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The equations

We consider a family of quasi-periodic lattice nonlinear Schrödinger
equations

iq̇n + ε(qn+1 + qn−1) + V (nα+ x)qn + |qn|2qn = 0, n ∈ Z (1)

where

0 < ε� 1,

V is a non-constant real analytic function on R/Z,

α satisfying the Diophantine condition.

or the potential is independent identically distributed random
variables.

Joint with J. Geng and Z. Zhao () Localization in Nonlinear Lattice Schrödinger Equations with Analytic Quasi-Periodic Potentials2 / 31



Physical Background

Evolution of Bose-Einstein condensate in a disordered lattice
nonlinear optics

Wave propagation in a nonlinear disordered media
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Localization

We will study the localization problem of Lattice nonlinear Schrödinger
equations. A solution is said to be localized if, for any s > 0,

sup
t

∑
n∈Z
|n|2s|qn(t)|2 <∞.

In general, to understand the dynamics of an infinite dimensional equation

iẋ = Ax+ µf(x),

it is necessary to understand the operator A and the linear equation.
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Schrödinger operators and linear Schrödinger equations

Schrödinger operators:

H : l2 → l2, (Hq)n = ε(qn+1 + qn−1) + V (nα+ x)qn.

Central problem: Pure point spectrum and Anderson localization.

Linear equations:

iq̇n + ε(qn+1 + qn−1) + V (nα+ x)qn = 0, n ∈ Z

Central problem: Dynamical localization.
All solutions with exponentially localized initial value
q(0) = {qn(0)}n∈Z are localized for all t.
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Avila, Bourgain, Bellissard, Lima, Scoppola, Eliasson, · · · (far from
complete)

Joint with J. Geng and Z. Zhao () Localization in Nonlinear Lattice Schrödinger Equations with Analytic Quasi-Periodic Potentials6 / 31



Conclusions

If the potential is sufficiently ”random”, then almost surely ,

the spectrum of the Schrödinger operators is pure point;

typical solutions of linear equations are quasi-periodic or almost-periodic;

the linear equations have dynamical localization.
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Localization problem in lattice NSEs

Recall the lattice nonlinear Schrödinger equations

iq̇n + ε(qn+1 + qn−1) + Vnqn + |qn|2qn = 0, n ∈ Z, (2)

where Vn is independent identically distributed random variables (i.i.d.), or
quasi-periodic Vn = V (nα+ x) with Diophantine α.

In general, disorder of potential helps the localization, while
non-linearity will destroy the localization.

Dynamical localization, i.e., all solutions with localized initial data are
localized all the time, is not expectable for nonlinear systems.
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Nonlinear case: toy models

Frölich-Spence-Wayne(1985, J. Stat.Phys), Bellissard-Vittot(1985,
CPT-Marseille), Pöschel (1990, Commun. Math. Phys.)

iq̇n + Vnqn + δ|qn+1|2qn + δ|qn−1|2qn = 0, n ∈ Z,

where {Vn} are i.i.d. . The existence of one (localized)
almost-periodic solution for ”typical Vn” was proved.

Yuan(2002, Commun. Math. Phys.), Bambusi-Vella ( 2002, DCDS).
Existence of a family of quasi-periodic solutions was proved.

Geng-Viveros-Yi (2008, Physica D.) Same result holds for

iq̇n + Vnqn +
∑
m

e−|n−m||qm|2qn = 0,

where {Vn} are positive and satisfy the asymptotic condition Vn ≥ 1
n2 .
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A conjecture by Frölich-Spencer-Wayne

Consider an ergodic family of lattice Schrödinger equations

iq̇n + ε(qn+1 + qn−1) + Vnqn + |qn|2qn = 0, n ∈ Z. (3)

where Vn is either i.i.d., or quasi-periodic Vn = V (nα+ x).

Conjecture: For almost all equations in the family, ”most” solutions with

small initial data of finite support

are localized.
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Mathematical results for lattice Schrödinger

Bourgain-Wang(2008, J. Eur. Math. Soc.)

iq̇n + ε(qn+1 + qn−1) + Vnqn + δ|qn|2qn = 0,

where {Vn}n∈Z, the potential, is a family of i.i.d. random variables.
They proved existence of a (localized) quasi-periodic solution for
”most” equations.

Geng-Zhao(2011, preprint)

iq̇n + ε(qn+1 + qn−1) + tanπ(x+ nα)qn + ε|qn|2qn = 0,

where α Diophantine. They proved existence of a family of
quasi-periodic solutions for a large class of equations.

In the analytic quasi-periodic potential case, it is much more difficult to
obtain localization since the potential is less random.
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Numerical results

Many numerical results by physicists saying that the delocalization occurs
with some rates, i.e., t

1
3 , t

2
5 .

The numerical experiments were carried out for large initial data.
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Main Result

Theorem

Consider a family of lattice Schrödinger equations

iq̇n + ε(qn+1 + qn−1) + V (nα+ x)qn + |qn|2qn = 0, n ∈ Z (4)

where α is Diophantine, V is analytic, ε is small depending on α and V .
Then for almost every x, the following holds:
Arbitrarily take {n1, · · · , nb}. Let

q0 = (· · · , 0, q0
n1
, 0, · · · , 0, q0

ni , 0, · · · , 0, q
0
nb
, 0, 0, · · · )

with
q0
ni ∈ (0, ε

3
5 ], i = 1, · · · , b.

Then, with probability (1−O(ε
1
3 ))b, the solution q(t, q0) is localized in

space and quasi-periodic in time.

Joint with J. Geng and Z. Zhao () Localization in Nonlinear Lattice Schrödinger Equations with Analytic Quasi-Periodic Potentials13 / 31



Remarks

The results are true for more general equations, such as

iq̇n + ε(qn+1 + qn−1) + V (nα+ x)qn + |qn|2pqn = 0,

and

iq̇n + ε(qn+1 + qn−1) + V (nα+ x)qn + |qn|2p(qn+1 + qn + qn−1) = 0,

where n ∈ Z, p ∈ Z+.

The smallness of ε is necessary. Otherwise, there is no localization
even for linear equations due to the absolute continuous spectrum.
This is different from the random case.
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Remarks-continued

The potential V can be in the Gevrey class

sup
x∈R/Z

|∂mV (x)| ≤ CLmm!, m ≥ 0,

for some C, L > 0, and satisfying the transversality condition

max
0≤m≤s̃

|∂mϕ (V (x+ ϕ)− V (x))| ≥ ξ̃ > 0, ∀x, ∀ϕ,

max
0≤m≤s̃

|∂mx (V (x+ ϕ)− V (x))| ≥ ξ̃|ϕ|1, ∀x, ∀ϕ,

for some ξ̃, s̃ > 0.
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The method and remarks

Method: KAM theory.

Difficulties: Dense eigenvalues, non-uniformly decaying eigen-states.

The smallness of the perturbation does not depend on the dimension
of torus.

Advantage: Spatial structure, Short coupling.
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The Hamiltonian

The Hamiltonian associated with the lattice equation is

H(x) = H0(x) +G, (5)

where

H0(x) := ε
∑
n∈Z

q̄n(qn+1 + qn−1) +
∑
n∈Z

Vn(x)qnq̄n = ε〈Sq, q̄〉+ 〈Λ(x)q, q̄〉,

with Λ and S satisfying the shift condition

Λmn(x+ kα) = Λm+k,n+k(x), Smn(x+ kα) = Sm+k,n+k(x),

and

G :=
1

2

∑
n∈Z
|qn|4.
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The Action-Angle variables

Arbitrarily take J = {n1, · · · , nb} ⊂ Z and then fixed.

We introduce action-angle variables and parameters to the Hamiltonian
function (5),

qi =
√
Ii + ξie

iθi , q̄i =
√
Ii + ξie

−iθi , i ∈ J ,

where ξ = (ξn1 , · · · , ξnb) ∈ [ε
3
5 , 2ε

3
5 ]b is a parameter.
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The normal form

Then the Hamiltonian (5) becomes

H(x, ξ) = Ñ (θ, I, q, q̄;x, ξ) + P̃ (θ, I, q, q̄; ξ),

where

Ñ (θ, I, q, q̄;x, ξ) =
∑
n∈J

(Vn(x) + ξn)In +
∑
n∈Z1

Vn(x)qnq̄n

+ε
∑
n∈Z

(qnq̄n+1 + q̄nqn+1)

up to an irrelevant constant
∑

n∈J (Vn(x)ξn + 1
2ξ

2
n).
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The perturbation

The perturbationP̃ = P̃ (θ, I, q, q̄; ξ) is

1

2

∑
n∈Z1

|qn|4 +
1

2

∑
n∈J

I2
n + ε

∑
n∈J
n+1/∈J

√
In + ξn(e−iθnqn+1 + eiθn q̄n+1)

+ ε
∑
n/∈J
n+1∈J

√
In+1 + ξn+1(e−iθn+1qn + eiθn+1 q̄n)

+ ε
∑
n∈J
n+1∈J

√
In + ξn

√
In+1 + ξn+1(e−i(θn−θn+1) + ei(θn−θn+1))

=
1

2

∑
n∈Z1

|qn|4 +
1

2

∑
n∈J

I2
n + finite many θ dependent terms.
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A technique problem

A technique problem: after introducing the action-angle variables, the shift
condition of H in (5) has been destroyed. To solve this problem, we add b
variables q′n1

, · · · , q′nb and the corresponding conjugate variables
q̄′n1

, · · · , q̄′nb into this system. Omitting the prime of the newly-added
variables for convenience, we re-write the system as

H = Ñ + P̃

=
∑
n∈J

(Vn(x) + ξn)In +

[∑
n∈Z

Vn(x)|qn|2 + ε
∑
n∈Z

(q̄nqn+1 + qnq̄n+1)

]
+〈A(x, ξ)q, q̄〉+ P,
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The normal form-continued

where

〈A(x, ξ)q, q̄〉 = −
∑
n∈J

Vn(x)|qn|2

−ε
∑

n orn+1∈J
(q̄nqn+1 + qnq̄n+1).

Note that 〈A(x, ξ)q, q̄〉 contains only finite many quadratic terms.
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The Hamiltonians

To this stage, we arrive at the perturbed Hamiltonians of the form

H(x, ξ) = N (x, ξ) + P (x, ξ), (6)

with
N (x, ξ) = 〈ω(x, ξ), I〉+ 〈T (x)q, q̄〉+ 〈A(x, ξ)q, q̄〉,

where T (x) is the Schrödinger operators, A(x, ξ) is a finite range operator
satisfying

Amn ≡ 0, if |m| or |n| > N̂.

For each x, H(x, ξ) is C1
W smoothly parametrized by ξ ∈ O = O(x).

P =
1

2

∑
n∈Z1

|qn|4 +
1

2

∑
n∈J

I2
n + finite many θ dependent terms.

Joint with J. Geng and Z. Zhao () Localization in Nonlinear Lattice Schrödinger Equations with Analytic Quasi-Periodic Potentials23 / 31



KAM theorem

Our goal is to prove that, for a.e. x ∈ R/Z, the Hamiltonians H = N + P
still admits invariant tori for most of the parameter ξ ∈ O corresponding
to space localized and time quasi-periodic solutions, provided that ‖XP ‖
is sufficiently small.
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KAM theorem

Theorem

For the above Hamiltonians, if ε = ε(α, V ) is small, there is a full-measure
subset X̃ of R/Z such that for every x ∈ X̃ , the following holds.
There exists a positive measure Cantor set Oε = Oε(x) ⊂ O with

meas(Oε) = (1−O(ε
1
3 ))bmeas(O),

such that for ξ ∈ Oε, the Hamiltonian H has a b-dimensional inviant torus
correponding to the b-frequency quasi-periodic solution q(t, ξ) of the
lattice Schrödinger equations. Moreover, for any s > 0,

sup
t

∑
n∈Z
|n|2s|qn(t)− q(0)|2 <∞.
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Two ingredients in KAM

The cohomological equation.

Measure estimates
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The homological equation

In each step of KAM iteration, the key is to solve homological equtions of
the form

(〈k, ω〉I + T +A)F1 = f1

〈k, ω〉F2 + [T +A,F2] = f2

where T is the Schrödinger operator and A is of finite range.
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Small divisor conditions

The small divisor condition will be

|〈k, ω〉I + Ωi| >
γ

|k|τ(k)

and

|〈k, ω〉I + Ωi − Ωj | >
γ

|k|τ(k)
,

where τ(k) is depends on the support of k, and {Ωn} are eigenvalues of
T +A.
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KAM step: Property of T (by Eliasson)

Lemma

Fix any x ∈ R/Z. There exists a sequences of orthogonal matrices Uν on

R/Z, ν ∈ N, with |(Uν − IZ)mn| ≤ ε
1
2
0 e
− 1

2
σν |m−n|, such that

U∗ν (D0 + Z0)Uν = Dν + Zν ,

where Zν = (Zνmn)m,n∈Z is a symmetric matrix satisfying

|Zνmn| ≤ ενe−σν |m−n|,

and Dν is a real symmetric matrix which can be block-diagonalized via an
orthogonal matrix Qν with Qνmn = 0 if |m− n| > Nν . More precisely,

D̃ν = Q∗νDνQν =
∏
j

D̃ν
Λνj

with ]Λνj ≤Mν , diamΛνj ≤MνNν .
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Further problems

Prove similar results for

One dimension lattice Schrödinger with random potential

iq̇n + qn+1 + qn−1 + Vnqn + |qn|2qn = 0, n ∈ Z1, (7)

i.e., Vn is independent identically distributed random variables.

higher dimensional lattice Schrödinger with random potentials

iq̇n + ε
∑
|j−n|=1

qj + Vnqn + |qn|2qn = 0, n, j ∈ Zd (8)

Diffusion orbits and diffusion rates.
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Thank You

Joint with J. Geng and Z. Zhao () Localization in Nonlinear Lattice Schrödinger Equations with Analytic Quasi-Periodic Potentials31 / 31


