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Introduction

Presentation of the text

This text consists in notes on a series of lectures given in March 2004 in the De Giorgi center
during a semester about ”Phase Space Analysis of Partial Differential Equations”. The goal
of those lectures was to study the incompressible Navier-Stokes system in R? with d = 2
or d = 3 and to show what could be the impact of techniques of localization in frequency
space in the study of this system.

The first chapter is devoted to the basic study of this system. Using essentially Sobolev
embedding, we prove global wellposedness in R? in the energy space and local wellposedness
in L} (H') with initial data in H 2 in R? and also local wellposedness in L? (R?). Each time,
local wellposedness becomes global for small data. The crucial role of the scaling is pointed
out. Then we shall study the influence of the special structure of the Navier-Stokes equations:
in particular in dimension two, it is globally wellposed and in dimension three, global solutions
are globally stable. At the end of this chapter, we develop an elementary LP approach. We
proved in particular global wellposedness results for small initial data in L3(R3).

In the second chapter, we introduced Littlewood-Paley theory, which is the theory that
describes the regularity of tempered distributions in terms of decay in Fourier spaces. We
expose the basis of Bony’s paradifferential calculus, in particular precized product law. We
also translate some smallness condition given in the first chapter in terms of Besov spaces.

In the third chapter, we interpret some results of the second chapter in terms of Littlewood-
Paley theory. As an illustration, we study the problem of the existence and uniqueness of
trajectories for scaling invariant solutions of Navier-Stokes equations. This is an opportunity
to revisit Cauchy-Lipschitz theorem.

In the last chapter, we present an anisotropic model of the incompressible Navier-Stokes
system coming from the study of geophysical fluids; in this three dimensionnal model, the three
dimensionnal laplacian becomes a bidimensionnal laplacian. The purpose of this chapter is to
prove wellposedness result for this sytem in scaling invariant spaces. The main point of this
chapter is that the structure of the non linear part of the incompressible Navier-Stokes system
is used in a crucial way.
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Chapter 1

Incompressible Navier-Stokes
system with elementary methods

1.1 Introduction

Let us recall what is incompressible Navier-Stokes system.

ov+v-Vvo—vAv = —Vp
(NS,) dive = 0
V=0 = Yo,

where v(t, z) is a time dependant vector field on R?, and

d d d
divvzzajvj,v-V:Zvjﬁj and A:Za}
j=1 j=1

=1

We restrict ourselves to the whole space R%. In terms of fluid mechanics, it means that we
neglect boundary effects. Moreover, we shall only consider the two physical dimensions d = 2
and d = 3. For a much more detailed introduction to incompressible Navier-Stokes system,
the reader can consult [4], [17] and [54]. For a complete and up to date bibliography, see [4].

In this introduction, we shall point out some very basic facts about this system. The first
one is the weak form of the Navier-Stokes system. Using Leibnitz’s formula, it is clear that,
when the vector field v is smooth enough, we have that

d
v-Vu=diviv®v) where div(v®v) def Z (o) = div(viv).
k=1

So the Navier-Stokes system may be written as

O +diviv®@v) —vAv = —Vp
(NS,) dive = 0
U|t:0 = 9.

The advantage of this formulation is that it makes sense for more singular vector field than
the previous one and this will be useful quite frequently.

The second one is the energy estimate. All the following computations are formal ones
that will become rigourous in the different chapters of this text. So, taking the scalar product

7



of the system in L? with the solution vector field v gives
1d
2dt
Using formal integrations by part, we may write that

(v-Volv)rz = Z /dvj(ajvk)vkdx
R

1<4 k<d

1 .
= 5 X [ 0P

1<j<d

1 .
- 5> /Rd(dlvv)|v\2da:

1<j<d

lollZ2 + (v Volv) 2 = v(Avjv) 2 = —(Vplv) 2.

= 0.

Moreover, we obviously have that —v(Av|v) 2 = v||Vul[2,. Again by (formal) integration by
part, we have that

d
—(Vplv)2 = —Z/2vj8jpdx
j=1"R
= / pdivovdx
R2

= 0.

So, it turns out that, still formally,

1d

5 g IOl +v[Ve@)Z =0,

and by integration that
t
lo(®)l72 + 21//0 IVo(#)lI72dt" = ||vol|Z-- (L.1)

This basic a priori estimate allowed J. Leray to prove in 1934 the following theorem.

Theorem 1.1.1 Let ug be a divergence free vector field in L?(R®). Then a solution u of (N'S,,)

exists in the energy space _
LR L) N L*(RT; HY)
such that the energy inequality holds, namely

t
lu(®)]1Z- +2V/0 IVu(t)|[72dt" < [luollZ.-

In this theorem, the concept of solution must be understood, as in all that follows, in the
following sense. We shall say that u in a solution of (N'S,) on [0,T) x R? if u belongs to L?
locally in [0,T) x R? and if for any function ¥ in C'(R*; S(RY)?) and divergence free,

t

/ u(t,x) V(t,z)der + / / (VVu VU —u@u: VU —u- 8t\I')(t',az) dxdt/
Q 0 Jo
t
_ / wo(x) - (0, z) dr +/ (F(E), () .
Q 0

Moreover, J. Leray proved in 1934 the following theorem.
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Theorem 1.1.2 If d = 2, solutions given by the above theorem are unique, continuous with
value in L*(R?) and satisfies the energy equality

t
@) 3+ 20 [ VUt = ol

We shall not prove Theorem 1.1.1. For a proof of it, we refer to the magnificent original paper
by J. Leray (see [41]). For a modern proof, see for instance [14] or [17].

As we are working in the whole space RY, we can compute the pressure. Applying the
divergence operator to the system (NS,), we get

Ordivw + Z 9,0k (vIv*) —vAdive = —Ap.
1<j,k<d
The stationary condition divv = 0 implies that
—Ap = Z ;0 (vIo").
1<j,k<d
So formally, we have that
p=— 3 AT90wi") with A0 & F(¢) 2 6a). (1.2)
1<j,k<d
In all this chapter, we shall denote by @ any bilinear map of the form
def

Q7 (u,v) =

qilzﬂam (ukvﬂ) 7
ktm

where qi’? are Fourier multipliers of the form

gra S afmnr pol (i"%’ a(e)) with ofj"? €R.
n?p

We shall denote by Qng the particular one related to Navier-Stokes equation, namely
gvs(u,v) def div(viu) — Z 0; A9, 0y (uFv").
1<k <d

Now the incompressible Navier-Stokes system appears as a particular case of

o —vAv+ Q(v,v) = 0
U|t:0 = 9.

(GNS,) {

with the quadratic operator @) define above. Let us define B(u,v) (resp. Bys(u,v)) by

OB(u,v) — vAB(u,v) = Q(u,v) (resp. Qns(u,v))
B(u,v) 4= = 0.

Now solving (GNS,) (resp. (NS,)) can be seen as finding a fixed point for the map
w— e""Pug + B(u,u) (resp. Bys(u, u)).

In all this chapter, we shall solve (GNS,) or (IN.S,) using a contraction argument in a well
choosen Banach space. It is based on the following classical lemma, that we recall for the
reader’s convenience.



Lemma 1.1.1 Let E be a Banach space and B a bilinear map continuous from E x E into E
and « a positive number such that

1 . def
a< ——— with ||B|| = sup ||B(u,v)].
4(|8]| Jlul|<1
l[oll<1

Then for any a in the ball B(0,«) of center 0 and radius « of E, a unique x exists in the ball
of radius 2« such that
x=a+ B(z,x).

Moreover, we have ||z|| < 2|a|.
Proof of Lemma 1.1.1 It consists in applying the classical iterative scheme define by
xo=a and Tp41 =a+ B(zp,z,).

Let us first prove by induction that ||z,| < 2a. Using this hypothesis on «, we get, by
definition of x,41,
2nsall < a(1 + 4l B]) < 2.

Thus the sequence remains in the ball B(0,2a). Then

Tn+l — Tpn = B(l‘nal’n) - B(xnflal‘nfl)

B(Zvn - $n,1,$n) + B(xnfla Tn — xnfl)'

IN

Then we have
|Znt1 — 2n|| < 4B [|2n — 1]

The hypothesis 4a||B|| < 1, makes that (z,)nen is a Cauchy sequence in E the limit of which
is a fixed point of x — a+ B(x, z) in the ball B(0,2«). This fixed point is unique because if =
and y are two such fixed points, then

e —yll < [|B(z —y,y) + Bz, z —y)|| < 4al[B| [+ —y]|.

The lemma is proved.

If we want to get global solutions of (GNS,) or (NS,) with such method, we need to
use spaces the norm of which is invariant under the transformations that preserve the set
of global solutions. This set contains the following transformations, called in the literature
”scaling transformations”. They are defined by

ux(t, ) def Mu(N%t, \x)

The use of the fixed point method explained in Lemma 1.1.1 imposes to consider only scaling
invariant spaces. Let us give examples of such spaces:

L®RYLYRY), LR A7), LARY A7), LR A7) 0 LART; [3).
Let us point out that, when d = 2, the scaling invariant space
LR L)) N AR HY).

is the energy space, the norm of which appears in the formal conservation of energy (1.1).
This is the key point in the proof of Theorem 1.1.2.
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In the case when d = 3, this energy space is below the regularity which provides scaling
invariant spaces, namely H2. We can interpret this saying that in dimension d = 2, the global
existence of regular solutions of Navier-Stokes system is a critical problem, solved by J. Leray
in 1934. In the case when d = 3, this can be interpreted as a supercritical problem. This is
the core of the difficulty. As we shall see, one of the challenge is to be able to use the special
structure of the equation together with scaling invariant spaces.

In the second section of this chapter, we shall use Lemma 1.1.1 to prove local wellposedness
of (GNS,) for initial data in H 51 and global wellposedness for small data in H 571 As
everything done in this context of Sobolev spaces rely on the Sobolev embeddings, we give a
proof of it.

In the third section, we shall see how to use the special structure of the Navier-Stokes
system. First, we shall prove Leray uniqueness theorem in dimension 2. We shall also prove in
dimension 3 a result about asymptotics of possible large global solutions. This results will im-
ply in particular that the set of initial data which give rise to global solutions in L{ (R*; H)

loc
is an open subset of H 3,
In the forth section, we prove that (GNS,) is locally wellposed in L3(R3) and globally for
small data, using essentially Young’ inequalities.
Let us point out that up to now, all the theorems for this chapter are proved with ele-
mentary method: nothing more than classical Sobolev embeddings and Young’s and Holder’s

inequalities.

1.2 Wellposedness in Sobolev spaces

The purpose of this section is to investigate the local and global wellposedness of the Navier-
Stokes type system, namely the family of systems (GNS,). As claimed above, everything in
this context relies on Sobolev embeddings. Let us first recall the definition of homogeneous
sobolev spaces.

Definition 1.2.1 Let s be a real number. The homogeneous Sobolev space H*(RY) is the set

of tempered distributions u the Fourier transform of which @ belongs to Llloc(Rd) and satisfies

def

Jully. 2 [, lela©ds < .

The aim of this paragraph is to study the embeddings of H*(RY) spaces into LP(R%) spaces.
We shall prove the following theorem.

Theorem 1.2.1 If s belongs to [0,%[, then the space H*(R?) is continuously embedded
in L% (RY).

Proof of Theorem 1.2.1 First of all, let us show how to find the critical index p =
2d/(d — 2s). Let us use a scaling argument. Let v be a function on R? and let us denote by vy

the function vy (z) def v(Azx). We have

_d
[oallze = A" 7 [|v]| e

and
loal, = [ lgImRe) P
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= a2 [t g

A~ d+25||UH2' ..

If an inequality of the type ||v||z» < C||v| s for any smooth function v is true, it is also true
for vy for any A. Then it is obvious that we must have p = 2d/(d — 2s).

Let us now prove the theorem. Without any loss of generality, we can assume that || f|| ;.
is equal to 1. First we can observe, thanks to Fubini theorem, that for any p € [1,+oo[ and
any measurable function f, we have

1715 % [ i >|pdx

/R ) / AP~ ld\da
= p [TV Im(lf] > A
We shall decompose the function in low and high frequencies. More precisely, we shall write
f=fia+ foa with fia= —7:_1<IB(0,A)f) and  fo4=F 1 <1Bc(0,A)J?>' (1.3)
As Supp fl A is compact, the function fq 4 is bounded and more precisely we have
< @l
< 0 [ lelerie s

)

—d —2s %
< (@0 (/B ol dg)
C d
— A" 1.4
(d—2s)% (14)

The triangle inequality implies that for any positive A, we have

(171> X € (1fal > 2) Ufaal > 2):

From the above Inequality (1.4), we infer that

p
def [ A(d—25)7\“ A\

o0 A
i A (TNE TOY

It is well known (it is the so called Bienaimé-Tchebychev inequality) that
A
m(lfal>3) = [ do
< T2 (1f2.4,1>3)

[ dnawr,
(If2.4,1>3) A2

NS
AZ

From this we deduce that

< 4
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So we have that -
17150 <dp [ 37 foy [

But we know that the Fourier transform is (up to a constant) a unitary transform of L?(R%).
Thus we have

1715 < 42~ [“ 208 [ |fe)Pagan (15)

0 (I€1>2Ax)
Then by definition of Ay, we have

]§|2AA<:>)\§C§d:efL1
(d—2s)2

JSHESY

€]

Fubini’s theorem implies that

& ~
71 < apem [ ( / W’?’dA) PP

0

p—2
4p(27r)d ( 4C > dw=2) o 2¢
< 0 (agr) T 0P

dp—2
As 2s = (pi) the theorem is proved.
p

Corollary 1.2.1 If p belongs to |1,2], then
1 1

LPRY c H¥(RY) with s=d <2 _ p) :

Proof of Corollary 1.2.1 This corollary is proved by duality. Let us write that

lallgs = sup  (a,¢).
”SDIIH—S(Rd)S]-

1 1 1 1
Ass=d ( — ) =d (1 - — = 2), we have by Theorem 1.2.1,
p

lellr < Cliel -

1 1
where P is the conjugate of p defined by — + — = 1 and thus
p p

lallge < C sup (a,¢)
lell <1

< Clal -

The corollary is proved.

The main theorem in the framework of Sobolev spaces is the following.

Theorem 1.2.2 Let ug be in H2 1. A positive time T exists such that the system (GNS,)
has a unique solution u in L*([0, T); H%)Whj()h also belongs to

C([0,T); 51y n L2([0, T]; H?).

If T, denotes the maximal time of existence of such a solution, we have
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e the existence of a constant ¢ such that

luoll g1 < v = Ty = +o0.
o IfT,, is finite, then

Ty
| @I s dt = +o0. (16)
0 H™2

Moreover, the solutions are stable in the following sense: if uw and v are two solutions, then we
have

t
() = v g, +v [ ) = o) gt < fluo = vall g,
« exp(c /t(||u(t’)||4 i+ o) dl)dtf)
v3 Jo o7 o5

Proof of Theorem 1.2.2 We shall proof that the map
u— e""ug + B(u, u)

has a unique fixed point in the space L*([0,T]; H %) for an appropriate T. It basically relies
on the following two lemmas. The first one is nothing more than a variation about Sobolev
embeddings.

Lemma 1.2.1 A constant C exists such that

1@, B g < Clal as D], s

Proof of Lemma 1.2.1 The case when d = 2 is different from the case when d = 3. If d = 2,
thanks to Sobolev embedding (see Theorem 1.2.1 page 11), we have

1Q(a; b) || g Cllabl 2

Cllall gallb]l 4

Clall 3 18] -

IN A IA

If d = 3, we have by definition of @,

HQ(G, b)HHfé < CS;llP(||ak8bz”H7% + |’beaakHH7%)

Thanks to the dual Sobolev embedding, (see Corollary 1.2.1 page 13), and Sobolev embedding,
we have

ka1l la k
Q@D < Complator'] g + o], )
< Cllallzslbll g + llall o bl o)
< Clalln bl

This proves the lemma.
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The second lemma describes an aspect of the smoothing effect of the heat flow.
Lemma 1.2.2 Let v be the solution in the set of continuous functions in time with values
in &' of
O —vAv = f
Ylt=0 = Yo

with f in L*([0,T); H*~') and vy in H®. Then

iy . 2

ve () LP(0,T]; H*%).
p=2

Moreover, we have the following estimates

t t
0@, + 20 [ IVt = 2 [ ()0 (L7)
0 0
~7 ) 2
J 6 (e 6 €)) < ol + 5 )1||f||L2 ore sy and (L)

lo@)] o2, S

Lr([0,T;H""7P)

1
gL e 1.9
(IvollH (QV)%||f||L2([0,TLH 1)) (1.9)

1
2v)p
with (a, b)s def (2m)~ /|§\28A

Proof of Lemma 1.2.2 It consists mainely in writing Duhamel’s formula in Fourier space,
namely

U(t, &) = e MGy (e +/ V(=S F(1! €)dt .

The Cauchy-Schwarz inequality implies that

Oiglitlﬁ(t,ﬁ)lélﬁo(é)\ Wllf( OllL2(po,0)-

Then taking the L? norm with respect to |£[?d¢ allows to conclude that

(e, o) e2dE) " < ol + o ([ 17Ol e 2a)

1
1 N . 3
< 0l g (s TP
V )
1
< lvoll s + @Hf“LQ([O,t];HS—l)o

Then we get the result by energy estimate in H* and interpolation.

As an immediat corollary, we have

Corollary 1.2.2 A constant Cy exists such that

1B(u, v)| H I, szt ol

L4([0,T];H 4([0,T];H (o, E Ty

15



Now, using Lemma 1.1.1, we know that if
3
va

— < 9
L4([O,T];HdTl) — 2Cy

|’ Aug| (1.10)

then we have the existence of a unique solution of (GNS,) in the ball of center 0, ra-
dius (QCalyg) in the space L*([0,T7; H%)

Let us investigate when the condition (1.10) is satisfied. As we have

IN

Vi >0, He"muolngfl

CUUA 2
/ e uo|2. 4 di
0 H?2

[uoll ¢, and

IN

1 2
5”UOHH%,1,

we have by interpolation

utAu H

e ol g+ (1.11)

N

cd-1 <
LAOTLA T )~ (20)

Thus, if H’U,OHH 4 < < (2Cy)~tv, the smallness condition (1.10) is satisfied and we have a global
solution.

Let us now investigate the case of large initial data. We shall decompose it in a small part
in 57! and in a large part, the Fourier transform of which will be compactly supported.
More precisely, if ug is in H %_1, a positive real number p,,, exists such that

([, = m©Pd)" < g2

Thus, we have
3

A
+ [l Bug|

VtAu H d—1 d—1
L“([UvT];HT) - 4C LA([0,T];H 2 )

e

where u) def ]:_1(13(0’/)“0)(5)170(5)). Let us write that

” vtA I)H vtA b”

1
P |le

A

4([0,T);H 1) - LA([0,T); HTl)

IN

2 =
(P2, T)F[luoll g

Thus, if

T < ( v )4, (1.12)

4Copis [luoll 4

we have proved the existence of a unique solution in the ball of center 0 and radius v/2Cy of
the space L*([0,T); H H% 1).

In order to prove the whole theorem, let us observe that, if u is a solution of (GNS,)
in L*([0,T7; H%), Lemma 1.2.1 implies that Q(u,u) belongs to L?([0, T7; H%_Z); then Lem-
ma 1.2.2 implies that the solution u belongs to

d
2

C([0,T]; HE YY) n L2([0,T; H?).
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In order to prove the stability estimate, let us consider two solutions v and v and let us
denote by w their difference. It is the solution of

ow — vAw = Q(w,w) + Q(w, u + v)
w|t:0 = Wp = ug — V.

Thus, by energy estimate in H 5~ 1of Lemma 1.2.2, we have

def 2 t 2
Bult) @y 2w [ Vw2 a

t
< [wO)IF 4, +2/0 (Qw(t), u(t") + o(t), w(t')) a_dt',
The non linear term is treated through the following lemma.

Lemma 1.2.3 A constant C exists such that

(@a,b),c)a_y < Cllall a1 [lbl]  azs[Vell g

Proof of Lemma 1.2.3 By definition of the 571 scalar product, we have, thanks to the
Cauchy-Schwarz inequality,

By, = [a©BOE" s

NGk GIRREGES
HaHHj—QHVﬁHH%—l'

IN

Then Lemma 1.2.1 implies the result.

Let us go back to the proof of the stability. We deduce from the above lemma that
¢
2 2
Auw(t) < lw(O)l ¢, + C/O Hw(t’)HHL;lN(t’)||Vw(t’)||H%,1dt’

with N (%) def Hu(t)HH% + ”U(t)HH%' By interpolation inequality between H51 and Hg,
we infer that

Ay(t) < Hw(O)HZ%1 + C’/Ot Hw(t')H%

3
/ |l 2 /
2 NV, dt

1 3
Using the convexity inequality ab < Za‘l + Zb%’ we deduce that

C t t
Bult) < 0O g, + 5 [ @I g N @t +v [ Vw2, de.

By definition of A, this can be written
t C ot
[ g, +v [ VeI 4t < w2 4, + o5 [ @)y N @)ar.
Using Gronwall lemma, we infer
2 ¢ V|12 / 2 c LYF
W,y + [ IV0I g < w1 ep(5 [ N @ar).
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The whole theorem is proved but the blow up criteria. Let us assume that we have a
solution of (GNS,) on a time interval [0, 7] such that

T
)| 41 dt < 0.
| @] ssdt < oo

We shall prove that T, is greater than 7. Thanks to Lemmas 1.2.1 and 1.2.2, we have

/Rd |f\d_2( sup \ﬁ(t,g)|)2d5 < 0.

tel0,T)

Thus a positive number p exists such that

vt e [0, 77, / €12, )P < <

[€l>p

As u belongs to L*>(]0,T); H%_l), condition (1.12) implies that the maximal time for a so-
lution of (GNS,) with initial data wu(t) is bounded from below by a positive real number
uniformely on [0, T'[. Thus T}, > T. The whole Theorem 1.2.2 is now proved.

Now we shall establish a property of small solutions which tells that for the system (GN S,,),

wd . . .
the H2~! norm is a Liapounov function near 0.

Proposition 1.2.1 Let ug be in the ball of center 0 and radius cv of the space H5~'. Then
the function

H?2

t— [lu(®)l 4,
is a decreasing function.

Proof of Proposition 1.2.1 We use again the fact that
O — vAu = Q(u,u) with Q(u,u) € L*(R*; Hg_Q).
Thus thanks to Lemma 1.2.2, we infer that
2 t (12 / 2 t / / !/ /
()12 g+ 20 [ IVl gt = ol g, +2 [ (@), u(e)),ule) 4_de.

Using Lemma 1.2.3 and interpolation inequality, we get, for any positive t; < to,

to to
2 (12 / < 2 / |12 / /
(eI g +2 [ IVuE) gt < )y, +C [ ) o V() gt

IN

2
HH%_ldt’.

to
()12 g+ C [ )]0 V()

As we know, thanks to Theorem 1.2.2; that u(¢) remains in the ball of center 0 and of ra-
dius 2cv. Thus, if ¢ is small enough, we get that

to
2 2
(eI gy 4w [T g < )] g

[
H?2
This proves the proposition.
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1.3 Consequences of the structure of the Navier-Stokes system

In this section, we shall investigate the particular properties of the Navier-Stokes system,
namely results the proof of which uses the energy estimate.

Let us start with the case of dimension two. The energy estimate will allow us to prove
that (N S,) is globally wellposed for initial data in L?. The precise theorem is the following
which is almost the same statement as Theorem 1.1.2 of the introduction.

Theorem 1.3.1 Let ug be in L?(R?). Then a unique solution exists in L*(R™; H%) which
belongs to
Cy(RT; LA N LART; HY)

and satisfies the energy equality

t
lu(O)1Z2 + 2”/0 IVu(t)|[72dt" = |luo|Z-.

Proof of Theorem 1.3.1 It is easy considering what we have done in the preceeding section.
Indeed, let us consider the solution u given on the interval [0, T}, [ by Theorem 1.2.2. Thanks to
Lemma 1.2.1, we know that Q(u,u) belongs to L? ([0, Ty, [; H~'). Then Lemma 1.2.2 implies
that u is continuous with value in L? and that

t t
)2+ 20 [ IV Fdt’ = ol +2 [ (@us (), ult)). ut) s, gt
For any H! divergence free vector field v, we have, in fact for d = 2 or 3,
1
(Qns(v,v),v) = Z/ . R Opvtolder = —3 / d(div v)|v|*dz = 0. (1.13)
vt /R R
We deduce that, for any t < T},

t
lu(®)1Z: +2V/0 IVu(t) 1 72d" = [luo|Z--

Thanks to the above energy estimate and using interpolation inequality between L? and H?,
we have, for any T' < T,

r 4
| Tl

IN

T
ol [ [ 7u(t)| e
1

luollte.

Then the blow up condition (1.6) implies the theorem.

Remark The key point here is that the control of the energy estimate implies the control of
scaling invariant quantities.

The case of dimension three is much more complicated. The global wellposedness of (N.S,)

for large data in H% remains open. The purpose of this section is first to prove the energy
equality for solution of (NS,) given by Theorem 1.2.2 and then to state that any global
solution is stable.
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Proposition 1.3.1 Let us consider an initial data ug in H 3. If u denotes the solution given
by Theorem 1.2.2, then w is continuous with value in L? and satisfies the energy equality

t
u@)F+2 [ IVu)lFadt’ = ol

Proof of Proposition 1.3.1 As the solution u belongs to
-1 .
Llo(?c([oﬂ TUO [’ H> ) N L?oc([oa Tuo [7 Hl)a

interpolation between Sobolev spaces implies that u belongs to L{ ([0, To,[; H %) which is
4

obviously a subspace of L,
and k in {1,---,d}, we have

([0, T [; H %) Using Sobolev embedding, we infer that, for any j

wuF e L2 ([0, Ty [; L?) and thus  Q(u,u) € L2 ([0, Ty [; H™Y). (1.14)

Lemma, 1.2.2 allows to conclude the proof of the proposition.

We shall prove that any global solution, even for large initial data (if it exists) is stable.

Theorem 1.3.2 Let u be a global solution of (NS,) in L} (R*; H'). Then we have

lim [Ju(t)],, =0 and /0 lu(®)|[4dt < oo.

t—o00

Remark If ug belongs also to L?(R?), this theorem is an immediat consequence of Proposi-
tion 1.2.1 because thanks to energy estimate, we have

1
4 < 4 4
[ o)yt < 5ol

Proof of Theorem 1.3.2 We shall decompose the initial data ug. A positive real number p
being given, let us state

def

Uy = Ug,p + Ug e with Uug e = ]—“*1(13(0,p)(§)a0(§)).

Let € be any positive real number. We can choose p such that
< mi €
||U0,4HH% < mln{cu, 5}

Let us denote by uy the global solution of (NS,) given by Theorem 1.2.2 for the initial
data ug¢. Thanks to Proposition 1.2.1, we have

Vte R, |lug(®)]] .1 <

9
ah <5 (1.15)

Let us define uy, def u — uy. It satisfies

Oyup, — vAuy, = Qns(u, up) + Qns(un, ue)
Un|t=0 = UO,h-
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Obviously, uj, belongs to L? (of course with an L? norm which does depend on p and thus
on ¢€). Moreover, Assertion (1.14) claims that both Qns(u,un) and Qns(un,ue) belongs
to L2 (RT; H!). Applying Lemma 1.2.2 and the fundamental relation (1.13) gives

loc

t t
Jun(Ol +20 [ IVun(@)lEade’ = ol +2 [ (Quvs(un (), uet)), un(t)) e’

Using Sobolev embedding, we claim that

[(Qns(un(t), ue(t')), un(t))] Cllun)ue(t)| 2l Vut) | 2
Cllun ()|l o llue(®)]] 3 |V un ()] 2

Cllue(®)ll 3 [V un(t)l[72-

ININ A

Then we deduce that
t t
lun(®)l3 +20 [ [Vun(@)Fadt’ < ol +Cs [ [Vun(@)]Fade’

Choosing € small enough ensures that

t
lun(®)72 + V/O IVun (8|72t < o pllZ2-

HH% < €/2. Thus Hu(tE)HH% <e.
Theorem 1.2.2 and Proposition 1.2.1 allows to conclude the proof.

This implies that a positive time ¢. exists such that ||uy(t)

Let us state the following corollary of Theorem 1.3.2.

Corollary 1.3.1 The set of iqilltia] data ug such that the solution u given by Theorem 1.2.2
is global is an open subset of Hz.

Proof of corollary 1.3.1 Lelt us consider uy in H 3 such that the associated solution is
global. Let us consider wp in Hz and the (a priori) local solution v associated with the initial

data vg def ug + wg. The function w def v — u is solution of

0w — vAw + QNS(uaw) + QNS(wvu) + QNS(waw) =0
’U)‘tzo = wop.

Lemma 1.2.3 together with interpolation inequality gives

1 3
R 2 2
(@us(u,w) + Qus(w,u)w)y < Clulljullwl? , [Vul®,  and
2
(@vs(w,w),w)y < Clull,y [ Vul?,.

Let us assume that HwOHH 3 < % and define

def v
Ty € sup{t/ moax () 3 < 55}

Then, using Lemma 1.2.2 and the convexity inequality, we infer that, for any ¢ < Ty,

t C t
@Iy +v [ IVt < ol + 5 [ (@)l de.
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Gronwall’s Lemma and Theorem 1.3.2 imply that, for any ¢ < Ty,

t C (o]
2 N2 / 2 4
[y +v [ IT0)yd < uol?y exp(T5 [ fu(e)fdr).

If the smallness condition

C [ v?
2 ~ 4 B
ol y exp(5s [ lu®ldr) < o

is satisfied, the blow up condition for v is never satisfied. Corollary 1.3.1 is proved.

1.4 An elementary L” approach

As announced in the introduction of this chapter, the purpose of this section is the proof of
a local wellposedness result for initial data in L3(R3). The main result is the following.

Theorem 1.4.1 Let ug be in L3(R3). Then a positive T exists such that a unique solution u
exists in the space C([0,T]; L3). Moreover, a constant c¢ exists such that T can be choosen
equal at infinity if ||ug|| 3 is less or equal to cv.

The proof of this theorem cannot be done directly by a fixed point argument in the
space L>([0,T); L3) because Byg is not continuous from L*([0,T]; L3) x L>([0,T]; L3)
into L>°([0,T); L3). This has been shown by F. Oru in [46].

As in the preeceding section, we shall use the smoothing effect of the heat equation to
define space in which a fixed point method will work. This leads to spaces often called in the
literature ”"Kato spaces”.

Definition 1.4.1 Ifp is in [1,00] \ {3} and T in |0, 0], let us define K,(T') by

def def 1_3
K(T) 2 {u e €0 T L7) / [lull s,y ts;gpﬂ(ut)z(l Dllu(dllzr < oo}
S k]

We shall denote by K3(T') the space of bounded continuous functions from |0, T with value L3
equipped with the norm || - || ;e j0,7;1.3)-

Remarks 1) This space is obviously a Banach space. Moreover, if T' = +o0, it is invariant
under the scaling of the Navier-Stokes.

2) Let us consider ug in L. As

1 i
eV Puy = e Wi K U,

we have, thanks to the Young inequality,

1 2 1 2 1
e’ < e"wit|| , |ugllps with —=—-+ —
[ | (i)} | [ lluollL T3t
This gives
1 3
He”muHLp < c(yt)fi(lfﬁ) |luollzz and thus He”tAuoHKp(oo) < Cluol| 13- (1.16)
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Let us point out that if ug belongs to L3, one can find, for any positive €, a function ¢ in S
such that |jug — ¢||z3 < e. This implies in particular that

1”2 (10 — &)1, (o) < C.

Then observing that [|e”*2¢||z» < ||¢||zr, We get that

1 3
le" P ugll . ry < Ce + T2 172) ]| . (1.17)

3) Let us give an example of a sequence (¢, )neN such that the L2 norm is constant, the i
tends to infinity and the Kp(oo) norm of "2 ¢, tends to 0 when p > 3. Let us consider, for
some w in the unit sphere, the sequence

¢n($) déf em(:c|w)¢(x)

for some function ¢ in S the Fourier transform of which is compactly supported. Obviously,
we have Hd)nHH 1 = cn. Straightforward computations give

eutA¢n<x) _ ein(x|w) /ei(x|77)e—l/t|77+nw‘2$(n)dn.
Thus, if n is large enough, we have

t2)|e" gl < t7e5||G]| 10

C ~
=1z

IN

As ||pnll 3 = ||#]| 13, we have the announced example.

4) As we shall see in Chapter 2, [|e"*®ug| K, (c0) 18 equivalent, when p > 3 to the homoge-
3

14
neous Besov norm B) ~ ” (see Theorem 2.3.1 page 40).

In fact, Theorem 1.4.1 will appear mainely as a corollary of the following theorem.

Theorem 1.4.2 For any p in |3, 00[, a constant ¢ exists which satisfies the following proper-
ties. Let ug be an initial data in 8’ such that, for some positive T,

||e”tAu0||Kp(T) < cv. (1.18)

Then a unique solution u of (GNS,) exists in the ball of center 0 and radius 2cv in the Banach
space Kp(T).

Remark Thanks to Inequality (1.17), this theorem implies that, for an initial data in L3,
we have local solution. Thanks to Inequality (1.16), this solution is global if ||ug]|zs is small
enough.

Proof of Theorem 1.4.2 We shall prove that the classical fixed point procedure can be used
in K,(T) in order to find u such that

u = e""ug + B(u,u).
This works provided we prove the following lemma.

23



Lemma 1.4.1 For any p, q and r such that

1 1 1 1 1 1 1
O<-+-<1 and ~<-+-<>+-
P q p q 3
Then, for any positive T, the bilinear map B maps K,(T') x K,(T') into K,(T'). Moreover, a
constant C (independant of T') exists such that

<

C
| B(u, )|k, (1) < ;’\U\\KP(T)””\\Kq(T)-
Proof of Lemma 1.4.1 The method consists in computing B as a convolution operator.
More precisely, we have the following proposition.

Proposition 1.4.1 We have
B (u,v) / D] (6=t ) % (W (¢, ) (¢, ) ) dt!

where the functions Fi,e belongs to C(]0, 00[; L*®) for any s in [1, 00| and satisfies, for any j, k

and /,
C

(vt)? 2

Proof of Proposition 1.4.1 In Fourier space, we have

T ot )lze <

. t / 2
FBI(u,v)(t,€) =i /O e VPN o i€l €l 2FQult), v(t)) (€)dt .

k.

In order to write this operator as a convolution operator, it is enough to compute the inverse
Fourier transform of §j§k§g\§]*26*”t|5|2. Using the fact that

g2y [
t
we get that
I} (t,z) = vi / . / €56l gy ge
— v, aka,g/ / (@le) -+ IEP gy ge.

Using the formula about the Fourier transform of the Gaussian functions, we get

Fif(t,x) = 1/@@85/001364;2’(175'
’ t  (4mwvt’)2
v [~ 1 j T
= — — dt’  with
Wg/t (4vt')3 k’z<\/4yt’) A
W, () € 0,000

Changing variable r = (4vt')~!z|? gives

|2

j v 1 4vt j X
|Fk,£(t’ l‘)‘ S EW 0 T‘I’kx(mT’)dT.
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This implies that

1 1

J .
|Fk’€(t,$)| S len{W’ W

} and thus ||F£’Z(t, Mes £ ———5

In order to prove the continuity, let us observe that, for 0 < ¢ <t; <3, we have

|z|2

C 4vty
|g;|4 |2
4vtg

1Y, o(t2, ) — T ,(t1, )| < re " dr.

This implies that

17 (tg, ) — T4 (t1,2)] < Cmin{ﬁa L}
k\"2> k\"L1> — (Vt1t2)2 ’%‘4

The proposition is proved.

Let us go back to proof of the lemma. Thanks to Young’s and Hélder inequality and the
condition

1 1 1
-<-+-<D
r p g
. o . 11 1 1
we have, using Proposition 1.4.1 with s defined by 1+ — = -+ — 4+ —,
r s p q
1

1B Ol <0 [ V=
v(t =t ropa

By definition of the K,(7") norms, we get that

t
[1B(u,v)@)[|r < ||U||Kp(T)”U||Kq(T)/O 1 d ydt’

C 1

v ()2 (1=3)

IN

lullk, (1) l1v]] 5y () -

Lemma 1.4.1 is proved.
Now Lemma 1.1.1 implies Theorem 1.4.2.

Proof of Theorem 1.4.1 Thanks to (1.16) and (1.17), we can apply Theorem 1.4.2 with p
equal to 6 locally for any initial data and globally for small initial data.

We have existence and uniqueness in the space Kg(7T') for small enough T of for T' = oo
for small enough initial data. The two points which remain unproven are:

e the solution u is continuous with value in L3,
e this solution is unique among all the continuous functions with value in L3.

Those two problems are solved using a method which turns out to be important in the study
of Navier-Stokes equations or of (GNS,): it consists in considering the new unknown

def
w E u— Py,
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The idea is that w is better behaved than u. Obviously, we have w = B(u, ). Lemma 1.4.1
applied with p = ¢ = 6 and = 3 implies that w € C(]0, T]; L3(R?)). The continuity of w in
the origin will follow from the fact that, still using Lemma 1.4.1, we have

e
lwllzee ooy < llullzeg o)
But, Lemma 1.1.1 tells us that

A
lull oy < 201€”* ol g 1)-
Remarks (1.16) and (1.17) then implies
lim [[wl] o< (jo,1;3) = 0-

As the heat flow is continuous with values in L3, we have proved that the solution w is
continuous with values in L3.

Let us prove now that there is at most one solution in the space C([0,T]; L?). Let us
observe that, applying Lemma 1.4.1 with p = ¢ = 3 and r = 2 implies that

w = B(u,u) € Ko(T).

In particular, w belongs to C([0,T]; L?). Let us consider two solutions u; of (GNS,) in the
space C([0,T]; L?) associated with the same initial data and let us denote by ug; the differ-
ence ug — uy, which coincides with the difference wy —w;. Thus it belongs to C([0, T]; L?) and
satisfies

Opuo1 — vAugr = for
u21|¢—p = 0

with
fa1 = Q(""Pug, uz) + Q(uan, " ug) + Q(wa, ugr) + Q(uar, wr).

Thanks to Sobolev embeddings, we have

kit
lQ@.b)l, s < C suwp [l

1<k,<d

< C sup || s (1.19)
1<k 0<d L2

< Cllalls][bl| s (1.20)

Thus, the external force fo; belongs in particular to L2([0,T]; H _%) As uo; is the unique
solution in the space of continuous functions with value in &', we infer that us; belongs to

L([0,T); H=7) 0 L*([0, TT; H?)

and satisfies, thanks to Lemma 1.2.2,

||UQ1(t) dt’ (1.21)

[
H™ 2

t t
v [ @2y = 2 [ (fa)un @),
t
2 [ @)l g luar (Ol ' (1:22)

IN
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As the space is continuous and compactly supported functions in dense in L3, we decompose ug
as a sum of a small function in the sense of the L3 norm and a function of LS.

uy = ug +u)  with HugHLs <ev and u)e LS. (1.23)

Stating
def
921 = for — Qe P ud, ugy) — Q(uay, e up)

and applying (1.20) gives, again thanks to Sobolev embeddings,

def
Agi(t) = ||g21(t)\|H_§

< (Nl ubllo + llwnllacyey + sl scyry ) o (8)]
< Ol + ol + ey ) luaa (O], -

If ¢t is small enough, and ¢ choosen small enough in (1.23), we get

2

An(t) < Zlun(®)] - (1.24)

Still using the Sobolev embeddings and the Holder inequality, we can write that

def

By (t) HQ e g ugy ) + Q(Um,eymug)H .

.
< C swp H(M ok s
1<k,0 Lz

[Ny

< CII@”m b||L6HU21HL2

Using the fact that the heat ﬂow is a contraction of the LP spaces, and then the interpolation
inequality between H~ 3 and H3> 2 we get

1

By (t) < Cllug |l poluzn (DI luzi (1)1

1
H™ 2

m [N

Then using (1.22) and (1.24), we infer that

2 /
[uar (I, - dt’.

3

2
1 1
2 H2

3 t t 1
5w [ (@)1 ¢ < Clullzs [ ua @)y s ()

1 3
Then, using the classical convexity inequality ab < Za4 + Zb%’ we get

lean O,y +v [ T,y < Slblts [ luan()I7, -yt

Gronwall lemma implies that us; = 0. Theorem 1.4.1 is proved.

1.5 References and Remarks

The mathematical theory of the incompressible Navier-Stokes system has been founded by J.
Leray in 1934 in his famous paper [41]. The concept of weak solutions is introduced and the
existence of such solutions is proved. The regularity properties of those weak solutions has
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been studied (see in particular [2]). In this seminal paper [41], J. Leray also proved that if the
initial data satisfies a smallness condition of the type

luoll 2 Vol 2 < ev® v lugl72 ]| Vuol|Le < e,

then the solution exists in a space which ensures the uniqueness of such a solution. The small-
ness condition has been improved by H. Fujita and T. Kato in 1964. In [22], they essentially
proved Theorem 1.2.2. The proof presented here relies mainely on Sobolev inequalities. The
proof of these classical inequalities given here comes from [8].

The global stability Theorem 1.3.2 has been proved by I. Gallagher, D. Iftimie and F.
Planchon in [26] and the idea of Corollary 1.3.1 can be founded in [48]. The existence part
of Theorem 1.4.1 is closed to T. Kato’s Theorem of 1972 proved in [36]. The uniqueness of
solutions continuous solutions with value in L? has been proved by G. Furioli, P.-G. Lemarié-
Rieusset and E. Terraneo in [23]. The proof of Proposition 1.4.1 follows the computations
done for instance by F. Vigneron in [57].
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Chapter 2

Littlewood-Paley theory

2.1 Localization in frequency space

The very basic idea of this theory consists in a localization procedure in the frequency space.
The interest of this method is that the derivatives (or more generally Fourier multipliers) act
in a very special way on distributions the Fourier transform of which is supported in a ball or
a ring. More precisely, we have the following lemma.

Lemma 2.1.1 Let C be a ring, B a ball. A constant C' exists so that, for any non negative
integer k, any smooth homogeneous function o of degree m, any couple of real (a,b) so that
b > a > 1 and any function u of L*, we have

Supp @ C AB = sup ||0%|p < C’k+1)\k+d(%7%)HuHLa;

a=k

Supp @ C AC = CF N ||u| e < sup |0%ul|pe < CFFINF||u| Lo
a=k

Supp @ C AC = [|o(D)ul| o < CormmA™ 4G~ )|[u]| Lo

Proof of Lemma 2.1.1 Using a dilation of size A, we can assume all along the proof
that A = 1. Let ¢ be a function of D(R?), the value of which is 1 near B. As () = ¢(€)u(€),
we can write, if g denotes the inverse fourier transform of ¢,

0% = 0% * u.
Applying Young inequalities the result follows through

10%g|| e 10%g| Lo + [|0%g|| 1

2/(1+ - *)*0%g]| Lo
2[|(Id —A)4((-)¢)|| .1
ckHL,

IANIAINIA

To prove the second assertion, let us consider a function ¢ which belongs to D(R%\{0}) the
value of which is identically 1 near the ring C. Using the algebraic identity

D S R
1<d1,+,Jk <d
= D (@) (-ie), (2.1)

|a|=F
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and stating g, def f‘l(igj)a|£|_2kq~5(§), we can write, as 4 = ¢a that
U= (—i€)*Gat,
|a|=F

which implies that

u = Z Jo x 0%u (2.2)
la|=k

and then the result. In order to prove the third assertion, let us observe that the function 50 is

smooth and compactly supported. Thus stating g, def ‘7:_1(50), we have that o(D)u = g, xu
and then
lo(D)ulle < Cllully < Cllullza.

This proves the whole lemma.

The following lemma is in the same spirit. It describes the action of the semi-group of the
heat equation on distributions the Fourier transform of which is supported in a ring.

Lemma 2.1.2 Let C be a ring. Two positive constants ¢ and C' exist such that, for any real a
greater than 1, any couple (t,\) of positive real numbers, we have

Supp @ C AC = [e'®ulra < Ce_Ct/\ZHUHLa.

Proof of Lemma 2.1.2 Again, let us consider a function ¢ of D(R?\{0}), the value of
which is identically 1 near the ring C. Let us also assume that A = 1. Then, we have

ePu = ¢(D)etPu

= 7 (00 a())
= g(t,-)*u with

glt) @m0 g6 ag, (23)

If we prove that two strictly positive real numbers ¢ and C' exist such that, for all strictly
positive ¢, we have
lg(t, Mo < Ce™, (2.4)

then the lemma is proved. Let us do integrations by part in (2.3) . We get
o(t.) = (Lt Jaf) ™ [ (L fa) e 0o (6)e P g
= (o) [ ((d -2 ) oe)e ! dg
= W) [ O ad g (o(e)e ) e
Rd
Through Leibnitz’s formula, we obtain

(1d-2)" (6@ ) = 3 g (9 Po(0)) (9% ).

B<|al<2d
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The Faa-di-Bruno’s formula tells us that

PPty = ST (cym T 0% ().
Brt B =P j=1
185121

As the support of ¢ is included in a ring, it turns out that it exists a couple (¢, C) of
strictly positive real numbers such that, for any £ in the support of ¢,

(8e6(e)) (9%7167)| < C(1 + Pl

< O +t)fle=et,

Thus we have proved that |g(t,z))| < (1 + |z|>)~%e~, which proves Inequality (2.4).

Using Lemmas 2.1.1 and 2.1.2 together with Duhamel’s formula, we infer immediately the
following corollary.

Corollary 2.1.1 Let C be a ring. T'wo positive constants ¢ and C exist such that, for any

A~

real a greater than 1, any positive A and any f satisfying, for any t € [0,T], Supp f(t) C AC,
we have for u the solution of

Ou —vAu=f and wuy—g=0.

and for any (a,b,p,q) € [1,00]* such that b > a and p > q

_ 1 1 1_1
lall ooy < €2~ GO NGO 0.1y, 0-

Now, let us define a dyadic partition of unity. We shall use it all along this text.

Proposition 2.1.1 Let us define by C the ring of center 0, of small radius 3/4 and great
radius 8/3. It exists two radial functions x and ¢ the values of which are in the interval [0, 1],
belonging respectively to D(B(0,4/3)) and to D(C) such that

VEER!, x(O)+ D w278 =1, (2.5)
7>0
ve e RI\{0}, Y w277 =1, (2.6)
JEZ
i — 4] > 2= Supp ¢(277) N Supp ¢(277) =0, (2.7)
j>1= Supp x NSupp ¢(277:) =0, (2.8)

If C = B(0,2/3) 4+ C, then C is a ring and we have

j—J|>5=2'Cn2c =0, (2.9)
1 )
R, GO+ DY <1 (2.10)
1 .
vE R0}, 5 < ]EZZ&(M) <1 (2.11)
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Proof of Proposition 2.1.1 Let us choose « in the interval |1,4/3] let us denote by C’ the
ring of small radius a~! and big radius 2a. Let us choose a smooth function 6, radial with
value in [0, 1], supported in C with value 1 in the neighbourhood of C’. The important point
is the following. For any couple of integers (p, q) we have

j—j|>2=2cn2'Cc=0. (2.12)

Let us suppose that 27'C N 2/C # () and that j/ > j. It turns out that 27" x 3/4 < 4 x 2011/3,
which implies that ;' — 7 < 1. Now let us state

S(&) =) 0(277).
JEZ
Thanks to (2.12), this sum is locally finite on the space R?\{0}. Thus the function S is
smooth on this space. As « is greater than 1,

U 27¢’ = R\ {0}.

JEZ
As the function 6 is non negative and has value 1 near C’, it comes from the above covering
property that the above function is positive. Then let us state

0
- _. 2.13
v=3 (2.13)
Let us check that ¢ fits. It is obvious that ¢ € D(C). The function 1 — Z ©(277¢) is smooth
Jj=>0
thanks to (2.12). As the support of € is included in C, we have
4 .
> 5= Y e =1 (214)
Jj=0
Thus stating '
X(€) =1- " »(277¢), (2.15)
Jj=>0

we get Identites (2.5)and (2.7). Identity (2.8) is a obvious consequence of (2.12) and of (2.14).
Now let us prove (2.9) which will be useful in Section 2.5. It is clear that the ring C is the
ring of center 0, of small radius 1/12 and of big radius 10/3. Then it turns out that

_ 3 10 1 8
2pCﬂ2JC7é(b:>(Z><29§2px§ or Exngwg),

and (2.9) is proved. Now let us prove (2.10). As x and ¢ have their values in [0, 1], it is clear
that

O+ ¢P (277 < 1. (2.16)

320
Let us bound from below the sum of squares. The notation a = b(2) means that a — b is even.
So we have

1= (x(&) +Zo(&) +21(€))*  with
So(§) = D, w278 and ()= D @277%).

J=0(2),7=0 J=1(2),¢20
From this it comes that 1 < 3(x?(¢) + 3(€) + X3(€)). But thanks to (2.7), we get
SHO= ). 27

J20,q=i(2)

o IV

and the proposition is proved.
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We shall consider all along this text two fixed functions x and ¢ satisfying the asser-
tions (2.5)—(2.10). Now let us fix the notations that will be used in all the following of this
text.

Notations
h=F 'y and h=F 'y,
A_ju = x(D)u = F 1 (x(£)u(€)),
if j>0, Aju=p2 D= 2jd/ (@ y)u(e — y)dy,
R
if j<-2, Aju=0,

Su= Y Au=x@ D=2 [ h@yuts - ydy.
L R
J'<i-1

it j€Z, Aju=p(27Du=2" / (2 y)u(s — y)dy,
R
if jeZ, Sju= > A
J'<j—1

Remark Let us point that all the above operators A; and S; maps L? into LP with norms
which do not depend on ¢. This fact will be used all along this book.

Now let us have a look of the case when we may write
Id:ZAJ or Id:ZA]
J J

This is described by the following proposition, the proof of which is left as an exercise.

Proposition 2.1.2 Let u be in S’(Rd). Then, we have, in the sense of the convergence in
the space S'(R%),

u= lim Sju.
Jj—00

The following proposition tells us that the condition of convergence in &’ is somehow weak
for series, the Fourier transform of which is supported in dyadic rings.

Proposition 2.1.3 Let (u;j)jen be a sequence of bounded functions such that the Fourier

transform of u; is supported in 21C where C is a given ring. Let us assume that
gl < C2V.
Then the series (u;)jen Is convergent in S’.
Proof of Proposition 2.1.3 Let us use the relation (2.2). After rescaling it can be written

uj =279k Z 299,,(27-) % 0%u;.
|a|=k

Then for any test function ¢ in S, let us write that

(uj, ) = 2775 > (uj, 29G4 (2) x (—0)*¢) (2.17)
|a|=k
< 0279 3" 20N 9%¢|| 1.
la|=k
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Let us choose k& > N. Then ((uj,¢))jen is a convergent series, the sum of which is less
than C||¢| m,s for some integer M. Thus the formula

def ;.
(u,¢) = lim > (Aju, ¢)
TR
defines a tempered distribution.

For the case of the operators Aj, the problem is a little bit more delicate. Obviously, it is
not true forn u = 1 because, for any integer j, we have A;1 = 0. This leads to the following
definition.

Definition 2.1.1 Let us denote by S}, the space of tempered distribution such that

lim Sju=0 in S

j——o0

Examples

e If a tempered distribution « is such that its Fourier transform = is locally integrable
near 0, then u belongs to Sj.

e If u is a tempered distribution such that for some function @ in D(R?) with value 1 near
the origin, we have 6(D)u in LP for some p € [1,+00|, then u belongs to Sj,.

e A non zero constant function u does not belong to S, because Sju = v for any j in Z.
Remarks

e The space S; is exactly the space of tempered distributions for which we may write

J

The fact that u belongs to S}, or not is an information about low frequencies.

The space S}, is not a closed subspace of S’ for the topology of weak convergence.

It is an exercice left to the reader to prove that u belongs to S, if and only if, for any ¢
in D(R?) with value 1 near the origin, we have )\lim 6(AD)u=0in §'.
—00

2.2 Homogeneous Besov spaces

Definition 2.2.1 Let u be a tempered distribution, s a real number, and (p,r) € [1, +oc]?.

The space B;T is the space of distribution in Sj, such that

1

def A r
gy, % (322145l )

JEZ

There are two important facts to point out. The first one is about the homogeneity. If u is a

tempered distribution, then let us consider for any integer IV, the tempered distribution uy

defined by uy def u(2V-). We have the following proposition.
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Proposition 2.2.1 If ||ul| 5. is finite, so it is for uny and we have
Bs,

N(s—2
lusll gy, =2V ull, -

Proof of Proposition 2.2.1 We go back to the definition of the operator Aj. This gives
Ajun(z) = 2jd/h@j(ﬂc —y)un(y)dy
= 2 [ (@@~ ) y)dy.
By the change of variables z = 2Ny, we get that

Ajun(z) = 2(j_N)d/h(2j_N(2Nm—z))u(z)dz
= (Aj_yu)(2Vx).

N d .
So it turns out that ||A;un|/rr = 27 Ve A i nu||rp. We deduce from this that
j j
- d . .
125 Ao = 2V D20-N5 A, yull 1.

And the proposition follows immediately by summation.

. d
Theorem 2.2.1 The space (B,,,| - HB;) is a normed space. Moreover, if s < e then
d
(Bprs |l - I s ) is a Banach space. For any p, the space B, is also a Banach space.
’ p,r i
Proof of Theorem 2.2.1 It is obvious that || - || 5, is a semi-norm. Let us assume that
p,r

for some u in S}, ||ul| 5. = 0. This implies that the support of @ is included in {0} and thus
b,7T

that, for any j € Z, Sju = u. As u belongs to S, this implies that u = 0.

Let us prove the second part of the theorem. First let us prove that those spaces are
continuously embedded in &’. Thanks to Lemma 2.1.1, we have

. d .
[Ajul| e < C2'%[|Ajul Lo (2.18)

. d .
Thus, if u belongs to By, the series (Aju)jez is convergent in L. As u belongs to S}, this

implies that u belongs to L> and that

lellze < Cllul (2.19)

p,1

d
p

d
In particular, the space B, is continuously embedded in L (and thus in §’). In the case

when s < d/p, let us write that, for negative j and for large enough M,
[(Aju, o) < [[Ajullzeel|ll
.d .
< 27| AjullLellol e

. 2—8
PG jull g, 0llars. (2.20)

IN
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For non negative j, formula (2.2) applied with u = Aju gives (after a dilation by 27)
Aju=278 37 0%(2Mg0(27) % Aju)  with g = F71(i€)°[¢[*0(8).
|a|=k
Thus we infer that
(Aju,0) = 278 37 (9°(29a(2) % A;), 9)
la|=k

= 277F 7 (A;,2005,(27) * (-0)"9)

|a|=k
< 1Ajullp=277* ||l a8

. . . d
for large enough M. By definition of B}, this gives (Aju, ¢) < C2 (s=5+) llull g« @l as,s-
k) D, T

d
Choosing k greater than s — — and then Mj, large enough, gives, using the fact that u is in S},

p
and the inequality (2.20), gives
(1.0 < Clullg, [16llas,s. (221)

Let (s,p,r) satisfying the hypothesis of the theorem and let us consider a Cauchy se-
quence (Up)neN in B;S,r- Using (2.19) or (2.21), this implies that a tempered distribution
exists such that the sequence (uy)nen converges to w in §’. The main point of the proof
consists in proving that this distribution u belongs to Sy If s < d/p, as, for any n, u,, belongs
to S}, we have, thanks to (2.21),

. i(d_
Vj ez, ¥neN, [(jund) < O sup unl s, [6llurs.
n ,
As the sequence (uy,)neN tends to u in S', we have

. (d_
vj € Z, |(S5u,0)| < G267 sup lunll g, 9lass.
n ,T

. d
Thus u belongs to S;. The case when u belongs to B, is a little bit different. As (un)nen is
d
a Cauchy sequence in B, and using (2.19), we claim that

. . I .
Ve, 3ng/ Vi €Z, Vn>ng, D ||Agun| L~ < 5+ > 1Akt || £
k<j k<j
Let us choose jg small enough such that
. ; €
Vi <jos D [ Aktnl|lze < 3

k<j

As uy, belongs to S}, we have, for any j < jo and any n > no, HSjunHLoo < e. We know that
the sequence (up)nen tends to u in L°°. This implies that for any j < jo, ||Sju|[z~ < e. This
proves that u belongs to S},. By definition of the norm of B; . the sequence (Aju(”))neN is a

Cauchy one in LP for any j. Thus an element u; of L exists such that (Aju(”))neN converges
to u; in LP. As (u(™),en converges to u in S’ we have Aju = u;. Let us define

a§”) = 25| Aju™||p  and  aj = 27| Ajul 1o
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For any j, lim ag-n) =a;. As (agn))neN is a bounded sequence of ¢"(Z), a def (aj)jez isin €7 (Z)

and thus u € B;T. As (u™),en is a Cauchy sequence in BpT, we have,

Ve >0, 3ng/ Vn > ng, Vm |la™t™ — a(")HET(Z) <e.

As (a(”)) tends weakly to a in £"(Z), we get, passing to the limit in m in the above inequality
that [|u™ —u 5 = |a— a(n)HZr(Z) < e. This ends the proof of the theorem.
p,T

Let us give the first example for Besov space, the Sobolev spaces Hs.

Proposition 2.2.2 The two spaces H® and 3572 are equal and the two norms satisfies

1
e, < Nl < C‘S‘JrlHuHBg2

Proof of Proposition 2.2.2 As the support of the Fourier transform of Aju is included in
the ring 27C, it is clear, as j > 0, that a constant C exists such that, for any real s and any u
such that @ belongs to L? .,

1
Clsl+1

27| Ajullfe < 1Azl < CIH125%) Aul e, (222)
Using Identity (2.11), we get

Sl < 3 [ el lae P < ul?,
JEZ

which proves the proposition.

Let us give an example of a function which belongs to a large class of Besov spaces. Let
us give an example of an L}, function which belongs to Bj .

1 d_
Proposition 2.2.3 Let o be in ]0,d]. Then we have, for any p in [1, 0], G € Bp, .

Proof of Proposition 2.2.3 It is well known that the Fourier transform of |- |7 is ¢q[]7~ d
and thus belongs to the space L' near the origin. Thus u is in S}. Now let us compute A|-| 7.

By definition of the operator A], we have
A1) = 2 [ h@(a - y)lyldy
= 29h,(2'z) with

def —o
he() [ hy = 2)lel 7

As ho(€) = (O)F(|-]77) = cap(€)]€]7 %, the function hy belongs to D(R®). In particular, h,
is in L? for any p € [1, 00]. Then let us write that

. (o—d
1450 17 e = 28 g 1o

This proves the proposition.
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Lemma 2.2.1 Let C' be a ring in RY; let (s,p,r) be as in Theorem 2.2.1. Let (u;);cz be a
sequence of smooth functions such that

Supp 4; C 2C" and H(2j‘9||uj||Lp)jng < +oo.

14

Then we have u = Z uj € B;T and |ullg. < Cs||(27%||uj 1) jez
y DT

JEZ

o’

This immediately implies the following corollary.

Corollary 2.2.1 Let (s,p,r) be as above; then the space B;r does not depend on the choice
of the functions x and ¢ used in the Definition 2.2.1.

Proof of Lemma 2.2.1 Let us first observe that, using Lemma 2.1.1, we have (u;);<o

is a convergent series in L. Let us denote by u~ its limit. It is obvious that v~ belongs
. (d

to S},. Using again Lemma 2.1.1, we get that ||u;|| g < C2j(573). Proposition 2.1.3 implies

that (u;);j>0 is a convergente series in &’. Let us denote by u* its limit. The support of the

Fourier transform of 4™ does not contain the origin. Thus u™ is in Sj,. So does u def u” +ut.
Then, let us study Aju. As C and C’ are two rings, an integer Ny exists so that |7 — j| > Ny
then 29C N 29'C' = . Here C is the ring defined in the Proposition 2.1.1. Now, it is clear that
if |7/ — j| > No, then Ajiu; = 0. Then we can write that

1Ajullce = | > Ajyullre
|7—3'I<No

< C D> lullze
li—3'|<No

So, we obtain that

2 Ajrul s

IN

C > 2yl

j>—1
|57 —31<No

C X 2l

J'>-1
li—=3'I<No

IN

We deduce from this that
25| Ajul e < (ck)rez * (de)ecz With ¢ = 1_ny no) (k) and  dg = In(€)2% |ug|| o

The classical property of convolution between ¢'(Z) and ¢ (Z) gives that

lullg, < €[ @ llusllze)sez

o
This proves the lemma.
The following theorem is the equivalent of Sobolev embedding (see Theorem 1.2.1 page 11).
Theorem 2.2.2 Let 1 < p; < ps < o0 and 1 < 7] <19 < o0o. Then for any real number s
i Ls—d( -
the space By . Is continuously embedded in sz,rz(p1 pQ) .
Proof of Theorem 2.2.2 In order to prove this result, we simply apply Lemma 2.1.1 which

1

. jd| L —L .
|Asull e < C2° (5 p2)|’Aju”Lp1'
Considering that ¢"(Z) C "2(Z), the theorem is proved.

38



Now let us study the way Fourier multipliers acts of Besov spaces.

Proposition 2.2.4 Let o be a smooth function on R? which is homogeneous of degree m.
Then for any (s,p,r) € R x[1,400]? such that B, .™ is a Banach space, the operator o(D)

: s 5—m
maps continuously By . into By ™.

Proof of Proposition 2.2.4 Lemma 2.1.1 tells us that ||o(D)Ajullps < C27™(| A ul|rs.
Then Lemma 2.2.1 implies the proposition.

Remark Let us point out that this proof is very simple compared with the similar result
on LP spaces when p belongs to |1, +00[. Moreover, as we shall see in the next section, Fourier
multipliers does not map L* into L*° in general. From this point of view Besov spaces are
much easier to use that classical LP spaces or Sobolev spaces modeled on LP.

Theorem 2.2.3 A constant C' exists which satisfies the following properties. If s; and sy are
two real numbers such that s; < sa, if 0 €]0,1[, if r is in [1, 00|, then we have, for any u € S,

IN

0 —0
lullyes Izt and
¢ (1 1 0 1-0
(5+ 7=) lullh Nl

lull gosy-+a-0r2,

Hu||Bg’311+(1—9)S2 < Sy — 51
Proof of Theorem 2.2.3 For the first inequality, let us write that

. . . . 0, . . 1-6
PO Al < (214 ul0) (2214 0]10)

The Hoélder inequality implies the first inequality of the theorem. For the second one, (as quite
often in this text) we shall estimate in a different way low frequencies and high frequencies.
More precisely, let us write

”UH3931+(1—9>82 — Z 2j(9sl+(1—9)sz)HAjuHLp + Z 2j(651+(1_9)52)||Aju||LP.
Pl <N J>N

By definition of the Besov norms, we have

2j(9$1+(1—0)52) ||AjU”L1’

IN

271=0)(s2=31) g || 5oy and
p,00

2j(981+(1—0)52) ||Aju||LP

A

279 g
Thus we infer that

10 (50— (e
Hu”Bﬁ”“_“” < HUHB;IOO Z 9i(1=0)(s2—=s1) HuHB;QOC Z 9—j0(s2—s1)
’ J<N J>N
2N(170)(327sl) 27N9(52751)
Il sr=mt=y =1 * Mlae T —5=m=n

N

IA

Choosing N such that

PN ] 8

[l g, lull g,

implies the theorem.
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Proposition 2.2.5 A constant C exists which satisfies the following properties. Let (s, p,r)
be in (R™\{0}) x [1,00]? and u a distribution in S;. This distribution u belongs to B;T if
and only if

(2°]|Sjullzr)jen € €7

Moreover, we have

CM g, <@ 1Sullen)s,, < C(1+ ;)”“”BS ‘

p,r

Proof of Proposition 2.2.5 Let us write that

2°|Ajullr < 2°(|1Sjs1ullze + |1Sjullze)

< 27520008180l o + 27°| S| 1
This proves the inequality on the left. For the one on the right, let write that

25 Sulle <27 > A ul e
71<i-1

< Z Q(j_j/)s2j/s”Aj’uHLP~
J'<i—1

As s is negative, we get the result.

2.3 Characterization of homogeneous Besov spaces

We shall give equivalent definitions of the Besov norm. These definitions does not use the
localisation in frequency space. The first one concerns negative indices and uses the heat flow.

Theorem 2.3.1 Let s be a positive real number and (p,r) € [1,00]%. A constant C exists
which satisfies the following property. For u in S;, we have

CH ull p2e < [t ullo

e,y = ez

Proof of Theorem 2.3.1 The proof relies on Lemma 2.1.2. Let us estimate [[t*Aje®ul| .
Using Lemma 2.1.2, we can write

115 A e B ul| pp < C12%95e=2 27205 | A ju| 1.
Using that u belongs to S, and the definition of the homogeneous Besov (semi) norm, we have

[t5ePullr < ZHtSAjetAuHLp

JEZ

Clull gz Y 2707 e,
JEZ

IN

where (¢, ;)jez denotes, as in all this proof, a generic element of the unit sphere of ¢"(Z).
If r = 00, the inequality comes immedialtely form the following lemma, the proof of which is
an exercice left to the reader.
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Lemma 2.3.1 For any positive s, we have

— J
sup g #5028 =12 o
t>0 =/

If » < oo, using the Holder inequality with the weight 22jse_6t22j, the above lemma and
Fubini’s theorem, we obtain

[e'e] rs tA dt . oo B 2]'3 7ct22j rdt
el ePull,— < C||UH3735 Zt 240%¢ i) —
0 t o\ .
S C||U”%725/ <Z t822]5 Ct22]> N (Z t822]s 1221 T])dt
D7 ]EZ ]EZ t
dt
< CHU”%;?%/ Zt32218 122 77:3 :
JEZ
> o ao2i dt
< Clluliz S, [ 020G

JEZ

T def * s—1_—t
< Gsllufz-2s  with Cs = 5 e dt.
P, 0
To prove the other inequality, by definition of Cs, we have
Aju=C} /OO t5(= At A A udt
)Y T Ms+1 0 7 .

A

t t
As etBy = e3Be32

u, we can write, using Lemmas 2.1.1 and 2.1.2,
A < s 2j(s+1)  —ct22 | A LA
||Aju”Lp < C/ 1524 (& ||Aj€2 uHLpdt
0
< s 2j(s+1)  —ct2? || tA
< C ; %2 e |le"ul| e dt.
If r = 0o, we have

1Azull e

IA

tA % 52j(s 1) —ct2%
C’(suptSHe u||Lp>/ 24 e dt
>0 0

IN

2% (suptsHetAUHLp).
t>0
If r < 00, let us write that

o0 ) T
Zz 25| Al < 022237"(/0 tse_CtQ%HemuHLpdt) |

JEZ

—<t2% implies that

% 92 TN % s —et0? ) A
/ et gy / {75612 | By 17
0 0

< 0272]'(7”71) /OO trsefctQQj HetAUHzpdt-
0

Holder inequality with the weight e

o s _—ct227 ) _tA "
/0 t’e lle"ul| rdt

IN
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Thanks to Lemma 2.3.1 and Fubini’s theorem, we get

. . . oo )
Sl < O 2 [T et et
j jez 70

o 27 _—ct221 \ yrs || tA, || dt
C ; Zt2 e t"|le uHLP?

JEZ

IN

o0 dt
< o[ el S
0

The theorem is proved.

The other characterization deals with indices s in |0, 1].

Theorem 2.3.2 Let s be in |0,1[ and (p,r) € [1,00]2. A constant C exists such that, for
any u in Sj,

. [E— P
CMlullg, <[

< Clull s,

|2[* L (R%755)

Proof of Theorem 2.3.2 To prove the right inside inequality, we estimate || 7_,Aju—A ul| 1.
By definition of A;, we have

. , N 1 .
(T2 Aju — Aju)(z) = 23d223zg</ hg,j(27‘,tz)dt)*u with
=1 0
he(X,2) % 0, h(X +27).

The support of the Fourier transform of hy ;(-, Z) is, for any Z, included in the ring C. Thus
. : N , 1 . .
(T_2Aju — Aju)(z) = 279 do> 2z (/ hgyj(2]-,tz)dt> * Ajru.
=1]j-j|<1 0

As for any Z, [[hey(, Z)lls = 10s,h] 11, we have

C2lzl > Azl

li—3'1<1

Cr 20 el ul 5,

IN

HT,ZAJ‘U — AjUHLP

IN

where (crj)jez is, as in the whole proof, any element of the unit sphere of ¢"(Z). We also have

2/|Ajull e

Cer 277" ||ul g, -

”7LZAJ‘U — A]'UHLP S
<

We infer that, for any integer j,

s =l < Clulgy (12l 3 erg29 + 3 crg27%).

J<j’ i>j'
1 : 1
Let us choose j' = j, such that —’ <2 < 2ﬂ. If r = oo, we get that, for any z in RY,
z z

7~ ullas < Clel*llull,
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If r» < o0, let us write that

H | T—u — || e 7

Lr(Rd dz ) — C2THUHTST(‘[1 + IQ) Wlth

def / (ZCT7]2]1 s) | —d+r(1— S)dz and

J<Jj=

def / (Z Cr,]2 ]s> |_d_TSdZ.

J1>)z

|2°

Hélder inequality with the weight 27 (1-5) and definition of j, imply that

r r—1
<Z cr7j23(1_s)> < (Z 23(1—8)) Z C:JQJ(I—S)
=3z <5 i<i=
< C|z|*(1*s)(“1) Z C:jzj(lfs).
J<Jj=
By Fubini’s theorem, we deduce that
I < —d+1—sd 2j(1—s) rdel
- C;(/B(o,z—ﬂl) i Z) &y = U

The estimate on I is strictly analogous. Now let us prove the other inequality. Thanks to the
fact that the function h is of meanvalue 0, let us write that

Aju(z) = 2jd/Rd h(27y)ryu(z)dy
= 2 [ h(@y)(ru(e) - u(x))dy.

When r = co, we have

Pl < 2 [ ) Iy ulisdy
< 2 [ oyl phydy sup 1L
R yeRd |y‘
< Csp It bl
o yeRd ’y|s

When r < oo, let us write that

ZQjSTHAjuHEp < 2"(¥1 4 X2) with
J

def Z2jST (/ 2jd|h(2jy)| | Tyu — uHLpdy> and
i 27|y|<1

%, d:ef 22‘7‘57‘(/2.

T
29| 1(2y)| |Tyu—u||mdy) .
j J|y|>1

Holder inequality implies that

([, _ 2@ wllinu - ulumdy)
2y[<1

IN

i ) , r—1
([ _ 2" im@yra)
27|y|<1
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< [ = ulledy
27 |y|<1
< o[ nu- .y
27|y|<1

Using Fubini’s theorem, we get that

c [ (5 20 gl udy

3/27yl<1

o [ =l
T
In order to estimate Yo, let us write, using Holder inequality with the measure |y|~%dy, that
. . T » . - Ty — ul|re dy \"
([, 2@l lway) < 27 ([ ey el 4
27[y|>1 27|y >1 lwl yl

< ijr/ |Tyu — ullf» dy
- 2i|y|>1 ylm Tyt

2

IN

IN

IN

Then, using Fubini’s theorem, we infer that

22 < 0/ Z 2~ jr(l—s ) HTZ/ uHLP dy
— 10,1d
< of I — ull, dy
= TRyt

The theorem is proved.

2.4 Precised Sobolev inequalities

The basic lemma is the following one.

Lemma 2.4.1 Let 1 < g < p < o0 and « a positive real number. A constant C' exists such

that

I7ee < IS5 IF1  with p=a(l—1) and 6=

Proof of Lemma 2.4.1 The proof of this lemma follows exactly the same lines as the proof
of the Sobolev inequality (see Theorem 1.2.1 page 11) which appears as a particular case of
this above lemma for ¢ = 2 and « = d/2 — 3. Let us write that

90 = [ u(f] > Ndx and = $if +(1d=$))f.

By definition of the semi-norm | - || 5-a , we have [|S; £z < C27%||f| 5-a . Without any
loss of generality, we can assume that ||f|| ;- = 1. As we have

(171> X € (1571 > ) U (I0a-8;)7] > 3):

choosing jy in Z such that

Ql~

: (2.23)



. A
we infer that (|f| > \) C (|(Id -Si)fl > 5) Then, thanks to Bienaymé-Tchebitchev in-

equality, we have

171 < [ (|0 =86 > 5)ax

o .
< p2 [N ad =8 g
0
Let us estimate || (Id —S;, ) f||ra. By definition of the semi-norm || - | 56 , we have
9,9

10d=8;) fllze < D I1A;fllze

>0
< > 2798298 A f | a
J2Ix
< Cllflige, > 2770 with  |(¢)lle = 1.

V)
Thus we get
715, < Cll, [~ 2 (3 29;) an.

J2dx

Using Holder inequality in the sum (with the weight 2778), we get, by Definition (2.23) of jy,

(Z Q—JﬂCj)q < (Z Q—jﬁ)q‘l S i

JZix J=ix JZix
< Co—irB(a—1) Z Q*J}Bcljl,
J=Ix
—(¢-1E —jB .4
< CX Z 2777¢;.
J=ix

Then it turns out that

oo . o NB
171 < ClAl, [ 32279, 703 a,
‘ J

By Definition (2.23) of j, we have using Fubini’s theorem

4027«

i —g—(a—1)2 —
£, < C’HqungZQ m’cg/o \p-a—(a-DE-1 7y
B

s . o _ g .
< O, S 2y it i) =1
J

As = a(%’ - 1) and ||(¢j)|les = 1, we get that || f||7, < CHf”%gq and the lemma is proved.

2.5 Paradifferential calculus

Let us study the way the product acts on Besov spaces. In order to do so, we shall use the
dyadic decomposition presented in the Section 2.1 to construct a homogenenous version of
the paradifferential calculus.
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Considering two tempered distributions u and v in S}, let us write
U= Z Aju and v = Z Ajv.
J J

Formally, the product writes uv = Z Aj/uAjv. Let us introduce Bony’s decomposition.
7.3

Definition 2.5.1 We call homogeneous paraproduct of v by u and denote by T,v the bilinear

operator

Tuv d:efz Sj_luAjv.

J

We call homogeneous remainder of u and v and denote by R(u, v) the bilinear operator:
R(u,v) = Z Aj/uAjv.
li—3"1<1
Just by looking at the definition, it is clear that (still formally),
wv = T + Tyu + R(u,v). (2.24)
The way how paraproduct acts on Besov spaces is described by the following theorem.

Theorem 2.5.1 Let (s,p,r1) such that B, is a Banach space. Then the paraproduct T

P
maps continuously L x By . into B, ,. Moreover, if t is negative and rg such that
1 1 1
- + - d:ef - S 17
1 ) r

s+t [ : 2t o] : s+t
and if By " is a Banach space, then T maps continuously B, X Bp ., into By7".

Proof of Theorem 2.5.1 From the assertion (2.9), the Fourier transform of Sj_1ul v
and also of S;_jvAju is supported in 2/C. So, the only thing that we have to do is to esti-
mate ||S;_1uA;v||rr. Lemma 2.1.1 and Proposition 2.2.5 claim that, for any integer j,

$5rullie < Cllull~ and [1Sj-val o= < Cucir 2 Julyy (2.25)
where (cj,)jcz denotes an element of the unit sphere of ¢"(Z). Using Lemma 2.2.1, the esti-

mates about paraproduct are proved.

Now we shall study the behaviour of operators R. Here we have to consider terms of the
type AjuAjU. The Fourier transform of such terms is not supported in rings but in balls of
the type 2/ B. Thus to prove that remainder terms belong to some Besov spaces, we need the
following lemma.

Lemma 2.5.1 Let B be a ball of R%, s a positive real number and (p,r) in [1,00]? such
that s < d/p or s = d/p and r = 1. Let (u;j)jecz be a sequence of smooth functions such that

Supp @; C 2B and H(2js||uj‘||Lp)j€Z

< +00.
gr

Then we have u = E u; € B;T and ||ull g < Cs
) D,
JEZ

(278wl ) jez

o
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Proof of Lemma 2.5.1 We have for any j, we have
; od
fujlle < C279° and  ug|e < C27G 7,

By hypothesis, for any N, the series (u;);<n is convergent in L*° and (u;);>n is convergent
in LP. Thus the series (u;) ez is convergent in S’ and its limit u belongs to S;. Then let us
study Ajiu;. As C is a ring (defined in the proposition 2.1.1) and B is a ball, an integer NNy
exists so that, if j/ > j + Ny, then 2/'C N 27B = 0. So it is clear that if j/ > j + Ny,
then Aju; = 0. Now, we write that

[Ajullr = > Ay
§>j'—Ni Le
< C > e
§>5'—N1

So, we get that
25 Al < C T 27wyl
j=j’'—N1

C > 20|
Jj=j'—N1

IN

So, we deduce from this that
2jl5||Aj/u||Lp < (cg)*(dg) with ¢ = 1[_N1’+m[(k)2_ks and dy = QKSHUgHLp.
So the lemma is proved.

Theorem 2.5.2 Let (pg,ri) (for k € {1,2}) such that
11 11 gerl

— =-<1 and —+— = -<1.
P P2 p T2 r
Let (s1,59) € R? such that s; 4 s5 €]0,d/p|, the operator R maps B;}’Tl X ngm into B;}TH?.
) B B . . . 2 <0
Moreover, if s1 + s3 = 0 and r = 1, the operator R maps Bp! , X B;f,gm into B, .. And

if s + sy = d/p and r = 1, the operator R maps B5' , x B2 into BPEJ.

P1,71 p2,r2

Proof of Theorem 2.5.2 By definition of the remainder operator,

i=—1

1
R(u, ’U) = ZR]/ with R]’/ = Z Aj/_iuAj/v.
j/

By definition of Aj, Supp ]:Rj/ c 29 B(0,24). So, an integer Ny exists such that if j/ < j— Np,
then A;Rj = 0. From this, we deduce that

AjR(u,v)= Y AjR;. (2.26)
Jj'>j—No
Thus we can write

1
Y 1A —sullpe | Al e

i=—1

14 By o

IN

1
Coilsrts2) N 9=( =) (1t 9U =01 | Ay jul| 11 2772 || A jro]| oo

i=—1

IN
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def

Let us define (r;);ez by r; = 2791752)||A; R(u, v)||1». Using the assertion (2.26), we have

ry <COW b)), with bjY = 279H)1y v () and
1
&) = 37 20D A | 101 2752 Ao e

i=—1

If 51+ s2 €]0,d/p|, the sequence (b§-1))jez belongs to ¢!(Z) and the sequence (65-2))j€z belongs
to (12(Z). Thus (r;);ez € £2(Z). Let us assume now that 712 = 1. If s1 + so = 0, (bg.l))jez
belongs to ¢°°(Z) and (b§2))jez to ¢1(Z). The theorem is proved on that case. If 51+ so = d/p,

then both (b;l))jez and (b§-2))jez belong to £!(Z) and the whole theorem is proved.

Now, we are going to infer from this theorem the following two corollaries, the proof
of which is nothing but the systematic use of Bony’s decomposition and the application of
Theorems 2.5.1, 2.5.2 and 2.2.2.

Corollary 2.5.1 For any positive s and any (p,r) such that B;T is a Banach space, a con-
stant C' exists such that

luell sy < Clullzlollsy + lullg, llollz).

d
In particular, for any p € [1, 00|, the space By, Is an algebra.

Corollary 2.5.2 Let si,pk,rx (for k € {1,2}) and p be such that
d 1 1 derl

sp<—, —+— = —-<1 and p>max{p1,p2}
P T1 T2 r
. . .81+827d<ﬁ+%*%)
If s1 + s > 0, the product maps By, x B, into By, Ao = o

_d<i+i_l>
_ s s . - p1 P2 P
and r =1, the product maps Bp! ,, x Bp? . into Bpco .

As an application of the above product laws, we shall prove Hardy inequalities.

d .
Theorem 2.5.3 For any real s € [O, 3 [, a constant C exists such that for any f in HS(Rd),

T 2
/ @O 1 < ol (2.27)
R

e
Proof of Theorem 2.5.3 Let us define
def (@) _
w7 ),

d |$|28

Using Littewood-Paley decomposition, we can write, as f2 belongs to S},

L) = > (Aj-[7,A; 67

li—35'1<2
_ Z <2j(%_28)A]" . ‘—25’ 2—j/(g—2s)Aj/f2>_
li—j'1<2
Ld_
Proposition 2.2.3 claims that |-|~2* belongs to Bioozs and Corollary 2.5.2 claims in particular

that HfQIIst_g < C|IfI%.- Thus I(f) < C||f]%.

2,1
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2.6 Around the space Béo’oo

Theorem 2.6.1 The space B is not included in the space C%' of Lipschitz functions.

00,00

Let us exhibit a counterexample in R? coming from incompressible bidimensionnal fluid me-
chanics. If H denotes the Heavyside function, let us state

def

w(z) = H(x1)H(l —xz1)H(x2)H(1 —22) and (2.28)
r—y)t e
ow) [ Mw@)@ where  (z1,22)" < (<2, 21). (2:29)

In fact v is the divergence free vector field the vorticity of which is w. The theorem is implies
by the following proposition, proved in [7].

Proposition 2.6.1 The above vector field v belongs to Béom but not to C%*.

Nevertheless in this case when k& = 1, it is possible to characterize Béooo In order to do
so0, let us introduce the following space, called Zygmund space.

Definition 2.6.1 For a continuous function u, let us define

f u(z +y) +ulz—y) - 2u(z
lullen % sup u(@ +y) +ule —y) = 2u(@)| _
© (@yer™ i
y#0
Proposition 2.6.2 The seminorms || - |1 and || - ||z are equivalent.

Proof of Proposition 2.6.2 Let us consider a function « in B})Oyoo and a point y in R%. For
any integer j,

u(z +y) +u(z —y) = 2u(x)] < |Sjule+y) + Sju(z —y) — 28u(@)| +4 Y | Ajul =
J'>j
< [Sjule +y) + Sju(z — y) — 28;u(z)|
‘ +4 3 27727 Ayl )
J'2j
< |Sju(z +y) + Sju(r —y) — 25;u(z)| + 23_J||u||1-3,<1>o I
Using Taylor inequality at order 2 we get that
|Sjule +y) + Sjulz — y) — 255u(@)| < |y|*| D*Sjul| o

But, using Lemma 2.1.1, we get that

1Dl < Y ID*Ajuli~

Jj'<j—1

< ¥ 27" (29" | Ajru <)
7'<j—1

< 2%Mb&m-
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Thus we get that for any positive integer j,
[u(e +y) +u(e —y) — 2u(@)| < (P[P + 227 ) Jull 5.
Choosing again j = [—log, y] + 1, we get
lu(z +y) + u(z —y) — 2u(@)| < Cllullpy, _ Iyl

Now let us consider a function u in C}. As the function ¢ given by proposition 2.1.1 is radial
(thus even) we have

209 (h(21:) %) (@) = 207 [ W(2Ty)u(x + y)dy.
As the integral of h on R% is 0 we have

294(1(29.) % u)(z) = 2941 / 29y (u(z +y) + u(z — y) — 2u(z))dy.

As the function z — |z|h(z) is integrable, we get

1A jull L~ < €277 sup ju(z +y) +ulz — y) — 2u()]
yeR! [l

The proposition is proved. As we shall see in the next chapter, this type of space can play a
role in fluid mechanics.

Now we shall see how Littlewood-Paley theory allows to describe space with various type
of modulus of continuity. First let us give the following definition.

Definition 2.6.2 A function u from an interval of type [0, a] to Ry is a modulus of continuity
if p is an increasing continuous function such that pu(0) = 0. We say that u is admissible if
and only if the function I" defined by

is non decreasing and satisfies

> I'(x)
A —I'(y)dy < C——=-
A O
Let us give very basic examples. If « €]0, 1], the functions pu(r) = r®, u(r) = r(—logr)* and
also p(r) = r(—logr)(log(—logr))® are admissible modulus of continuity.

Definition 2.6.3 Let ;1 be a modulus of continuity and (X, d) a metric space. The space C,,
is the space of bounded continuous functions u such that

def u\r) —uly
lalle, %l + sup 1@ — Wl

u
< 00
0<d(z,y)<a ,U,(d(:l?, y))

Definition 2.6.4 Let I' be an increasing function on [b,00|. The space Br is the space of
bounded continuous functions u on R? such that

U = ||u||Lee +SUPp — = ——

50



Remarks When I'(y) = y'=%, the space Br is equal to Bg‘o,oo N Lee.

Proposition 2.6.3 When p is an admissible modulus of continuity, the two spaces C), and Br
are equal (of course on R?).

Let us assume that u belongs to Br. As VA; = V11 — VS, we have
IVAjullz= < CT(27)||ul 5.-
Using Identity (2.1) page 29 we claim the existence of (¢;)1<j<q in D(R\{0}) such that

d d
(&) = wr(©)itrp(€) and thus Aj; = 277¢u(277D)OpA;.
k=1 k=1
This implies that ‘ .
[Ajulle < C277T(27) ||ul| B.- (2.30)

Now let us write

u(z) —u(a)] < [VSjullele =o' +2 ) [Ajullz-
i'zi
< |IVSjullz=le = 2’| + Cllullpe Y- 277 T(27).

3’23

Using Condition (A) and the fact then I' is increasing, we have by definition of || - || .,
: 0 1
u(e) —u(@)| < Nulls, (T@)e =o'+ C [~ ZT)dy)
21 Y

<l (T2 — '] + C27T(27)).

IN

As usual let us choose 277 = |z — 2/|. This gives that u is in C,. Now let us assume that u
belongs to C),. By definition of S; we have

0uSyu@) =2 [ (@R (@~ y)u(w)dy.

As / Okh(y)dy = 0, we have
Rd
BSpu@)] < 22 [ (@ = )| x fuly) - u(e)dy

Jull 22 [ |10 @ = )y = =y,

Cutting the above integral into two parts we have

IN

OuSyua)] < [ul 2 [ 10k )|u(lz])dz

|2I<
+ 20jul, 27 [
2=

As 1 is an increasing function, for any z such that |z| < 277 we have u(|z]) < u(277). AsT'is

-~ . ) 1
Oph(27 22| = )d=.
0BR[22I ) de

also an increasing function, thus for any z such that |z| > 277 we have T <ﬂ> < I'(27). Thus
z

OuSju(a)| < ul, 2P ) [ jouh(i)|dz

2l <2~

i 2||uH”I‘(2j)2jd/ 10T (272)] |29 2| dz.
l2[z2-d

2>

We infer that ||VSjul|p~ < Cllu||,I'(2?) and the proposition is proved.
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2.7 References and Remarks

The Littlewood-Paley theory is a classical theory of harmonic analysis. Its applications to
partial differential equations started in 1981 with the fondamental article [1] of J.-M. Bony
dedicated to the study of propagation of microlocal singularities in non linear hyperbolic
equations and where paradifferential calculus was introduced. The flexibility of this theory
makes that it is now a basic tool for the study of evolution partial differential equations. For
books presenting this theory in more details, see for instance [7], [49] or [53].
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Chapter 3

Besov spaces and Navier-Stokes
system

3.1 A wellposedness result in Besov spaces

The purpose of this section is to give an other approach of Theorem 1.4.2 page 23. As said by

Theorem 2.3.1 page 40, the smallness condition (1.18) in the case when 7" = oo is exactly the
3

14
smallness condition for the By o ” norm. The purpose of this section is to give another ap-
proach to Theorem 1.4.2. It relies on Littlewood-Paley theory. This theory allows a description
of the smoothing effect of the heat flow which is different from the one used in Chapter 1.

L1432
Let us be more specific now. Let us assume that uy belongs to Bp o ”. We deduce from

Lemma 2.1.2 page 30 that || A e ug||r < Ce—evi2” |Ajug||zr. By time integration, we get
. c .
tA —
18" P uoll prmriory = 5552 lluollpy - (3.1)

This leads to the following definition.

3

142
Definition 3.1.1 For p in [1,00], E, is the space of functions u € L°(R*; By *) such that

- 3 . Y 3 .
lull &, d:efsquﬂ( 1+32) HAju\|LQO(R+;Lp) + sup V22J2J( 1+p)HAjuHL1(R+;Lp) < 00.
J

j
Let us remark that the estimate (3.1) implies that
le" S uoll, < Clluoll 13-

B p

b,

The following theorem is the interpretation in this context of Theorem 1.4.2 in its global
version.

Theorem 3.1.1 Let p € [1,+00]|. A constant ¢ exists such that, if ||uol| 143 S v, then a
By o

unique solution u of (GNS,) exists in the ball of center 0 and radius 2cv of E,,.

Proof of Theorem 3.1.1 The reader knows that it is enough to prove the following lemma.

Lemma 3.1.1 For any p in [1,00[, a constant C exists such that, for any T' €]0, o],

C
1B(u, v)llE, < — llullz, [v]lz,- (3.2)
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Proof of Lemma 3.1.1 Let us recall that the non linear term Q(u,v) can be written as

Q™ (u,v) = Y ALy(D)(u"v")
]

where the A}")(D) are homogeneous Fourier multipliers of degree 1. With the notations of
Chapter 2 page 33, . . . .
ukvt = Z Sjuk At + Z AjubS; 0t
J J

The fact that the support of the Fourier transform of S’jukAjve and Ajuksj'_g_l’l)e are included
in 278 for some ball B of R?, an integer Ny exists such that, if j/ < j — Ny, then

A;Q(Sjru, Ajrv) = AjQ(Aju, Sjryrv) = 0.
Now, let us decompose B as

B(u,v) = Bi(u,v)+ Ba(u,v) with

Bi(u,v) def ZB(Sju,Ajv) and
J

Bs(u,v) def Z B(Aju, Sjy1v).
J

By definition of B in Fourier space, an integer Ny exists such that

def

AjBl(’LL, U) = Z A]’B(Sj/u, Aj/l}) and (33)
J'>j—No

. f . . .

AjBo(u,v) €S AiB(Aju, ). (3.4)
3/>j—No

We shall treat only B; because Bs is strictly similar. Using Lemma 2.1.1 page 29, we get

HA]Q(S]’U> Aj/’l))”Lp S 02] S;IE)HS’j’ukAj’UZ”Lp
Using Lemma 2.1.2 page 30, we get

. . . t Ne2i . .
IAB(Syu Ap)Ollr < [ e AQ(S (), Aga(t) |

oot Y ) )
< C¥ / e /=2 up |18k (¢) Aot ()| odt! (3.5)
0 k0
J ¢ —v(t—t")2% 1 & / A / /
< 2 /0 ¢ 195t e | Ao (&) | ot

By definitions of the operators S’j and of the F}, norm, we get, thanks to Lemma 2.1.1,
[Sju) e < D (1At
j//<jl

113 .
< 2l At e

j//<j/
< 02 ||u| g,

54



Thus we deduce that
. . . .ot No2i . s
I14B(Sy Ayo) () < Cllull, 227 [P A u(t) '
Using the Young inequality for the time integral, we obtain by definition of the F, norm that

Bj,j’ (u’ v) def

18 B(Sjru, Ajro) | oo mmy + V2718 B(Sjru, Ajrv) | 11wt 1y

IN

COllull g, 2727 | Aj 0] 1 g0y

IN

C . 13
lulls, ol 5,225

Thanks to (3.3) and (3.4), we get

C (=72
“lullg, vz, > 270,
3'2j—No

HAjBl(U’U)HLOO([O,T};LP) + VQZjHAjBl(U,U)”Ll([o,T];Lp) <
The lemma is proved.

3.2 The flow of scaling invariant solutions

The theorem about ordinary differential equations which generalizes the classical Cauchy-
Lipschitz theorem is the following. The underlying concept is the Osgood condition.

Definition 3.2.1 Let u be a modulus of continuity. We shall say that i is an Osgood modulus
of continuity if and only if
/“ dr .
i
0o p(r)

Let us give some examples. The functions

p(r) =r, p(r) =r(=logr)® and pu(r) = r(=logr)(log(—logr))*

are Osgood modulus of continuity if v < 1. The function p(r) = r® with a < 1 is not. Neither
are the functions

pu(r) =r(=logr)* and pu(r) = r(—logr)(log(—logr))*
if & > 1. The interest of this definition is illustrated by the following theorem.

Theorem 3.2.1 Let I be a Banach space, 2 an open subset of E, I a open interval of R
and (to,xo) an element of I x Q. Let us consider a function F € L}, (I;C,(S%; E)). Let us

loc
assume that p is an Osgood modulus of continuity. Then an open interval J exists such

that to € J C I and such that the equation
(EDO) z(t)=mz0+ [ F{,x(t))dt

has a unique continuous solution defined on J.
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Proof of Theorem 3.2.1 Let us begin by proving the uniqueness of the trajectories. Let 2 (t)
and z2(t) two solutions of (EDO) defined in a neighbourhood .J of ty with the same initial
data x¢. Let us define §(¢) = [|z1(t) — x2(t)]|. It is obvious that

0<6(t) < /ty(t’)u(é(t’))dt’ with vy € LL.(I) and ~>0. (3.6)

Now the key point is the following classical Osgood Lemma which can be understood as
a generalization of classical Gronwall Lemma.

Lemma 3.2.1 Let p be a measurable function with value in [0,al], v a non negative locally
integrable function and p a continuous and non decreasing function. Let us assume that, for
a non negative real number c, the function p satisfies

t

o) < e [ Aot ar. (3.7)
If ¢ is positive, then we have
t L dr
“Mp(t) + M) < [ A0 with M(x) = / s (3.8)

If ¢ =0 and if i is Osgood then the function p is identically 0.

Let us admit this lemme for a while. We immediatly get that 6 = 0 in (3.6). Now let us prove
the existence by considering the classical Picard scheme

t
T (t) =20+ [ F(t, 2, (t))dt.
to

We skip the fact that for J small enough, the sequence (x)ren is well defined and bounded
in the space Cy(J,€2). Let us state py ,(t) = sup ||zx+n(t') — zx(t')||. We have that
<t

0< phian() < [ AW (ot

Let us state pg(t) def sup pgn(t). As p is a non decreasing function we deduce that
n

0= pna®) < [ Al

Fatou’ Lemma implies now that
~/, def ;. t / ~( 4l /
p(t) = limsup pg(t) < [ ~()pu(p(t))dt'.
k—o0 to
Lemme 3.2.1 implies that p(t) = 0 near to; this concluded the proof of Theorem 3.2.1.

Proof of Lemma 3.2.1 Let us state

Ret) S et [ 2 lot)t.
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The function R, is a continuous non decreasing function. So we have

dR.
dt

= (O)ulp(t))
< y(O)nu(Re(t)). (3.9)

Let us assume that c is positive. The function R, is also positive. So we infer from (3.9) that

; dR. 1
— M Belt) =~y

Thus we get (3.8) by integration. Let us assume now that ¢ = 0 and that p is not identically 0

<(t).

near tg. As the function u is non decreasing, we can consider the function p(t) def SUD et P(')
instead of p. A real number ¢; greater than tg exists such that p(¢1) is positive. As the function p
satisfies (3.7) with ¢ = 0, it also satisfies this inequality for any positive ¢’ less than p(t1).
Then it comes from (3.8) that

v €0, plin)), M) < [ () + Mip(0),

to

L d

which implies that / % < +00. Thus the lemma is proved.
0 p\r

Theorem 3.2.1 implies that a flow can be defined. The regularity of the flow can be com-
puted in a general formula.

The following proposition establishes that we have to generalize Osgood Theorem if we
want to prove the existence of a flow for solution of (NS,) given by Theorem 3.1.1.

Proposition 3.2.1 Let ug be a distribution homogeneous of degree —1 and smooth outside
the origin. Let yu any admissible modulus of continuity such that e“uy € L'([0,T];C,,) for
some positive T'. Then p does not satisfies the Osgood condition.

Proof of Proposition 3.2.1 The fact that ug is homogenenous of degree —1 implies
that VS;jug = 227 Syug(27-) and thus that

. 2'
HetAVSquHLoo = ZQJHet2 ]AVSOUOHLOO.

On the space of functions the Fourier transform of which is compactly supported in a fixed
compact, the operator e “2 is bounded on all the L? spaces. As the function I is non decreas-

ing, we have, if j; denote the greatest integer j such that j tel que 272/ > ¢,

127 A Squl[ e . C 1

€4S LG 1
—t 1
L (%)

. >22th :
TRy < T(27)

Thus, if e'®ug is in L([0,T]; C,,), we have by definition of T,

VT ¢ T gt T
/ r :2/ 7§c/ e ||, dt.
o u(r) 0 tF(%) 0

The proposition is proved.
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Theorem 3.2.2 A constant C exists such that, for any v in the space L'([0,T]; BY"), for
some positive r and such that a positive integer jo exists such that

def ; 1
Njy (T, v) = sup 2JHAJ'UHL1([0,T];L<>O) < ol
Jj=Jjo

then a unique a continuous map 1 of [0,T] x R% in R? exists such that

t
Wit ) =z +/ ot Wt 2)dt et () —1d € C1CN) i< T
0

Proof of Theorem 3.2.2 We shall only proof the following lemma.

Lemma 3.2.2 Under the hypothesis of the above theorem, if v; are two continuous functions
such that

) =+ [ o)t

we have, if |x1 — xo| < 2770

. to
Vto S T, |’)/1(t0) — ’yg(to)’ S C’.,”Ul — .CL'2|1_CNj0(tO’U) exp(2]0(r+1)/ ||’U(t, ')HB*T dt).
0 00,00

Proof of Lemma 3.2.2 Let us decompose v in a low and a high frequency part. This leads to

t
@) — @) < \561—562|+/0 |Sjut',71(t) = Sju(t’, (1)) dt’
t
+2/ SO At || o dt’
0 jr>j

t
< \wl—w2|+/0 IV Sjo(t’, Ypee [ (t) = y2(t)|dt’

. N 7
42179 S 9i iy / 1A 0(t')| pdt'.
0

3’23

Let us state, for 0 <t <ty < T, p(t) def sup |y1(t') — y2(')] and
<t

def _j ¢
Dj(t) = |z — 2| + 2277 Ny, (to, v) +/0 IVSjo(t', )l zee [ (t) — 2(t)]dt’.
By definition of Nj,(t,v), for any Vj > jo, p(t) < D;(t). Then, we have,
, t
Vit <to, Dj(t) < |z1 — x2| + 2279 Ny (to,v) +/ [V Sjv(t', )| e D;(t)dt.
0
The Gronwall lemma implies that, for any t < #g,
2—j ¢ / /
Dj(t) < (\xl —x9| +2 _]Njo(to,v)) exp(/o IV Sju(t', )| peedt )
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Using Lemma 2.1.1 page 29, we have, for any ¢ < tq,

t t , it
/OHVSjv(t’,.)HLoodt’ < /O Z 27| Aot )| peedt’ + Z /0 27 |1Ajv(t, )| peedt!

J'<jo J'=Jo

, t

< iolr+D) / o(t', W gor_dt’ + FN;y (£, ). (3.10)

0 00,00
Thus for any integer j > jo and any t < tg, we have
) _ 2-j N Jjo(r+1) ! / / N
D (1) < ((Jn = w2l + 22Ny (t0,0)) exp (204D [t Mgyt + Ny (8,0))-
Let us choose 2/ = |x1 — 22| ~!; we infer that
. to
p(to) < Clag — @]~ Nio (o) eXP(QJO(TH)/ o', ) g dt,)
0 00,00

and the lemma is proved.

3.3 References ans Remarks

Theorem 3.1.1 has been proved by M. Cannone, Y. Meyer and F. Planchon in [3] by a different
method. A local version and various extensions of Theorem 3.1.1 can be founded in [9]. The
rest of this short chapter comes essentially from [11]. For an extensive study if the use of
Littlewood-Paley theory in the context of Navier-Stokes equations, we refer to the books [4]
by M. Cannone and [39] by P.-G. Lemarié-Rieusset.
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Chapter 4

Anisotropic viscosity

The purpose of this section is to study a version of the incompressible Navier-Stokes system
in R? where the usual Laplacian is substituted by the Laplacian in the horizontal variables,

ou+u-Vu—vApu = —Vp
(ANS,) divu = 0
u|t:0 = Uuo,

where Ay, def 0% + 03. We refer to [14] for the motivations. As we shall see, it appears to be

partly parabolic (in the horizontal variables) and partly hyperbolic (in the vertical variable).
The purpose is to prove theorems analogous to the case of classical Navier-Stokes system.

4.1 Wellposedness with one vertical derivative in L?

To make the basic ideas clearer, we shall first prove a weaker theorem, but the proof of which
is simpler. Let us introduce anisotropic Sobolev spaces which are natural here because the
horizontal variable xp = (z1, z2) does not play the same role as the vertical one z3.

Definition 4.1.1 Let s and s' be two real number. The space H** is the space of tempered
distributions u such that @ belongs to LI (R3?) and

loc

Julfye € A+ 18P0+ ) ()P < oo

It is obvious that H** is a Banach space. Our theorem is the following.

Theorem 4.1.1 Let ug in an initial data in H%'(R?). Then a positive time T exists such
that a unique solution u of (ANS,) exists in the space

L>=([0,T); HOYY n L2([0, T); HYY).
Moreover, the solution u is continuous with value in L? and satisfies the energy equality
2 ¢ NI, 2
[u(®)]z2 +2V/0 IViu(®)[|72dt” = [luol[z2-
Moreover, if we have
1 1
oo B0l < e (4.1)

for some small enough constant ¢, then the solution is global.
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Proof of Theorem 4.1.1 The lack of smoothing effect in the vertical variable x3 prevents
both from solving the system by a fixed point method like in Section 1.2 and from using
compactness methods based on the L? energy estimate. The structure of the proof is the
following:

e first, we shall define a family of approximated problems with global smooth solutions,

e then we shall solve globally those approximated problems and prove uniform bounds on
this family,

e then, we shall prove that the sequence defined by this procedure is a Cauchy sequence
in the energy space

L>®([0,T]; L?) n L*([0, T); H?).

Step 1: The family of approximated solutions We use the Friedrichs method: let us
define the sequence of operators (P,)nen by

Pha d:ef f_l(lB(O,n)a)

and let us solve

Opty, — VARUy + Pp(uy - Vuy,) — Py Z VA_laj(?k(uﬁLufl) =0
1<5,k<3
divu, =0
un‘tzo = Pnuo

(ANS, )

where A719;0y, is defined precisely in (1.2) page 9. In fact, the system (ANS, ) turns out to
be an ordinary differential equation on the space

L? def {v € L*(R?)/ divv=0 and Supp 7 C B(Ojn)}
with the L? norm because we have, for any u and v in L2,

Qn(u,v) def HPn(u-Vv)—PnV Z A_lﬁjak(ujvk)‘
1<j,k<3

L2
< Cn2 ) p2llo]l 2.

Thus, for any n, a maximal solution u, exists in C°°([0, T,,[; L) with of course T}, > 0.

Step 2: A priori bounds The first one is easily obtained: it is simply the energy esti-
mate (1.1) page 8 formally done in the introduction and which is now rigorous because u,, is
smooth, namely

t
e (B)1172 + 21//0 IVhun ()| Z2dt" = [|PauolZz < fluolZ.- (4.2)

Let us recall some classical blow up result s for ordinary differential equations. Let us state
now a necessary condition for blow up.
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Proposition 4.1.1 Let F' be a function from R X E into E which satisfy the hypothesis of
Theorem 3.2.1 at any point (tg, zg) of E. Let us also assume that a locally bounded function M
from R* into R' and a locally integrable function 3 from R into R™ exist such that

£t w)l| < BE)M((ul)-

Then if |T,,T*[ is the maximal intervalle of existence of an integral curve and if T* is finite,
we have
lim sup ||u(t)|| = oc.
t—=T™*

Proof of Proposition 4.1.1 Let us first observe that, if you consider a positive time 1" such
that ||u(t)|| is bounded on [Ty, T[, then we can extend the solution on [Ty, 71] with 77 > T.
As the function u is bounded on [Ty, T'[, we deduce from the hypothesis on F' that,

vt e [To, [, |F(tu(t)]] < CH(),

the function [ being integrable on [Ty, T]. Thus for any positive €, a positive 7 exists such
that, for any ¢ and ¢’ such that T —t <nand T — ' < 7,

Jut) —u()]| <e.
The space E being complete, u, exists in F such that lim u(t) = u.. Applying Theorem 3.2.1,

t—T
we construct a solution of (EDO) on [Ty, T1].
Corollary 4.1.1 Under the hypotheses of Proposition 4.1.1, if we have in addition
1F(t,w)ll < Mlul,

then if the maximal time interval of existence is [Ty, T*| and T* is finite, then
T*
| et = .
0
Proof of Corollary 4.1.1 The solution satisfies

t
[z < [lzoll +M/0 le(t) 1 *dt'.

Gronwall’s lemma implies that
t / /
()] < llzoll exp( [ ae)]dt).

Thanks to Corollary 4.1.1, this implies that, for any n, the solution w,, of (ANS, ) is
global which means that, for any n, u,, belongs to C*°(R; L?).

The second a priori bound is more difficult to obtain. Let us differentiate (ANS, ;) with
respect to J3. This gives, dropping the index n in order to make the notations lighter,

¢
105u(t)|[72 + 2V/ IVROsu(t')|72dt’ = 105 Pauol| 7 =2 Y Inelt) (4.3)
0 1<k, (<3
with
Tpo(t) % / st (1)dku’ (1) (1) de
R
Let us start with the term I, , with £ # 3, namely the terms which contain only two vertical

derivatives, which are the one which are not compensated by any smoothing effect. The
following proposition will be useful.
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Proposition 4.1.2 A constant C exists such that

2
( /R La@b(@)e(@)dz)” < Cmin{|lall g r,, 22y | Vabl 22, 1V hal o (r, 229 18] 22 |
X [lall oo gy 22) 18]l 22 | Vaell 2 el 2-
Proof of Proposition 4.1.2 Let us write that

J(a,b,c) (x)dx

def / (2)b(z
/ / a(xn, x3)b(xh, 3)c(Th, T3)dTH.!
The Holder inequality implies that

J(a,b,c)

IN

[ ) g I 2)l g e ) g
R

Ha”LOO(RIS;Li) Hb”L?(RzS;L;p ||C||L2(R13;L;§)-

IN

Then using the Sobolev inequality, the interpolation inequality and the Cauchy-Schwarz in-
equality, we get that

IN

[ 1900 ) 1 5) | ds
R
I95bll 22151

2
Hb”m(RzS;Lfl)

IN

The proof of the other inequality is similar.

We shall also use a corollary of this proposition.

Corollary 4.1.2 A constant C exists such that

2
( /R La(@)b(@)e(@)dz)” < C||0sal 2 llall 2|V rbll 2] 2 | Vael 2l el 2-

Proof of Corollary 4.1.2 Let us observe that

xrs3 d
Ha(‘ax:’a)H%i = /_ 7(/1:{2’a($hay3)‘2d$h)dy3

oo dy3
3
= 2/ /R2 a(xh, y3)Oysa(xn, y3)dzpdys.

Cauchy-Schwarz inequality implies that
Vos € R, Jla(,2s)|7, < 2(0sal 2 ]all e

The corollary is proved.

Let us go back to the proof of Theorem 4.1.1. Applying the above corollary in the case
when a = 9ju’, b = d3u* and d3u’ gives

3 1
Tie(t) < ClVaOsu(t)| 72 105u) ] 2| Viu)| 72
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The estimate of the terms I3 , demands the use of the special structure of the system, namely
the fact that the non linear term is v - Vu and that the vector fields involved are divergence
free. The divergence free condition implies that

I3e(t) = /R3 Dsud(t, x)0su’ (t, z)dsu (t, x)dx
= — /R3 divy, u" (t, 2)05u’(t, z)dsul (t, z)dz.
This term is strictly analogous to the preceeding ones. Thus, we have that, for any k and ¢,
(1) < CIVAOsuO)] )1 5u(t) 2 IV (D)
Plugging this in the energy estimate (4.3) gives
Josu(®l3s + 20 [ IVt < 0]

t 3 1
+ C/O IVROsu(t)|| 721105u(t) || 2 IV au ) || 72dt'.
: o . 1, 3.4
Using the convexity inequality ab < Za + ZbS’ we have

t C t
105u(t)]|Z2 + V/o IVhdsu(t) | Z2dt" < [|OsuollZ + ;/0 105u() |72 Vau(t) 72t (4.4)

Let us reintroduce for the moment the index n and define

def
T, = Sup{t >0, [[03unl|Foe0,9,02) + VIIVROsunlT2(0,.02) < 2H@3U0||%2}'

As the function w, is continuous with value in H® for any s and as ||03P,uq||z2 < ||O3uol| 12
in L2, the time T}, is positive and for any ¢ < T},, we have

t C t
|05+ v [ 190050 Fadt’ < 0auolEa (1+ 51000l | IVnun(#)[Fat'). (45)
Thanks to the energy estimate (4.2), we have, for any t < T,,,
2 ! NI, 2 c 2 2
[05un(t)]|72 + V/O IVRO3un(t)||72dt" < H83uUHL2(1 + ﬁ”aﬁ%uOHL?HUOHL?)'
Thus under the smallness condition (4.1), we have that T, = +o00 and thus,
t
Vt >0, Vn € N, [|0zun(t)|32 + V/o IV O3un (t')||7 24t < 2|05u0]|7-

Now, let us investigate the case when the initial data does not satisfy the smallness condition.

We shall write u,, as a perturbation of the free solution ux,, r dlef e”tAPnPNOuO by stating

def
Wp = Up — uNo,Fa

the integer Ny being chosen later on. Inequality (4.5) becomes
t
[0su(®)E + [ IVaDs, ()]
2 c 2 ! INEIFY ! INEIE
< [10suollzz\ 1+ J5l0suollzz{ | IVauno, p(E)Iz2dt" + | [1Vawn(E)[Ldt) ).
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By definition of un, r, we get
t
[0sua(®l32 + [ 191050t [0t

C t
< 10wl (1 + sllovuolts (NFlwols + [ IVawn(®)adt’) ).

t
Let us estimate / [V hwn (t)||32dt’. By definition of w, we have
0

atwn - VAhwn + Pn(un : vwn) + Pn(un . Vunvp) = —Vpn
divw, =0

wn|t:0 = (Id _PNO)UO-
Using the divergence free condition, we get by energy estimate that
t t
v [ I et < 10d=Pag)uole =2 [ (ua(t) - T, (et
Let us notice that, using Lemma 2.1.1,

[(un(t') - Vi, wn ()]

IN

IV, ()] oo ey ltim () | 2 w0 (8)]] 2

< Clluoll 22 Vune,r(t) peoms)

N

5
CONG [fuol[2.

IN

Thus, for any n,
v [ 1900 s < 000~ Pag ol + ol
We infer that
Josun 3+ v [ IVadsun )]t
< 10suolRa (1 + S l9suol s (ENF ol + (1 ~Py ol + NG ol )

Choosing Ny and then T such that the above quantity is small enough ensures that, for
any t <1, we have, for any n

4
1032 (£)]172 + V/o IVhOsun () |22t < 2[[d5uol7- (4.6)

Classical compactness arguments allows to exibit a solution u of (ANS,) which belongs
to L°°([0, T]; H%Y) N L2([0, T); H''). To prove uniqueness, let us prove the following lemma.

Lemma 4.1.1 Let uj, j € {1,2} be two solutions of (AN S,) in the space
L>=([0,T); HOYY n L2([0, T); HYY).
Then we have
t
luz (t) = ur ()]|72 + 2’//0 IVh(uz = ur) () |72dt" < [|(uz — u1)(0) |72 exp My, (t)  with

My C [

wtr & 55 [ 103Thu®) 2| Tt 2t
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Remark As u; belongs to L>([0,7]; H*Y) N L?([0, T]; HY1), we have
C 1 1
My, (t) < ﬁHa‘svhuy‘HLf(m) EH“J‘(O)HB + 12 ||05u;| oo L2y |-
Proof of Lemma 4.1.1 Stating uo; def uy — uy, we get, by a L? energy estimate
2 ¢ )12 ! h
Juzr (0132 +20 [ Ve (¢)[Fadt = ") = I°(1)
with

t
e €y /0 /R by ()9 (¢ )by (¢)di'de and

1<k<2
1<¢<3

t
re oy /0 /R ()0 (¢ yuby ()t .

1<0<3

Corollary 4.1.2 applied with a = aku{, b= u§1 and ¢ = uél, implies that
t 1 1
I"(t) < /0 105V e ()| 22 [V g ()| 22V war ()| 2| ua ()| p2dt’
v [t |12 / c / ! N2 /
< 5 [ ISmun @)t + S |10y () Vet ¢ e (8 [t
Proposition 4.1.2 applied with a = u3;, b = dsuf and ¢ = uf; gives
( t 3 / !/ % / % / % / % /
1) < | 21 () oo (rag;2) 105 Vi () 2110515 (£ | 22 | Viuor () Z2 uan (E)] L2t

The following property is important.

Lemma 4.1.2 Let v be a divergence free vector field. Then we have
3 1 1
10 oo (Rayi22) < V2IVROI 22 101 22

Proof of Lemma 4.1.2 Let us write that
3
[ty = 2 [ ([, 00 wn oo (o, w)den ) deo
3
= —2/ (/2divh vh(azh,yg)v3(xh,y3)da:h)da:3.
—oo YR

The Cauchy Schwarz inequality allows to conclude this proof.

Let us go back to the proof of Lemma 4.1.1. Now, we have

IN

t 1 1
1°(t) /0IIVhUm(t’)IILQIIU21(t')||L2||33thj'(t’)\|22Hawj(t')llizdt’

IA

v [t C [t
o [ I (Olade+ 5 [ 1055 (€)1 105 ()] 2 s (€3t
The application of the Gronwall lemma concludes the proof.
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4.2 Anisotropic viscosity and scaling invariant spaces

This study requires a careful use of Littlewood-Paley theory in the vertical variable. Let us
consider the partition of unity on R given by Proposition 2.1.1 page 31. We take the same
notation in order to avoid heaviness. We have the following equivalent of Lemma 2.1.1 page 29.

Lemma 4.2.1 Let ||-||g be a semi-norm and B a ball and C a ring of R. A constant C' exists
which satisfies the following properties.

For any positive A, any 1 < p < q < 0o, we have, for any function u, the Fourier transform
in the horizontal variable of which is supported in AB, we have

k+i-1
10§ all La(roysm) < CHFINTY T4 allpo(r,, )-

For any positive A, for any function u, the Fourier transform in the horizontal variable of
which is supported in AC, we have

lallLr®,,:m) < Ck+1>‘_k‘|8§a”LP(Rm3;E)-

The proof is the same has the one of Lemma 2.1.1 page 29 and thus omitted.

Lemma 4.2.2 Let C be a ring of R. A constant C' exists such that for any divergence free
vector field the Fourier transform of which is supported in \C, we have

_1 .
10| Lo (Rygs) < CA7Z || divi || 2Ry, )

Proof of Lemma 4.2.2 Left as an exercice.

Let us define the space we are going to work with.

Definition 4.2.1 Let us define the following seminorms.

def sl A
lallgo. = Y2 21 Azull e,

JEZ
def isi A
lallzy @0y % X2 1Ajullgr and
JEZ
def /o
||a|T,S = HGHZ?(BO,S)—}_ 2V||vha||Z%(Bo,s)'

Let us define the following spaces inhomogenous spaces.

BOs def {u e L2/ llallgos < o0} and

def o
Bro = {ueLF(L?)/ |lallrs < oo}

)

Now we can state the main theorem of this chapter.

Theorem 4.2.1 Let ug be in B%3. Then a positive T exists such that a unique solution exists

.0, . oo . . . 1 : .
in B2, This solution is continuous with value in B%2. Moreover, if HUOHBO,% < cv with small
enough c, then T' can be choosen equal to 400.
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We shall not prove this theorem totally here. We refer to the work [47] of M. Paicu for
a complete proof of this theorem. We shall only prove a part of it, namely the following
theorem.

Theorem 4.2.2 A constant ¢ exists such that, for ug in B!, if Hu0||BO% < cv, then the
solution given by Theorem 4.1.1 is global.

Proof of Theorem 4.2.2 Let us admit for the time being the following lemma.

Lemma 4.2.3 For any positive s, a constant Cyy exists such that
]/ (V)| Aju)d] < 7HUHT s [lul} 32

where, as in all that follows in the chapter, (c;)jez denotes a generic series of non negative
terms the sum of which is 1.

Then, let us consider the sequence (uy)nen of solutions of (ANS,, ) and let us define

def
T % sup{t > 0/ ljunlly < 4Aluoll oy }-

As u,, is a smooth function, it is easy to see that if HUOHB&% is less than cv, then, for any n, T},
is positive. Applying Lemma 4.2.3 with s = 1/2 or s = 1, we get, by (localized in frequency)
energy estimate, that, for any T < T,

Co
25| A jun g0 12y + 202%°| Ay Vil |72 2y < 22| AjuollZe + 4= IIUOHBO lunl7, o5

This inequality can be written

2

25| Ajuun| oo 2y + V22| A V| "< 2l +4(C°”7”“”8°’5)5u I ) &
jUn L (L?) v j VhUn L2,(L2) > Uo || go,s L Un||T,s | -

By definition of ||u||7s semi norms, we deduce that for any T' < T,

olloll
lunllzs < vV2luollgos + M() lam 1z

Thus choosing HUOHBO, 3 small enough will give, for s =1/2 or s =1,
Vt < T, |unllr,s < 2| uollgo,s-

Applying this with s = 1/2 gives T,, = 400 and then, for s =1/2 or s = 1,
VT >0, [Jun|7,s < 2[uol|go.s-

As obviously
105tnl[F0e 12y + 20105 Vitunl[72 (1.2 < llunllz,1,

Theorem 4.2.2 is proved, provided of course that we prove Lemma 4.2.3.
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Proof of Lemma 4.2.3 It relies on anisotropic paradifferential calculus. Moreover, we have

to distinguish betweeen horizontal and vertical derivates. This leads to introduce the following
notations.

2 T
h def A
hry Z/ /RSAJ-( 9 A ) Aju davdt
def
Phr) & Z / /R AG(A 08y pu) A, uddt

v df . . . .
) & / RSAj(Sj/_lugagAj/u)Ajudxdt

v def
I]%’j,(T) = / /R3 Ajiu 835’ +2u)A s dxdt.

Now we have

ef T

= / i(u - Vu)|Aju)dt
0

(1) P + L(T) + (D).

o

!

J

As the terms Ijljf(T) and Ijzjf(T) are analogous, we shall only prove estimates on I/ (T)

Proposition 4.2.1 Let (s, s2) € R? such that s; > 0. A constant C' exists such that, if

I;’h (a,b,c) defZ/ / Aj( /aaij/+gb)Ajcdtdm,

then, we have

2,h C o
177 (a,b,¢)(T) < ;C?Q ](81+82)HQHT7‘91||bHT,%”

Proof of Proposition 4.2.1 Thanks to Proposition 4.1.2, we have

2h def
I7(a,b,e)(T) =

5 Aj (Aj/aak5j1+2b)AjC dtdx
R

T . . FE. 1
< /O IViSjr2b(B)l oo (R, :02) VR A alt) | 22 | Agralt) | 72

. 1 . 1
X AIVaA e 72 1Az¢)] -

By definition of || - |75, we have
2,h % % i 1*L r :
I]] (a b C)( ) S ] _] 2 2° 2 HaHTslucHTSQ “vhS]/+2b(t)‘|L°°(Rx3,L%L)

. 1 . 1
X [|VaAja(®)| 721Vl et) ||} 2dt.

We shall often use the following lemma which is a straightforward consequence of Lemma 4.2.1
and of the definition of the semi norm || - ||z,
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Lemma 4.2.4 A constant C exists such that, for any j
1S5l Lo (Lo (Reys22)) + VNS Vhall 12 (Lo (R, 22)) < Cllally s

For any o less than 1/2, a constant C' exists such that

. . lio_
185l s (zoe Ry 22y + VISV hll 2 (2o Ry 12y < Clallmoe;2/(377)

where, as in this whole chapter, (c;j)jcz denotes a non negative series the sum of which is 1.

Let us go back to the proof of Proposition 4.2.1. Using the above lemma, the Holder
inequality, Lemma 4.2.4 and the definition of || - ||7s, we get

2.h 11 4 1 1 .
IjJ/(CL,b,C)(T) < C;,C;Q 3 51 252Ha‘||72",31HCH’]%,SQ”Vth/+2b|’L%(L°°(Rm3;L2))

. 1
X HVhAj/a(t) 2

. 1
HL2T(L2)thAjC(t> ;

HL%([})

C e
< ey allrs (1ol gllellTs.

Now let us observe that, as the support of the vertical Fourier transform of Aj/aaksj/+2b is
supported in a ball of type 2/'B, then

(s14s h j(s1+s h
93 (s1+ z)IJ2 (a,b,c)(T) < Y 9J(s1+ 2)[;j,(a’ b,c)(T)
J'>j—No

C s
—¢illalzs, [l llelr,s, S g2
Jj'’>j3—No

IN

Proposition 4.2.1 is proved.

Along the same lines, we have the following proposition.

Proposition 4.2.2 Let (s1,s2) € R? such that sy > 0. A constant C' exists such that, if

1M(a,b,¢)(1) Z / Ay (8100 b)A e dd,
then, we have

C .
I (a,b,0)(T) < ;c§2 i

Now let us estimate the terms that involves vertical derivatives. We shall use the structure

of the non linear term. The main point is that whenever 03 shows up, so does u>.

Proposition 4.2.3 Let (s1,52) € R? 51 > 0 is positive. A constant C exists such that, if w
is a divergence free vector field, then

IJZ’U(U} a, b defZ/ /3 /w 63;9] +20,)A bdtdx
R

then, we have

) C o
I3 (w,a,0)(T) < — 277D lwgg, a3 [Dlr.s,.
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Proof of Proposition 4.2.3 Applying Proposition 4.1.2 and then Lemma 4.2.2, we get

T . . . .
2% (w,a,0)(T) < ’/ [ Aj(Aj/w3335j/+2a)Ajbdtdib‘
0 JR3

T . 1 . 1
< /0HAJ-/w?’IILoo(Rm;LZ)|!33Vh5j'+2a(75)”22||835j’+2a(t)Hiz
. PO 1
X [[VRAb) 72 1A56(1)]] 2t
. T . . 1 . 1
< 2_%/0 A Vw2103V RS p2a(t)] 721038 12a(t)| 72

, 1 1
X [V | A50(8) | 72dt.

we get

Using the Holder inequality and then Lemma 4.2.4 and the definition of || -

2, Loy 1 1
Ly(w,at)(T) < ef272[alz, [Pl

T . 1 . 1
X /0 |85V hwl| 2|05V i Sjr2a(t) |72 VRA;b(E)| 724t

< ;CjCj'lesl_j”HwHT,slHaHTéHbHT,sT
Then we infer

c . (il
1 (w,a,0)(T) < — ;27D wlgg llally s [Bllzs, 32 ep2 0
J'2j—No

The proposition is proved.

Let us estimate the term I'?. This term looks the worse because the vertical derivative
acts on the term where the vertical frequencies are high. Again, the particular structure of
the non linear term is demanded.

Proposition 4.2.4 Let s be a real number. Then a positive constant C exists such that, if w
is a divergence free vector field, then, if

I},v defZ/ A S]/_lw 83A /CL)A CLdtdSC

we have o
1, 20—2j 2
1w, a)(T) < 3272wl sl
Proof of Proposition 4.2.4 The following lemma will transform vertical derivative acting
on high vertical frequencies term into a sum of terms either of type I?’v (T') or of terms which
contains horizontal derivatives.

Lemma 4.2.5 We have

1,v _ > T
I (w,a)(T) = Z/o M(t)dtdx  with

m=1

Kl(t) d:ef Z(Sj/_l — Sj_l)w3(t)83Aj/Aja(t)Aja(t),

5/

J

K2t %0 STIAS Sy 1w (6))0sAa(t) Aja(t)  and

5/

.

K3 % _% 51 divy w (1) (Aja(t)?.
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Proof of Lemma 4.2.5 Let us begin by writing the following computations.
v d f
B (w,a)(t) = ZA (81w (B354 jra(t))
ZS]/_lw agA A /CL( ) [A],S]/_1w3(t)}83A]/a(t)

= Z(Sj/_l — Sj_l)w3(t)83AjAj/a + ZS] 1w 83A A /a( )

y/

ZA 5, 3(1)034 raft)
= Kj(t)+ K;(t) + S‘j_le(t)agAja( ).

Thanks to the fact that dsw? = — divj, w”, an integration by part gives

) ) ) 1 ) .
/ $i 1 (0)5Aa(t) Aja(t)dz = ~ / 81 divy w(t)(Aja(t))2de.
R3 2 JR3
This proves the lemma.

Let us go back to the proof of Proposition 4.2.4. Using Proposition 4.1.2 and then Lem-
ma 4.2.2, we get

i) < €2 Y [ Apw @)l ey, 2 I VRAsa)] 2] Ajalt) ] 2
J"€('=1,j-1)
l7'—FI<N

< S 27 ANVaw®)| 2 |Vadjat)] 2| Asa(t) | e

7" =31<N
Thus, by definition of || - |75, we have
[ &30 < S5y ... (47)
0 v 72 '
Using Proposition 4.1.2 we get
K5(t) < C|18; divi w"(t)| o (r,.,:2) | VaAja(t) | 2| Aja(t) | 2.

Then applying Lemma 4.2.4, we get, by definition of || -

T C iy
[ 3w < Sz ulyy ol 48)

In order to estimate K ?(T), we need a control on the commutator. As Aj is a convolution
operator, the point is to describe the commutation between a convolution and a multiplication
in an anisotropic way.

Lemma 4.2.6 Let E, F and G three Banach spaces continuously included in S'(R?) such
that

leflle < llellzllslle-

A constant C' exists such that, for any p € [1,+00], any lipschitz function « from R, into E
any function (8 in LP(R,; F'), we have

H[Ajaoé]ﬁHLp(ng,G) < CZ_jHa3O‘HL°°(Rw3;E)Hﬁ”LP(Rzg;F)-
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Proof of Lemma 4.2.6 By definition of Aj, we have

(1A5,018) (@, w3) = Aj(aB)(wn,z5) — alwn, 23)8;B(wn, z3)

— 9 / D@ (23— ys) (lan, ys) — alzn, 23))B(en, ys3)dys.
R

As the function a is supposed to be lipschitzian with respect to the vertical variable x3, we
have

al,ys) —alzs)lle < ‘|a3a||L°°(Rx3;E)|y3 — x3].

It turns out that

(1A, a)B) (-, z3) |

IN

C2J /Rd ]h(2j(x3 — )| |-, y3) — -, 23) | B1BC, y3) || pdys

C277| 30| oo oy i) 2 /Rd |h(27 (25 — y3))| 27 |ys — 23] (1B, y3) | pdys.

IN

Then Young inequality implies that

1145, 1Bl Lo (R < C27 105 Lo Ry i) [BC)] - It ) 0] 20 (R -
This concludes the proof of the lemma.

Remark This lemma can be interpreted as a gain of one derivative by commutation between
the operator A; and the multiplication by a lipschitzian function.

Let us go back to the proof of Proposition 4.2.4. We have, using the Holder inequalities
4
and Lemma 4.2.6 with F = L%, F= L%L and G = Ly,

K2(t) €| /R (185,85 w0058 a(t) ) (wn, 73) Aja(t) (wh, ws)dandas|

A

< C27|8j1050° ()| g (ry 22 /R 1058 ja(t, -, 23) L1 |1 Ajalt, - 3)l| L1 dees

IN

A8y 1w ()54 pa(t) (-, 23)

L% HAja(t) " $3)||L;1Ld$3

< czfjusj,_ldivhwh(t)HLm(Rzg;Li)/ 1858 jra(t, -, x3)ll 3 | Ajalt, - 3) | L1 des.
R

Sobolev embeddings, interpolation inequality together with Lemma 4.2.1 and Lemma 4.2.2
gives, by definition of || - |75 and thanks to Lemma 4.2.4,

T LT . 1
Z /0 Kij/(t)dt = C Z 2 ]/0 HS-/71Vh'U)(t)HLoo(RQC?’;L}?l)/]RHV}LAj/a(t’-,xg)Hzi

|5/ —31<5 l7'—il<5

. Lo 1 1
x| Ajalt, - 23)ll 12 185 Vaa(t, - 23)[ L2l Aja(t, -, 23)l| [2dzadt
C Y
< 23wl sl
This concludes the proof of Proposition 4.2.4.

Propositions 4.2.1-4.2.4 implies Lemma 4.2.3. The proof of Theorem 4.2.2 is now complete.
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4.3 References and Remarks

The use of anisotropic Sobolev spaces is not recent in partial differential equations if we have in
mind boundary value problem (see for instance the book [33]). An anisotropic paradifferential
calculus has been built by M. Sablé-Tougeron in [50]. Anisotropic Sobolev spaces have been
introduced in the context of incompressible Navier-Stokes system by D. Iftimie in [34]. The
study of anisotropic incompressible Navier-Stokes system has been initiated in [13] and in [35].
The sharp scaling invariant result (Theorem 4.2.1) has been proved by M. Paicu in [47].
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