〉dt+

∫ T

0
〈∂tuε, θk〉dt

=
1

2
|uε − θk|22,Ω (T )− 1

2

∣∣u0 − θk
∣∣2
2,Ω

+

∫ T

0
〈∂tuε, θk〉dt.

Going back to (49) we have

Rε := Iε+
1

2
|uε − θk|22,Ω (T ) =

1

2

∣∣u0 − θk
∣∣2
2,Ω

+

∫
Q
fuε−

∫ T

0
〈∂tuε, θk〉dt+Jε. (51)

Using (22), (28), (29), (50) we get

lim
ε→0

Rε

=
1

2

∣∣u0 − θk
∣∣2
2,Ω

+

∫
Q
fu0 −

∫
Q
A22 (z, l (u0))∇X2

u0 · ∇X2
u0 −

∫ T

0
〈∂tu0, θk〉dt

=
1

2

∣∣u0 − θk
∣∣2
2,Ω

+

∫ T

0

∫
Π1(Ω)

〈∂tu0, u0〉ΩX1
(t,X1) dt−

∫ T

0
〈∂tu0, θk〉dt.

Note that since we have∫ T

0
〈∂tu0, θk〉dt =

∫ T

0

∫
Π1(Ω)

〈∂tu0, θk〉ΩX1
(t,X1) dtdX1

the limit above becomes

lim
ε→0

Rε =
1

2

∣∣u0 − θk
∣∣2
2,Ω

+

∫
Π1(Ω)

∫ T

0
〈∂t (u0 − θk) , (u0 − θk)〉ΩX1

(t,X1) dtdX1

=
1

2

∣∣u0 − θk
∣∣2
2,Ω

+
1

2

∫
Π1(Ω)

|u0 − θk|22,ΩX1
(T,X1)−

∣∣u0 − θk
∣∣2
2,ΩX1

(X1) dtdX1

=
1

2
|u0 − θk|22,Ω (T ) . (52)

Thus from (51) we deduce

lim sup
ε→0

Iε ≤ lim
ε→0

Rε =
1

2
|u0 − θk|22,Ω (T ) .
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Choosing θk such that

θk → u0 (T ) in L2 (Ω) , (53)

we deduce that

0 ≤ lim sup
ε→0

Iε ≤ 0

and thus

Iε → 0 when ε→ 0.

Since, by the coerciveness assumption, we have

λ

∫ T

0

∫
Ω
|ε∇X1

uε|2 + |∇X2
(uε − u0)|2 ≤ Iε,

it follows that

ε∇X1
uε −→ 0, ∇X2

uε −→ ∇X2
u0 in L2(Q),

and thus (by Poincaré’s inequality)

uε −→ u0 in L2(Q).

It remains to show that

∂tuε −→ ∂tu0 in L2
(
0, T ;H−1 (Ω)

)
.

Testing the equation in (22) with v ∈ H1
0 (Ω) and integrating on Π1 (Ω) , we get∫

Π1(Ω)
∂t (u0, v)ΩX1

dX1 +

∫
Ω
A22 (z, l (u0))∇X2

u0 · ∇X2
v dx =

∫
Ω
fv dx,

whence

d

dt
(u0, v)Ω +

∫
Ω
A22 (z, l (u0))∇X2

u0 · ∇X2
v dx =

∫
Ω
fv dx.

Then subtracting the above equality from (16) leads to

d

dt
(uε − u0, v) +

∫
Ω
ε2A11 (z, l (uε))∇X1

uε · ∇X1
v dx

+

∫
Ω
εA12 (z, l (uε))∇X2

uε · ∇X1
v dx

+

∫
Ω
εA21 (z, l (uε))∇X1

uε · ∇X2
v dx

+

∫
Ω

(A22 (z, l (uε))∇X2
uε −A22 (z, l (u0))∇X2

u0) · ∇X2
v dx

= 0.



January 18, 2010 13:4 Applicable Analysis chipot-guesmia-nonlocal

Applicable Analysis 15

Using the Cauchy-Schwarz inequality and by (44), it follows that

〈∂t (uε − u0) , v〉 ≤ ε2C| |∇X1
uε| |2,Ω | |∇X1

v| |2,Ω
+ εC| |∇X2

uε| |2,Ω | |∇X1
v| |2,Ω + εC| |∇X1

uε| |2,Ω| |∇X2
v| |2,Ω

+ | |A22 (·, l (uε))∇X2
uε −A22 (·, l (u0))∇X2

u0| |2,Ω| |∇X1
v| |2,Ω

≤ (C
(
ε2| |∇X1

uε| |2,Ω + ε| |∇X2
uε| |2,Ω + ε| |∇X1

uε| |2,Ω
)

+ | |A22 (·, l (uε))∇X2
uε −A22 (·, l (u0))∇X2

u0| |2,Ω) |v|H1(Ω) ,

for any v ∈ H1
0 (Ω). This implies

|∂t (uε − u0)|H−1(Ω) ≤C
(
ε2| |∇X1

uε| |2,Ω + ε| |∇X2
uε| |2,Ω + ε| |∇X1

uε| |2,Ω
)

+ | |A22 (·, l (uε))∇X2
uε −A22 (·, l (u0))∇X2

u0| |2,Ω.

Integrating over (0, T ), letting ε → 0 and taking into account (iii) of Lemma 3.3,
we deduce

|∂t (uε − u0)|L2(0,T ;H−1(Ω)) → 0.

This completes the proof of the theorem. �

Remark 1 : We also have

uε (t, ·) −→ u0 (t, ·) in L2(Ω) ∀t ∈ (0, T ) . (54)

Indeed, if we replace T by t0 ∈ (0, T ) in the proof of Theorem 4.2 we get from (51),
(52),

lim sup
ε→0

|θk − uε (t0, ·)|2,Ω ≤ |θk − u0 (t0, ·)|2,Ω ,

thus

lim sup
ε→0

|uε (t0, ·)− u0 (t0, ·)|2,Ω ≤ |θk − u0 (t0, ·)|2,Ω + lim sup
ε→0

|θk − uε (t0, ·)|2,Ω

≤ 2 |θk − u0 (t0, ·)|2,Ω . (55)

Then passing to the limit in the inequality above when k → ∞ and taking into
account (53) for T = t0, we obtain

lim sup
ε→0

|uε (t0, ·)− u0 (t0, ·)|2,Ω ≤ 0,

whence

lim
ε→0
|uε (t0, ·)− u0 (t0, ·)|2,Ω = 0.

It follows that

uε (t, ·) −→ u0 (t, ·) in L2(Ω) ∀t ∈ (0, T ) .
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Remark 2 : In the case when u0 is not unique one can show that the set of
solutions to (22) lies in a neighborhood of

{uε | ε < ε0}

for the topology of V, that is to say from any subsequence of uε there exists another
subsequence such that (47), (48) hold. In addition if there exists a subsequence of
uε, still labeled by uε, and a function u0 such that

uε −→ u0 in D′(Q),

then u0 is a solution of (22) and (47), (48) hold.
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Notes in Mathematics # 323, Springer-Verlag, 1973.


